首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is presented for the first time nontoxic CuGaS2/ZnS quantum dots (QDs) with free‐self‐reabsorption losses and large Stokes shift (>190 nm) synthesized on an industrially gram‐scale as an alternative for Cd‐based energy‐downshift (EDS)‐QD layers. The QDs exhibit a typical EDS that absorbs only UV light (<407 nm) and emits the whole range of visible light (400–800 nm) with a high photoluminescence‐quantum yield of ≈76%. The straightforward application of these EDS‐QDs on the front surface of a monocrystalline p‐type silicon solar cell significantly enhances the short‐circuit current density by ≈1.64 mA cm?2 (+4.20%); thereby, improving the power‐conversion‐efficiency by ≈4.11%. The significant improvement in the external quantum efficiency increases by ≈35.7% and that in the surface reflectance decreases by ≈14.1% in the UV region (300–450 nm) clearly manifest the photovoltaic enhancement. Such promising results together with the simple (one‐pot core/shell synthesis), cost‐effective (reduction in a bill of material–system by ≈2.62%), and scalable (2000 mL three‐neck flask, 11 g of QDs) preparation process might encourage the manufacturers of solar cells and other optoelectronic applications to apply these EDS‐QDs to different broader eco‐friendly applications.  相似文献   

2.
The fabrication of a low reabsorption emission loss, high efficient luminescent solar concentrator (LSC) is demonstrated by embedding near infrared (NIR) core/shell quantum dots (QDs) in a polymer matrix. An engineered Stokes shift in NIR core/shell PbS/CdS QDs is achieved via a cation exchange approach by varying the core size and shell thickness through the refined reaction parameters such as reaction time, temperature, precursor molar ratio, etc. The as‐synthesized core/shell QDs with high quantum yield (QY) and excellent chemical/photostability exhibit a large Stokes shift with respect to the bare PbS QDs due to the strong core‐to‐shell electrons leakage. The large‐area planar LSC based on core/shell QDs exhibits the highest value (6.1% with a geometric factor of 10) for optical efficiency compared to the bare NIR QD‐based LSCs and other reported NIR QD‐based LSCs. The suppression of emission loss and the broad absorption of PbS/CdS QDs offer a promising pathway to integrate LSCs and photovoltaic devices with good spectral matching, indicating that the proposed core/shell QDs are strong candidates for fabricating high efficiency semi‐transparent large‐area LSCs.  相似文献   

3.
Chenghui Li  Peng Wu 《Luminescence》2019,34(8):782-789
Transition metal ion‐doped quantum dots (QDs) exhibit unique optical and photophysical properties that offer significant advantages over undoped QDs, such as larger Stokes shift to avoid self‐absorption/energy transfer, longer excited‐state lifetimes, wider spectral window, and improved chemical and thermal stability. Among the doped QDs emitters, Cu is widely introduced into the doped QDs as novel, efficient, stable, and tunable optical materials that span a wide spectrum from blue to near‐infrared (NIR) light. Their unique physical and chemical characteristics enable the use of Cu‐doped QDs as NIR labels for bioanalysis and bioimaging. In this review, we discuss doping mechanisms and optical properties of Cu‐doped QDs that are capable of NIR emission. Applications of Cu‐doped QDs in in vitro biosensing and in in vivo bioimaging are highlighted. Moreover, a prospect of the future of Cu‐doped QDs for bioanalysis and bioimaging are also summarized.  相似文献   

4.
Alloy CdTe1‐xSex quantum dots (QDs) have been fabricated by an organic route using Cd, Te and Se precursors in a mixture of trioctylamine and octadecylphosphonic acid at 280 °C. The variation of photoluminescence (PL) peak wavelength of the CdTe1‐xSex QDs compared with CdTe QDs confirmed the formation of an alloy structure. The Se component drastically affected the stability of CdTe1‐xSex QDs. A Cd0.5Zn0.5S shell coating on CdTe1‐xSex cores was carried out using oleic acid as a capping agent. CdTe1‐xSex/Cd0.5Zn0.5S core/shell QDs revealed dark red PL while a yellow PL peak was observed for the CdTe1‐xSex cores. The PL efficiency of the core/shell QDs was drastically increased (less than 1% for the cores and up to 65% for the core/shell QDs). The stability of QDs in various buffer solutions was investigated. Core/shell QDs can be used for biological applications because of their high stability, tunable PL and high PL efficiency. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Ag2S@CdS core–shell particles were synthesized with different Cd source content as a measure of shell thickness using a pulsed microwave irradiation method. The particles were verified structurally using X‐ray diffraction, energy dispersive X‐ray analysis and transmission electron microscopy. Optical spectroscopy revealed that core–shells show an absorption peak at 750 nm and an emission peak located around 800 nm after 6 min of microwave irradiation. With continued microwave treatment, the NIR luminescence first vanished but it was revived after 12 min of irradiation, which was 100 nm red shifted. This new type of NIR emission in Ag2S with sizes greater than 5 nm is due to the proximity of a highly deficient CdS shell with strong red emission that was stable for more than 6 months in water. A mechanism has been suggested for this type of emission.  相似文献   

6.
Ning Liu  Ping Yang 《Luminescence》2013,28(4):542-550
Novel hybrid SiO2‐coated CdTe quantum dots (QDs) were created using CdTe QDs coated with a hybrid SiO2 shell containing Cd2+ ions and a sulfur source via a sol–gel process in aqueous solution. Aqueous CdTe QDs with tunable emitting color created through a reaction between cadmium chloride and sodium hydrogen telluride was used as cores for the preparation of hybrid SiO2‐coated CdTe QDs. In our experiments we found that the surface state of the cores and preparation conditions that affect the formation of the hybrid SiO2 shell also greatly affect photoluminescence of the hybrid SiO2‐coated CdTe QDs. The generation of CdS‐like clusters in the vicinity of the CdTe QDs, caused the quantum size effect of the QDs to be greatly reduced, which changes photoluminescence properties of the hybrid QDs fundamentally. Namely, the novel hybrid SiO2 shell played an important role in generating a series of specific optical properties. In addition, the novel hybrid SiO2 shell can be created if no CdTe QD is added. In order to gain an insight into the inter structure of the hybrid shell, we characterized the hybrid SiO2‐coated CdTe QDs using X‐ray diffraction analysis and discuss the formation mechanism of such a hybrid structure. This work is significant because the novel hybrid SiO2‐coated CdTe QDs with its excellent properties can be used in many applications, such as biolabeling and optoelectronic devices. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
High‐quality CdxZn1 – xSe and CdxZn1 – xSe/ZnS core/shell quantum dots (QDs) emitting in the violet–green spectral range have been successfully prepared using hydrothermal methods. The obtained aqueous CdxZn1 – xSe and CdxZn1 – xSe/ZnS QDs exhibit a tunable photoluminescence (PL) emission (from 433.5 nm to 501.2 nm) and a favorable narrow photoluminescence bandwidth [full width at half maximum (FWHM): 30–42 nm]. After coating with a ZnS shell, the quantum yield increases from 40.2% to 48.1%. These CdxZn1 – xSe and CdxZn1 – xSe/ZnS QDs were characterized by transmission electron microscopy, X‐ray diffraction, X‐ray photoelectron spectroscopy and Fourier transform infrared (FTIR) spectroscopy. To further understand the alloying mechanism, the growth kinetics of CdxZn1 – xSe were investigated through measuring the fluorescence spectra and X‐ray diffraction spectra at different growth intervals. The results demonstrate that the inverted ZnSe/CdSe core/shell structure is formed initially after the injection of Cd2+. With further heating, the core/shell structured ZnSe/CdSe is transformed into alloyed CdxZn1 – xSe QDs with the diffusion of Cd2+ into ZnSe matrices. With increasing the reaction temperature from 100 °C to 180 °C, the duration time of the alloying process decreases from 210 min to 20 min. In addition, the cytotoxicity of CdxZn1 – xSe and CdxZn1 – xSe/ZnS QDs were investigated. The results indicate that the as‐prepared CdxZn1 – xSe/ZnS QDs have low cytotoxicity, which makes them a promising probe for cell imaging. Finally, the as‐prepared CdxZn1 – xSe/ZnS QDs were utilized to ultrasensitively and selectively detect Hg2+ ions with a low detection limit (1.8 nM).  相似文献   

8.
In this work, CdSe quantum dots (QDs) were synthesized by a simple and rapid microwave activated approach using CdSO4, Na2SeO3 as precursors and thioglycolic acid (TGA) as capping agent molecule. A novel photochemical approach was introduced for the growth of CdS QDs and this approach was used to grow a CdS shell around CdSe cores for the formation of a CdSe/CdS core–shell structure. The core–shells were structurally verified using X‐ray diffraction, transmission electron microscopy and FTIR (Fourier‐transform infrared (FTIR)) spectroscopy. The optical properties of the samples were examined by means of UV–Vis and photoluminescence (PL) spectroscopy. It was found that CdS QDs emit a broad band white luminescence between 400 to 700 nm with a peak located at about 510 nm. CdSe QDs emission contained a broad band resulting from trap states between 450 to 800 nm with a peak located at 600 nm. After CdS shell growth, trap states emission was considerably quenched and a near band edge emission was appeared about 480 nm. Optical studies revealed that the core–shell QDs possess strong ultraviolet (UV) ? visible light photocatalytic activity. CdSe/CdS core–shell QDs, showed an enhancement in photodegradation of Methyl orange (MO) compared with CdSe QDs.  相似文献   

9.
The oxygen electrode plays a vital role in the successful commercialization of renewable energy technologies, such as fuel cells and water electrolyzers. In this study, the Prussian blue analogue‐derived nitrogen‐doped nanocarbon (NC) layer‐trapped, cobalt‐rich, core–shell nanostructured electrocatalysts (core–shell Co@NC) are reported. The electrode exhibits an improved oxygen evolution activity and stability compared to that of the commercial noble electrodes. The core–shell Co@NC‐loaded nickel foam exhibits a lower overpotential of 330 mV than that of IrO2 on nickel foam at 10 mA cm?2 and has a durability of over 400 h. The commercial Pt/C cathode‐assisted, core–shell Co@NC–anode water electrolyzer delivers 10 mA cm?2 at a cell voltage of 1.59 V, which is 70 mV lower than that of the IrO2–anode water electrolyzer. Over the long‐term chronopotentiometry durability testing, the IrO2–anode water electrolyzer shows a cell voltage loss of 230 mV (14%) at 95 h, but the loss of the core–shell Co@NC–anode electrolyzer is only 60 mV (4%) even after 350 h cell‐operation. The findings indicate that the Prussian blue analogue is a class of inorganic nanoporous materials that can be used to derive metal‐rich, core–shell electrocatalysts with enriched active centers.  相似文献   

10.
We exploited the synthesis of near‐infrared (NIR) emitting ternary‐alloyed CdTeSe and quaternary‐alloyed CdZnTeSe quantum dots (QDs) with rod and tetrapod morphologies, which have tunable emission in the NIR electromagnetic spectrum. The morphologies of the QDs depended strongly on their growth kinetics, probably due to the coordinating ligands used in the preparation. Using oleic acid, stearic acid and hexadecylamine as ligands and keeping the same reaction parameters, QDs with tetrapod and rod morphologies were created. Not only had the capping ligands influenced the morphologies of QDs, but also they influenced the optical properties of QDs. The molar ratios of Cd/Zn and Te/Se upon preparation were adjusted for investigating the effect of composition on the properties of resulting QDs. By varying the composition of QDs, the photoluminescence (PL) wavelength of QDs was tuned from 650 nm to 800 nm. To enhance PL efficiency and stability, QDs were coated with a CdZnS shell. As NIR PL has numerous advantages in biological imaging detection, these QDs hold great potential for application. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Functionalized CdTe–CdS core–shell quantum dots (QDs) were synthesized in aqueous solution via water‐bathing combined hydrothermal method using L‐cysteine (L‐Cys) as a stabilizer. This method possesses both the advantages of water‐bathing and hydrothermal methods for preparing high‐quality QDs with markedly reduced synthesis time, and better stability than a lone hydrothermal method. The QDs were characterized by transmission electronic microscopy and powder X‐ray diffraction and X‐ray photoelectron spectroscopy. The CdTe–CdS QDs with core–shell structure showed both enhanced fluorescence and better photo stability than nude CdTe QDs. After conjugating with antibody rabbit anti‐CEACAM8 (CD67), the as‐prepared l ‐Cys capped CdTe–CdS QDs were successfully used as fluorescent probes for the direct immuno‐labeling and imaging of HeLa cells. It was indicated that this kind of QD would have application potential in bio‐labeling and cell imaging. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Water‐soluble glutathione (GSH)‐capped core/shell CdTe/CdS quantum dots (QDs) were synthesized. In pH 5.4 sodium phosphate buffer medium, the interaction between GSH‐CdTe/CdS QDs and sanguinarine (SA) was investigated by spectroscopic methods, including fluorescence spectroscopy and ultraviolet‐visible absorption spectroscopy. Addition of SA to GSH‐CdTe/CdS QDs results in fluorescence quenching of GSH‐CdTe/CdS QDs. Quenching intensity was in proportion to the concentration of SA in a certain range. Investigation of the quenching mechanism, proved that the fluorescence quenching of GSH‐CdTe/CdS QDs by SA is a result of electron transfer. Based on the quenching of the fluorescence of GSH‐CdTe/CdS QDs by SA, a novel, simple, rapid and specific method for SA determination was proposed. The detection limit for SA was 3.4 ng/mL and the quantitative determination range was 0.2–40.0 µg/mL with a correlation coefficient of 0.9988. The method has been applied to the determination of SA in synthetic samples and fresh urine samples of healthy human with satisfactory results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
Lithium sulfide (Li2S) is considered a highly attractive cathode for establishing high‐energy‐density rechargeable batteries, especially due to its high charge‐storage capacity and compatibility with lithium‐metal‐free anodes. Although various approaches have recently been pursued with Li2S to obtain high performance, formidable challenges still remain with cell design (e.g., low Li2S loading, insufficient Li2S content, and an excess electrolyte) to realize high areal, gravimetric, and volumetric capacities. This study demonstrates a shell‐shaped carbon architecture for holding pure Li2S, offering innovation in cell‐design parameters and gains in electrochemical characteristics. The Li2S core–carbon shell electrode encapsulates the redox products within the conductive shell so as to facilitate facile accessibility to electrons and ions. The fast redox‐reaction kinetics enables the cells to attain the highest Li2S loading of 8 mg cm?2 and the lowest electrolyte/Li2S ratio of 9/1, which is the best cell‐design specifications ever reported with Li2S cathodes so far. Benefiting from the excellent cell‐design criterion, the core–shell cathodes exhibit stable cyclability from slow to fast cycle rates and, for the first time, simultaneously achieve superior performance metrics with areal, gravimetric, and volumetric capacities.  相似文献   

14.
Layered double hydroxides (LDHs) are promising cathode materials for supercapacitors because of the enhanced flow efficiency of ions in the interlayers. However, the limited active sites and monotonous metal species further hinder the improvement of the capacity performance. Herein, cobalt sulfide quantum dots (Co9S8‐QDs) are effectively created and embedded within the interlayer of metal‐organic‐frameworks‐derived ternary metal LDH nanosheets based on in situ selective vulcanization of Co on carbon fibers. The hybrid CF@NiCoZn‐LDH/Co9S8‐QD retains the lamellar structure of the ternary metal LDH very well, inheriting low transfer impedance of interlayer ions. Significantly, the selectively generated Co9S8‐QDs expose more abundant active sites, effectively improving the electrochemical properties, such as capacitive performance, electronic conductivity, and cycling stability. Due to the synergistic relationship, the hybrid material delivers an ultrahigh electrochemical capacity of 350.6 mAh g?1 (2504 F g?1) at 1 A g?1. Furthermore, hybrid supercapacitors fabricated with CF@NiCoZn‐LDH/Co9S8‐QD and carbon nanosheets modified by single‐walled carbon nanotubes display an outstanding energy density of 56.4 Wh kg?1 at a power density of 875 W kg?1, with an excellent capacity retention of 95.3% after 8000 charge–discharge cycles. Therefore, constructing hybrid electrode materials by in situ‐created QDs in multimetallic LDHs is promising.  相似文献   

15.
Plasmonic metal nanostructures have been extensively investigated to improve the performance of metal oxide photoanodes for photoelectrochemical (PEC) solar water splitting cells. Most of these studies have focused on the effects of those metal nanostructures on enhancing light absorption and enabling direct energy transfer via hot electrons. However, several recent studies have shown that plasmonic metal nanostructures can improve the PEC performance of metal oxide photoanodes via another mechanism known as plasmon‐induced resonant energy transfer (PIRET). However, this PIRET effect has not yet been tested for the molybdenum‐doped bismuth vanadium oxide (Mo:BiVO4), regarded as one of the best metal oxide photoanode candidates. Here, this study constructs a hybrid Au nanosphere/Mo:BiVO4 photoanode interwoven in a hexagonal pattern to investigate the PIRET effect on the PEC performance of Mo:BiVO4. This study finds that the Au nanosphere array not only increases light absorption of the photoanode as expected, but also improves both its charge transport and charge transfer efficiencies via PIRET, as confirmed by time‐correlated single photon counting and transient absorption studies. As a result, incorporating the Au nanosphere array increases the photocurrent density of Mo:BiVO4 at 1.23 V versus RHE by ≈2.2‐fold (2.83 mA cm?2).  相似文献   

16.
Wireless photoelectrochemical (PEC) devices promise easy device fabrication as well as reduced losses. Here, the design and fabrication of a stand‐alone ion exchange material‐embedded, Si membrane‐based, photoelectrochemical cell architecture with micron‐sized pores is shown, to overcome the i) pH gradient formation due to long‐distance ion transport, ii) product crossover, and iii) parasitic light absorption by application of a patterned catalyst. The membrane‐embedded PEC cell with micropores utilizes a triple Si junction cell as the light absorber, and Pt and IrOx as electrocatalysts for the hydrogen evolution reactions and oxygen evolution reactions, respectively. The solar‐to‐hydrogen efficiency of 7% at steady‐state operation, as compared to an unpatterned ηPV of 10.8%, is mainly attributed to absorption losses by the incorporation of the micropores and catalyst microdots. The introduction of the Nafion ion exchange material ensures an intrinsically safe PEC cell, by reducing the total gas crossover to <0.1%, while without a cation exchange membrane, a crossover of >6% is observed. Only in a pure electrolyte of 1 m H2SO4, a pH gradient‐free system is observed thus completely avoiding the build‐up of a counteracting potential.  相似文献   

17.
Ning Liu  Ping Yang 《Luminescence》2014,29(6):566-572
Hybrid SiO2‐coated CdTe/CdSe quantum dots (QDs) were prepared using CdTe/CdSe QDs prepared by hydrothermal synthesis. A CdSe interlayer made CdTe/CdSe cores with unique type II heterostructures. The hybrid SiO2‐coated CdTe/CdSe QDs revealed excellent photoluminescence (PL) properties compared with hybrid SiO2‐coated CdTe QDs. Because of the existence of spatial separations of carriers in the type II CdTe/CdSe core/shell QDs, the hybrid QDs had a relatively extended PL lifetime and high stability in phosphate‐buffered saline buffer solutions. This is ascribed to the unique components and stable surface state of hybrid SiO2‐coated CdTe/CdSe QDs. During the stabilization test in phosphate‐buffered saline buffer solutions, both static and dynamic quenching occurred. The quenching mechanism of the hybrid QDs was not suited with the Stern–Volmer equation. However, the relative stable surface of CdTe/CdSe QDs resulted in lower degradation and relative high PL quantum yields compared with hybrid SiO2‐coated CdTe QDs. As a result, hybrid SiO2‐coated CdTe/CdSe QDs can be used in bioapplications. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
A facile method was developed for the preparation of water soluble β‐Cyclodextrin (β‐CD)‐modified CdSe quantum dots (QDs) (β‐CD‐QDs) by directly replacing the oleic acid ligands on the QDs surface with β‐CD in an alkaline aqueous solution. The as‐prepared QDs show good stability in aqueous solution for several months. Oxoanions, including phosphoric acid ion, sulphite acid ion and carbonic acid ion, affect the fluorescence of β‐CD‐QDs. Among them, H2PO4 exhibited the largest quenching effect. For the polyprotic acids (HO)3AO, the effect of acidic anions on the fluorescence of β‐CD‐QDs was in the order: monoanion (HO)2AO2 > dianion (HO)AO32– >> trianion AO43–. After photoactivation for several days in the presence of anions at alkaline pH, the β‐CD‐QDs exhibited strong fluorescence emission. The effect of various heavy and transition metal ions on the fluorescence properties of the β‐CD‐QDs was investigated further. It was found that Ag+, Hg2+ and Co2+ have significant quenching effect on the fluorescence of the β‐CD‐QDs. The Stern–Volmer quenching constants increased in the order: Hg2+ < Co2+ <Ag+. The adsorption model of metal ions on β‐CD‐QDs was explored. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Realizing efficient solid‐state luminescence is of great important to expand quantum dots (QDs) application fields. This work reports the preparation of CdTe@BaCO3 composite by a one‐pot precipitation method. Both steady‐state PL and PL decay characteristics in either solid‐state or colloid solution show no obvious difference, mainly benefited from the effective protection of BaCO3 on QDs from the external environment. By utilizing green and red CdTe QDs as dual‐color emission centers, precise emitting‐color control from green (0.312, 0.667) to red (0.691, 0.292) could be achieved in CdTe@BaCO3 composite by adjusting volume ratio of CdTe solution precursor. Our results demonstrate that this composite material shows bright solid‐state luminescence and facile adjustment of the emitting color in QDs‐based composite is feasible, which could offer new path to design color‐tunable luminescent materials for future optoelectronic applications.  相似文献   

20.
Solid polymer electrolytes as one of the promising solid‐state electrolytes have received extensive attention due to their excellent flexibility. However, the issues of lithium (Li) dendrite growth still hinder their practical applications in solid‐state batteries (SSBs). Herein, composite electrolytes from “ceramic‐in‐polymer” (CIP) to “polymer‐in‐ceramic” (PIC) with different sizes of garnet particles are investigated for their effectiveness in dendrite suppression. While the CIP electrolyte with 20 vol% 200 nm Li6.4La3Zr1.4Ta0.6O12 (LLZTO) particles (CIP‐200 nm) exhibits the highest ionic conductivity of 1.6 × 10?4 S cm?1 at 30 °C and excellent flexibility, the PIC electrolyte with 80 vol% 5 µm LLZTO (PIC‐5 µm) shows the highest tensile strength of 12.7 MPa. A sandwich‐type composite electrolyte (SCE) with hierarchical garnet particles (a PIC‐5 µm interlayer sandwiched between two CIP‐200 nm thin layers) is constructed to simultaneously achieve dendrite suppression and excellent interfacial contact with Li metal. The SCE enables highly stable Li plating/stripping cycling for over 400 h at 0.2 mA cm?2 at 30 °C. The LiFePO4/SCE/Li cells also demonstrate excellent cycle performance at room temperature. Fabricating sandwich‐type composite electrolytes with hierarchical filler designs can be an effective strategy to achieve dendrite‐free SSBs with high performance and high safety at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号