首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although potassium‐ion batteries (KIBs) have been considered to be promising alternatives to conventional lithium‐ion batteries due to large abundance and low cost of potassium resources, their development still stays at the infancy stage due to the lack of appropriate cathode and anode materials with reversible potassium insertion/extraction as well as good rate and cycling performance. Herein, a novel dual‐carbon battery based on a potassium‐ion electrolyte (named as K‐DCB), utilizing expanded graphite as cathode material and mesocarbon microbead as anode material is developed. The working mechanism of the K‐DCB is investigated, which is further demonstrated to deliver a high reversible capacity of 61 mA h g‐1 at a current density of 1C over a voltage window of 3.0–5.2 V, as well as good cycling performance with negligible capacity decay after 100 cycles. Moreover, the high working voltage with medium discharge voltage of 4.5 V also enables the K‐DCB to meet the requirement of some high‐voltage devices. With the merits of environmental friendliness, low cost and high energy density, the K‐DCB shows attractive potential for future energy storage application.  相似文献   

2.
Fluorine substitution is a critical enabler for improving the cycle life and energy density of disordered rocksalt (DRX) Li‐ion battery cathode materials which offer prospects for high energy density cathodes, without the reliance on limited mineral resources. Due to the strong Li–F interaction, fluorine also is expected to modify the short‐range cation order in these materials which is critical for Li‐ion transport. In this work, density functional theory and Monte Carlo simulations are combined to investigate the impact of Li–F short‐range ordering on the formation of Li percolation and diffusion in DRX materials. The modeling reveals that F substitution is always beneficial at sufficiently high concentrations and can, surprisingly, even facilitate percolation in compounds without Li excess, giving them the ability to incorporate more transition metal redox capacity and thereby higher energy density. It is found that for F levels below 15%, its effect can be beneficial or disadvantageous depending on the intrinsic short‐range order in the unfluorinated oxide, while for high fluorination levels the effects are always beneficial. Using extensive simulations, a map is also presented showing the trade‐off between transition‐metal capacity, Li‐transport, and synthetic accessibility, and two of the more extreme predictions are experimentally confirmed.  相似文献   

3.
The ever‐increasing demand for large‐scale energy storage systems requires novel battery technologies with low‐cost and sustainable properties. Due to earth‐abundance and cost effectiveness, the development of rechargeable potassium ion batteries (PIBs) has recently attracted much attention. Since carbon‐based materials are abundant, inexpensive, nontoxic, and safe, extensive feasibility investigations have suggested that they can become promising anode materials for PIBs. This review not only attempts to provide better understanding of the potassium storage mechanism, but also summarizes the availability of new carbon‐based materials and their electrochemical performance covering graphite, graphene, and hard carbon materials plus carbon‐based composites. Finally, the critical issues, challenges, and perspectives are discussed to demonstrate the developmental direction of PIBs.  相似文献   

4.
Potassium‐ion batteries (KIBs) are important alternatives to lithium‐ and sodium‐ion batteries. Herein, microsized a Bi electrode delivers exceptional potassium storage capacity, stability, and rate capability by the formation of an elastic and adhesive oligomer‐containing solid electrolyte interface with the assistance of diglyme electrolytes. The kinetics‐controlled K–Bi phase transitions are unraveled combining electrochemical profiles, in situ X‐ray diffraction and density functional theory calculations. Reversible, stepwise Bi–KBi2–K3Bi2–K3Bi transitions govern the electrochemical processes after the initial continuous surface potassiation. The Bi electrode outperforms the other anode counterparts considering both capacity and potential. This work provides critical insights into the rational design of high‐performance anode materials for KIBs.  相似文献   

5.
Potassium‐ion batteries (KIBs) are very promising alternatives to lithium‐ion batteries (LIBs) for large‐scale energy storage. However, traditional carbon anode materials usually show poor performance in KIBs due to the large size of K ions. Herein, a carbonization‐etching strategy is reported for making a class of sulfur (S) and oxygen (O) codoped porous hard carbon microspheres (PCMs) material as a novel anode for KIBs through pyrolysis of the polymer microspheres (PMs) composed of a liquid crystal/epoxy monomer/thiol hardener system. The as‐made PCMs possess a porous architecture with a large Brunauer–Emmett–Teller surface area (983.2 m2 g?1), an enlarged interlayer distance (0.393 nm), structural defects induced by the S/O codoping and also amorphous carbon nature. These new features are important for boosting potassium ion storage, allowing the PCMs to deliver a high potassiation capacity of 226.6 mA h g?1 at 50 mA g?1 over 100 cycles and be displaying high stability by showing a potassiation capacity of 108.4 mA h g?1 over 2000 cycles at 1000 mA g?1. The density functional theory calculations demonstrate that S/O codoping not only favors the adsorption of K to the PCMs electrode but also reduces its structural deformation during the potassiation/depotassiation. The present work highlights the important role of hierarchical porosity and S/O codoping in potassium storage.  相似文献   

6.
Potassium‐based dual‐ion batteries (KDIBs) have emerged as a new generation of rechargeable batteries, due to their high cell voltage, low cost, and the natural abundance of potassium resources. However, the low capacity and poor cycling stability largely hinder the further development of KDIBs. Herein, the fabrication of hierarchically porous N‐doped carbon fibers (HPNCFs) as a free‐standing anode for high‐performance KDIBs is reported. With a free‐standing hierarchical structure (micro/meso/macropores and nanochannels) and high‐content of nitrogen doping, the HPNCFs not only provide intrinsic electron pathways and efficient ion transport channels, but also afford sufficient free space to tolerate the volume change during cycling. Consequently, the KDIBs made from a graphite cathode and an optimized HPNCFs anode deliver a high reversible capacity of 197 mAh g?1 at a specific current of 50 mA g?1, and excellent cycling stability (65 mAh g?1 after 346 cycles at a specific current of 100 mA g?1, the capacity calculation of the KDIBs is based on the mass of the anode). These results indicate that the properly designed HPNCFs can effectively improve the capacity and cycling stability of the KDIBs, indicating a great potential for applications in the field of high‐performance energy‐storage devices.  相似文献   

7.
Among the negative electrode materials for potassium ion batteries, carbon is very promising because of its low cost and environmental benignity. However, the relatively low storage capacity and sluggish kinetics still hinder its practical application. Herein, a large scalable sulfur/nitrogen dual‐doped hard carbon is prepared via a facile pyrolysis process with low‐cost sulfur and polyacrylonitrile as precursors. The dual‐doped hard carbon exhibits hierarchical structure, abundant defects, and functional groups. The material delivers a high reversible potassium storage capacity and excellent rate performance. In particular, a high reversible capacity of 213.7 and 144.9 mA h g?1 can be retained over 500 cycles at 0.1 A g?1 and 1200 cycles at 3 A g?1, respectively, demonstrating remarkable cycle stability at both low and high rates, superior to the other carbon materials reported for potassium storage, to the best of the authors' knowledge. Structure and kinetics studies suggest that the dual‐doping enhances the potassium diffusion and storage, profiting from the formation of a hierarchical structure, introduction of defects, and generation of increased graphitic and pyridinic N sites. This study demonstrates that a facile and scalable pyrolysis strategy is effective to realize hierarchical structure design and heteroatom doping of carbon, to achieve excellent potassium storage performance.  相似文献   

8.
9.
As an emerging electrochemical energy storage device, potassium‐ion batteries (PIBs) have drawn growing interest due to the resource‐abundance and low cost of potassium. Graphite‐based materials, as the most common anodes for commercial Li‐ion batteries, have a very low capacity when used an anode for Na‐ion batteries, but they show reasonable capacities as anodes for PIBs. The practical application of graphitic materials in PIBs suffers from poor cyclability, however, due to the large interlayer expansion/shrinkage caused by the intercalation/deintercalation of potassium ions. Here, a highly graphitic carbon nanocage (CNC) is reported as a PIBs anode, which exhibits excellent cyclability and superior depotassiation capacity of 175 mAh g?1 at 35 C. The potassium storage mechanism in CNC is revealed by cyclic voltammetry as due to redox reactions (intercalation/deintercalation) and double‐layer capacitance (surface adsorption/desorption). The present results give new insights into structural design for graphitic anode materials in PIBs and understanding the double‐layer capacitance effect in alkali metal ion batteries.  相似文献   

10.
Sodium‐based dual ion full batteries (NDIBs) are reported with soft carbon as anode and graphite as cathode for the first time. The NDIBs operate at high discharge voltage plateau of 3.58 V, with superior discharge capacity of 103 mA h g?1, excellent rate performance, and long‐term cycling stability over 800 cycles with capacity retention of 81.8%. The mechanism of Na+ and PF6? insertion/desertion during the charging/discharging processes is proposed and discussed in detail, with the support of various spectroscopies.  相似文献   

11.
Hard carbon (HC) is the state‐of‐the‐art anode material for sodium‐ion batteries (SIBs). However, its performance has been plagued by the limited initial Coulombic efficiency (ICE) and mediocre rate performance. Here, experimental and theoretical studies are combined to demonstrate the application of lithium‐pretreated HC (LPHC) as high‐performance anode materials for SIBs by manipulating the solid electrolyte interphase in tetraglyme (TEGDME)‐based electrolyte. The LPHC in TEGDME can 1) deliver > 92% ICE and ≈220 mAh g?1 specific capacity, twice of the capacity (≈100 mAh g?1) in carbonate electrolyte; 2) achieve > 85% capacity retention over 1000 cycles at 1000 mA g?1 current density (4 C rate, 1 C = 250 mA g?1) with a specific capacity of ≈150 mAh g?1, ≈15 times of the capacity (10 mAh g?1) in carbonate. The full cell of Na3V2(PO4)3‐LPHC in TEGDME demonstrated close to theoretical specific capacity of ≈98 mAh g?1 based on Na3V2(PO4)3 cathode, ≈2.5 times of the value (≈40 mAh g?1) with nontreated HC. This work provides new perception on the anode development for SIBs.  相似文献   

12.
Potassium‐ion hybrid capacitors (PIHCs) hold the advantages of high‐energy density of batteries and high‐power output of supercapacitors and thus present great promise for the next generation of electrochemical energy storage devices. One of the most crucial tasks for developing a high‐performance PIHCs is to explore a favorable anode material with capability to balance the kinetics mismatch between battery‐type anodes and capacitor‐type cathode. Herein, a reliable route for fabricating sulfur and nitrogen codoped 3D porous carbon nanosheets (S‐N‐PCNs) is reported. Systematic characterizations coupled with kinetics analysis indicate that the doped heteroatoms of sulfur and nitrogen and the amplified graphite interlayer can provide ample structural defects and redox active sites that are beneficial for improving pseudocapacitive activity, enabling fast kinetics toward efficient potassium‐ion storage. The S‐N‐PCNs are demonstrated to exhibit superior potassium storage capability with a high capacity of 107 mAh g?1 at 20 A g?1 and long cycle stability. The as‐developed PIHCs present impressive electrochemical performance with an operating voltage as high as 4.0 V, an energy density of 187 Wh kg?1, a power density of 5136 W kg?1, and a capacity retention of 86.4% after 3000 cycles.  相似文献   

13.
14.
The inherent short‐term transience of solar and wind sources cause significant challenges for the electricity grid. Energy storage systems that can simultaneously provide high power, long cycle life, and high energy efficiency are required to accommodate the fast‐changing output fluctuations. Here, an ultrafast aqueous K‐ion battery based on the potassium‐rich mesoporous nickel ferrocyanide (II) (K2NiFe(CN)6·1.2H2O) is developed. This battery achieves an unprecedented rate capability up to 500 C (8214 W kg?1), which only takes 4.1 s for one charge or discharge. The open‐framework structure of K2NiFe(CN)6·1.2H2O with small volume variation supports the capacity retention of 98.6% after 5000 cycles, and a superior round‐trip energy efficiency of 95.6% at a 5 C rate. Beyond monovalent ion storage, K2NiFe(CN)6·1.2H2O can also function as a versatile high‐rate cathode for divalent‐ion batteries (Mg2+), trivalent‐ion batteries (Al3+), and hybrid full‐cells applications. These properties represent a significant step forward in the exploitation of ultrafast metal ions storage, and accelerate the development of intermittent grid‐scale energy storage technologies.  相似文献   

15.
Metal phosphides are promising anode candidates for sodium‐ion batteries (SIBs) due to their high specific capacity and low operating potential but suffer from poor cycling stability caused by huge volume expansion and poor solid‐state ion transfer rate. Herein, a new strategy to grow a new class of mesoporous metal phosphide nanoarrays on carbon felt (CF) as binder‐free anodes for SIBs is reported. The resultant integrated electrodes demonstrate excellent cycling life up to 1000 times (>90% retention rate) and high rate capability of 535 mAh g?1 at a current density of 4 A g?1. Detailed characterization reveals that the synergistic effect of unique mesoporous structure for accommodating huge volume expansion during sodiation/desodiation process, ultrasmall primary particle size (≈10 nm) for providing larger electrode/electrolyte contact area and shorter ion diffusion distance, and 3D conductive networks for facilitating the electrochemical reaction, leads to the extraordinary battery performance. Remarkably, a full SIB using the new CoP4/CF anode and a Na3V2(PO4)2F3 cathode delivers an average operating voltage of ≈3.0 V, a reversible capacity of 553 mAh g?1, and very high energy density of ≈280 Wh kg?1 for SIBs. A flexible SIB with outstanding mechanical strength based on this binder‐free new anode is also demonstrated.  相似文献   

16.
17.
Hard carbon has long been considered the leading candidate for anode materials of Na‐ion batteries. Intensive research efforts have been carried out in the search of suitable carbon structure for an improved storage capability. Herein, an anode based on multishelled hollow carbon nanospheres, which are able to deliver an outstanding electrochemical performance with an extraordinary reversible capacity of 360 mAh g?1 at 30 mA g?1, is designed. An interesting dependence of the electrochemical properties on the multishelled structural features is identified: with an increase in the shell number of the model carbon materials, the sloping capacity in the charge/discharge curve remains almost unchanged while the plateau capacity continuously increases, suggesting an adsorption‐filling Na‐storage mechanism for the multishelled hollow hard carbon materials. The findings not only provide new perspective in the structural design of high‐performance anode materials, but also shed light on the complicated mechanism behind Na‐storage by hard carbon.  相似文献   

18.
Identifying suitable electrode materials for sodium‐ion and potassium‐ion storage holds the key to the development of earth‐abundant energy‐storage technologies. This study reports an anode material based on self‐assembled hierarchical spheroid‐like KTi2(PO4)3@C nanocomposites synthesized via an electrospray method. Such an architecture synergistically combines the advantages of the conductive carbon network and allows sufficient space for the infiltration of the electrolyte from the porous structure, leading to an impressive electrochemical performance, as reflected by the high reversible capacity (283.7 mA h g?1 for Na‐ion batteries; 292.7 mA h g?1 for K‐ion batteries) and superior rate capability (136.1 mA h g?1 at 10 A g?1 for Na‐ion batteries; 133.1 mA h g?1 at 1 A g?1 for K‐ion batteries) of the resulting material. Moreover, the different ion diffusion behaviors in the two systems are revealed to account for the difference in rate performance. These findings suggest that KTi2(PO4)3@C is a promising candidate as an anode material for sodium‐ion and potassium‐ion batteries. In particular, the present synthetic approach could be extended to other functional electrode materials for energy‐storage materials.  相似文献   

19.
20.
Thanks to low costs and the abundance of the resources, sodium‐ion (SIBs) and potassium‐ion batteries (PIBs) have emerged as leading candidates for next‐generation energy storage devices. So far, only few materials can serve as the host for both Na+ and K+ ions. Herein, a cubic phase CuSe with crystal‐pillar‐like morphology (CPL‐CuSe) assembled by the nanosheets are synthesized and its dual functionality in SIBs and PIBs is comprehensively studied. The electrochemical measurements demonstrate that CPL‐CuSe enables fast Na+ and K+ storage as well as the sufficiently long duration. Specifically, the anode delivers a specific capacity of 295 mA h g?1 at current density of 10 A g?1 in SIBs, while 280 mA h g?1 at 5 A g?1 in PIBs, as well as the high capacity retention of nearly 100% over 1200 cycles and 340 cycles, respectively. Remarkably, CPL‐CuSe exhibits a high initial coulombic efficiency of 91.0% (SIBs) and 92.4% (PIBs), superior to most existing selenide anodes. A combination of in situ X‐ray diffraction and ex situ transmission electron microscopy tests fundamentally reveal the structural transition and phase evolution of CuSe, which shows a reversible conversion reaction for both cells, while the intermediate products are different due to the sluggish K+ insertion reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号