首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, plasmonic Au/SnO2/g‐C3N4 (Au/SO/CN) nanocomposites have been successfully synthesized and applied in the H2 evolution as photocatalysts, which exhibit superior photocatalytic activities and favorable stability without any cocatalyst under visible‐light irradiation. The amount‐optimized 2Au/6SO/CN nanocomposite capable of producing approximately 770 μmol g?1 h?1 H2 gas under λ > 400 nm light illumination far surpasses the H2 gas output of SO/CN (130 μmol g?1), Au/CN (112 μmol g?1 h?1), and CN (11 μmol g?1 h?1) as a contrast. In addition, the photocatalytic activity of 2Au/6SO/CN maintains unchanged for 5 runs in 5 h. The enhanced photoactivity for H2 evolution is attributed to the prominently promoted photogenerated charge separation via the excited electron transfer from plasmonic Au (≈520 nm) and CN (470 nm > λ > 400 nm) to SO, as indicated by the surface photovoltage spectra, photoelectrochemical IV curves, electrochemical impedance spectra, examination of formed hydroxyl radicals, and photocurrent action spectra. Moreover, the Kelvin probe test indicates that the newly aligned conduction band of SO in the fabricated 2Au/6SO/CN is indispensable to assist developing a proper energy platform for the photocatalytic H2 evolution. This work distinctly provides a feasible strategy to synthesize highly efficient plasmonic‐assisted CN‐based photocatalysts utilized for solar fuel production.  相似文献   

2.

Background Purpose

Photocatalytic water splitting for hydrogen evolution is a potential way to solve many energy and environmental issues. Developing visible-light-active photocatalysts to efficiently utilize sunlight and finding proper ways to improve photocatalytic activity for H2 evolution have always been hot topics for research. This study attempts to expand the use of sunlight and to enhance the photocatalytic activity of TiO2 by N doping and Au loading.

Methods

Au/N-doped TiO2 photocatalysts were synthesized and successfully used for photocatalytic water splitting for H2 evolution under irradiation of UV and UV–vis light, respectively. The samples were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance spectroscopy (DRS), photoluminescence spectroscopy (PL), and photoelectrochemical characterizations.

Results

DRS displayed an extension of light absorption into the visible region by doping of N and depositing with Au, respectively. PL analysis indicated electron-hole recombination due to N doping and an efficient inhibition of electron-hole recombination due to the loaded Au particles. Under the irradiation of UV light, the photocatalytic hydrogen production rate of the as-synthesized samples followed the order Au/TiO2 > Au/N-doped TiO2 > TiO2 > N-doped TiO2. While under irradiation of UV–vis light, the N-TiO2 and Au/N-TiO2 samples show higher H2 evolution than their corresponding nitrogen-free samples (TiO2 and Au/TiO2). This inconsistent result could be attributed to the doping of N and the surface plasmonic resonance (SPR) effect of Au particles extending the visible light absorption. The photoelectrochemical characterizations further indicated the enhancement of the visible light response of Au/N-doped TiO2.

Conclusion

Comparative studies have shown that a combination of nitrogen doping and Au loading enhanced the visible light response of TiO2 and increased the utilization of solar energy, greatly boosting the photocatalytic activity for hydrogen production under UV–vis light.  相似文献   

3.
In this work, we report the use of a non-toxic nanocrystal Cu2O-loaded TiO2 nanotube array (Cu2O/TNTs) film as high-performance visible-light bactericidal photocatalyst. The samples were characterized by field-emission scanning electron microscopy, X-ray photoelectron spectroscopy, and ultraviolet–visible diffusion reflection spectroscopy. This Cu2O/TNTs film photocatalyst is capable of complete inactivation of Escherichia coli in 5?×?107 colony-forming units/mL within a record short disinfection time of 20?min under visible-light irradiation. The average bactericidal percentage of the Cu2O/TNTs for E. coli under visible-light irradiation are 20 times and 6.6 times higher than those of TNTs under the same conditions and Cu2O/TNTs without light, respectively. This superior bactericidal performance is mainly attributed to the high ability to produce OH radicals by both photogenerated electron and hole of the prepared photocatalyst under visible light. The Cu2O/TNTs film photocatalyst makes it applicable to broad fields including drinking water disinfection.  相似文献   

4.
Herein, this study successfully fabricates porous g‐C3N4‐based nanocomposites by decorating sheet‐like nanostructured MnOx and subsequently coupling Au‐modified nanocrystalline TiO2. It is clearly demonstrated that the as‐prepared amount‐optimized nanocomposite exhibits exceptional visible‐light photocatalytic activities for CO2 conversion to CH4 and for H2 evolution, respectively by ≈28‐time (140 µmol g?1 h?1) and ≈31‐time (313 µmol g?1 h?1) enhancement compared to the widely accepted outstanding g‐C3N4 prepared with urea as the raw material, along with the calculated quantum efficiencies of ≈4.92% and 2.78% at 420 nm wavelength. It is confirmed mainly based on the steady‐state surface photovoltage spectra, transient‐state surface photovoltage responses, fluorescence spectra related to the produced ?OH amount, and electrochemical reduction curves that the exceptional photoactivities are comprehensively attributed to the large surface area (85.5 m2 g?1) due to the porous structure, to the greatly enhanced charge separation and to the introduced catalytic functions to the carrier‐related redox reactions by decorating MnOx and coupling Au‐TiO2, respectively, to modulate holes and electrons. Moreover, it is suggested mainly based on the photocatalytic experiments of CO2 reduction with isotope 13CO2 and D2O that the produced ?CO2 and ?H as active radicals would be dominant to initiate the conversion of CO2 to CH4.  相似文献   

5.
Titanium dioxide is a promising photoanode material for water oxidation, but it is substantially limited by its poor efficiency in the visible light range. Herein, an innovative carbon/nitrogen coimplantation method is utilized to realize the “Midas touch” transformation of TiO2 nanowire (NW) arrays for photoelectrochemical (PEC) water splitting in visible light. These modified golden–yellow rutile TiO2 NW arrays (C/N‐TiO2) exhibit remarkably enhanced absorption in visible light regions and more efficient charge separation and transfer. As a result, the photocurrent density of carbon/nitrogen co‐implanted TiO2 under visible light (>420 nm) can reach 0.76 mA cm?2, which far exceeds the value of 3 µA cm?2 seen for pristine TiO2 nanowire arrays at 0.8 V versus Ag/AgCl. An incident photon to electron conversion efficiency of ≈14.8% is achieved at 450 nm on C/N‐TiO2 without any other cocatalysts. The ion implantation doping approach, combined with codoping strategies, is proved to be an effective strategy for enhancing the photoelectrochemical conversion and can enable further improvement of the PEC water‐splitting performance of many other semiconductor photoelectrodes.  相似文献   

6.
Photocatalytic reduction of CO2 with H2O vapor is gaining increased interest because it is a promising “green chemistry” route for the direct conversion of CO2 to value‐added chemicals driven by solar energy. To increase the efficiency of photocatalytic conversion, most efforts are made by exploring various photocatalysts while little effort on advanced light management. For the first time, it is demonstrated that bio‐degradable transparent paper with excellent light diffusivity can effectively enhance the light utilization of photocatalytic reactions when attached on the device surface, and thus greatly increase the conversion efficiency. As a proof‐of‐concept, a graphitic carbon nitride (g‐C3N4) photocatalyst with transparent paper attached, exhibited 1.5 times higher photocatalytic activity than bare g‐C3N4 in the reduction of CO2 under visible light irradiation. The improved catalytic performance can be ascribed to the (1) refractive index matching and (2) enhanced light absorption via prolonged light traveling path in transparent paper, which decreases the light reflection at surface and traps the absorbed light inside, leading to an increased light absorption at the active layer of the device. The transparent paper with a controllable light management behavior has an unprecedented potential for applications in photocatalysis as a general method for improved light utilization.  相似文献   

7.
In order to develop a bactericidal agent operating under visible light irradiation, a silica gel-supported dihydroxo(tetraphenylporphyrinato)antimony(V) complex (SbTPP/SiO2) was prepared. The SbTPP/SiO2 particles irradiated by fluorescent light in a test tube induced remarkable bactericidal activity for Escherichia coli cells. The bactericidal activity of the SbTPP/SiO2 was affected by both the concentration of the SbTPP/SiO2 and the light intensity. Under irradiation by visible light, the SbTPP/SiO2 photocatalyst showed much superior bactericidal activity to the commercially available TiO2. Moreover, under irradiation by sunlight, bactericidal activity of the SbTPP/SiO2 was observed, and the bactericidal effect of the SbTPP/SiO2 particles was effective for continuous treatment on a column photoreactor under fluorescent-light irradiation.  相似文献   

8.
Constructing core/shell nanostructures with optimal structure and composition could maximize the solar light utilization. Here, using an Al nanocone array as a substrate, a well‐defined regular array of AZO/TiO2 core/shell nanocones with uniformly dispersed Au nanoparticles (AZO/TiO2/Au NCA) is successfully realized through three sequential steps of atomic layer deposition, physical vapor deposition, and annealing processes. By tuning the structural and compositional parameters, the advantages of light trapping and short carrier diffusion from the core/shell nanocone array, as well as the surface plasmon resonance and catalytic effects from the Au nanoparticles can be maximally utilized. Accordingly, a remarkable photoelectrochemical (PEC) performance can be acquired and the photocurrent density of the AZO/TiO2/Au NCA electrode reaches up to 1.1 mA cm?2 at 1.23 V, versus reversible hydrogen electrode (RHE) under simulated sunlight illumination, which is five times that of a flat AZO/TiO2 electrode (0.22 mA cm?2). Moreover, the photoconversion of the AZO/TiO2/Au NCA electrode approaches 0.73% at 0.21 V versus RHE, which is one of the highest values with the lowest applied bias ever reported in Au/TiO2 PEC composites. These results demonstrate a feasible route toward the scalable fabrication of well‐modulated core/shell nanostructures and can be easily applied to other metal/semiconductor composites for high‐performance PEC.  相似文献   

9.
The Sabatier reaction, i.e., the hydrogenation of CO2 to methane (CH4) using hydrogen (H2), constitutes a potentially scalable method to store energy in a product with a high energy density. However, up to today, this reaction has been mainly thermally driven and conducted at high temperatures (typically 400–600 °C). Using light as a renewable energy source will allow for a more sustainable process by lowering the reaction temperature. Here, it is demonstrated that Ni nanoparticles support on graphitic carbon nitride (g‐CN) are a highly efficient and stable photocatalyst for the gas‐phase CO2 methanation at low temperature (150 °C). Detailed mechanistic studies reveal a very low activation energy for the reaction and high activity under visible light, leading to a remarkable and continuous CH4 production of 28 µmol g?1 h?1 of CH4 for 24 h.  相似文献   

10.
TiO2 has been well studied as an ultraviolet (UV) photocatalyst and electrode material for lithium‐ion rechargeable batteries. Recent studies have shown that hydrogenated TiO2 displayed better photocatalytic and lithium ion battery performances. Here it is demonstrated that the photocatalytic and battery performances of TiO2 nanocrystals can be successfully improved with a facile low‐temperature vacuum process. These TiO2 nanocrystals extend their optical absorption far into the visible‐light region, display nanometer‐scale surface atomic rearrangement, possess superoxide ion characteristics at room temperature without light irradiation, show a 4‐fold improvement in photocatalytic activity, and has 30% better performance in capacity and charge/discharge rates for lithium ion battery. This facile method could provide an alternative and effective approach to improve the performance of TiO2 and other materials towards their practical applications.  相似文献   

11.
A microwave‐induced metal dissolution strategy is developed for in situ synthesis of copper nanowires/ZnS (CuNWs/ZnS) hybrids with core–shell structure. The CuNWs are used as microwave antennas to create local “super‐hot” surfaces to further initiate ZnS crystallization with full coverage on CuNWs. With the help of S2?, the hot metal surface further results in the CuNWs dissolution with promoted Cu+ diffusion and incorporation into the ZnS lattice. With the narrowed bandgap of ZnS and the strongly coupled interface between CuNWs and ZnS created by microwaves, the as‐prepared hybrid composites exhibit an enhanced activity and stability in visible light for the photocatalytic H2 evolution. The corresponding H2 evolution rate reaches up to 10722 µmol h?1 g?1 with apparent quantum efficiency (AQE) of 69% under 420 nm LED irradiation, showing a remarkably high AQE among the noble‐metal free visible light‐driven photocatalysts and demonstrating a promising potential in practical applications to deal with the energy crisis.  相似文献   

12.
Different mole ratios of TiO2/BiVO4 nanocomposites with effective contacts have are fabricated by putting BiVO4 nanoparticles into the TiO2 sol, followed by thermal treatment at 450 °C. Based on the transient‐state surface photovoltage responses and the atmosphere‐controlled steady‐state surface photovoltage spectra, it is concluded that the photogenerated charge carriers in the TiO2/BiVO4 nanocomposite with a proper mole ratio (5%) display much longer lifetime and higher separation than those in the BiVO4 alone. This is responsible for the unexpected activity for photoelectrochemical oxidation of water, for photocatalytic production of H2, and for photocatalytic degradation of phenol as a model pollutant under visible irradiation. Moreover, it is suggested that the prolonged lifetime and increased separation of photogenerated charges in the fabricated TiO2/BiVO4 nanocomposite is attributed to the unusual spatial transfer of visible‐excited high‐energy electrons of BiVO4 to TiO2. This work will provide feasible routes to synthesize visible‐light responsive nanomaterials for efficient solar utilization.  相似文献   

13.
Soil-N (NO3 ?) initiates as far as a threshold concentration is surpassed manifold physiological reactions on N2-fixation. Organic N and ammonium oxidised to NO3 ? means oxygen depletion. Plants suffering under O2 or infection stress start to excrete ethylene (C2H4). C2H4 widens the root intercellulars that O2-respiration will continue. Now microbes may more easily enter the plant interior by transforming the reached methionine into C2H4. Surplus nitrate and C2H4 inhibit nodulation of leguminous plants. Excess NO3 ? in the nodulesphere could be diminished by N2-fixing bacteria which in addition can denitrify or ammonify nitrate. Consequently, it was asked whether C2H4 interferes with the potential of N2-fixing bacteria to reduce nitrate. The groundnut-nodule isolate TNAU 14, from which it was known that it denitrifies and ammonifies nitrate, served as inoculum of a KNO3-mannitol-medium that was incubated under N2-, 1% (v/v) N2?C2H4-, and 1% (v/v) N2?C2H2-atmosphere in the laboratory. C2H2 was included into the experiments because it is frequently used to quantify N2-fixing potentials (acetylene reduction array, ARA). Gene-16S rDNA-sequencing and physiological tests revealed a high affiliation of strain TNAU 14 toRhizobium radiobacter andRhizobium tumefaciens. Strain TNAU 14 released N2O into the bottle headspace in all treatments, surprisingly significantly less in presence of C2H2. Nitrate-ammonification was even completely blocked by C2H2. C2H4, in contrast rather stimulated growth, denitrification, and nitrate-ammonification of strain TNAU 14 which consumed the released NH4 + during continuing incubation.  相似文献   

14.
Sunlight‐driven catalytic hydrogenation of CO2 is an important reaction that generates useful chemicals and fuels and if operated at industrial scales can decrease greenhouse gas CO2 emissions into the atmosphere. In this work, the photomethanation of CO2 over highly dispersed nanostructured RuO2 catalysts on 3D silicon photonic crystal supports, achieving impressive conversion rates as high as 4.4 mmol gcat?1 h?1 at ambient temperatures under high‐intensity solar simulated irradiation, is reported. This performance is an order of magnitude greater than photomethanation rates achieved over control samples made of nanostructured RuO2 on silicon wafers. The high absorption and unique light‐harvesting properties of the silicon photonic crystal across the entire solar spectral wavelength range coupled with its large surface area are proposed to be responsible for the high methanation rates of the RuO2 photocatalyst. A density functional theory study on the reaction of CO2 with H2 revealed that H2 splits on the surface of the RuO2 to form hydroxyl groups that participate in the overall photomethanation process.  相似文献   

15.
Photocatalysts with oxygen vacancies (OVs) have exhibited exciting activity in N2 photofixation due to their superiority in capture and activation of N2. However, the surface OVs are easily oxidized by seizing the oxygen atoms from water or oxygen during the catalytic reaction. Here, it is reported that the grain boundaries (GBs) in nanoporous WO3 induce plenty of operando OVs under light irradiation to significantly boost catalytic activity toward N2 photofixation. Impressively, nanoporous WO3 with abundant GBs (WO3‐600) exhibit an ammonia production rate of 230 µmol gcat.?1 h?1 without any sacrificial agents at room temperature, 17 times higher than that for WO3 nanoparticles without GBs. Moreover, WO3‐600 also manifests remarkable stability by maintaining nearly ≈100% catalytic activity after ten successive reaction rounds. Further mechanistic studies reveal that both OVs and GBs regulate the band structures of WO3 nanocrystals, as well as favor the delivery of photogenerated electrons to adsorbed N2 by enhancing W–O covalency. More importantly, plenty of operando OVs induced by GBs generate during catalytic reaction, directly contributing to the excellent catalytic performance for WO3‐600. This work opens a novel avenue to developing efficient photocatalysts by construction of operando OVs.  相似文献   

16.
Multiphasic titanium dioxide (TiO2) possessing abundant heterophase junctions have been widely used for various photocatalytic applications. Current synthesis of multiphasic TiO2 mainly involves the process of thermal treatment and multiple steps of rigorous reactions, which is adverse to controlling the crystal phases and phase ratios of multiphasic TiO2. Meanwhile, the resulting products have relatively low surface area and nonporous structure. Here, a facile polymer‐assisted coordination‐mediated self‐assembly method to synthesize mesoporous TiO2 polymorphs with controllable heterophase junctions and large surface area by using polyethylenimine as the porogen in an acidic aqueous synthesis system is reported. Using this approach, the crystal phases (triphase, biphase, and monophase) and phase compositions (0–100%) are easily tailored by selecting the suitable acidic media. Furthermore, the specific surface areas (77–228 m2 g?1) and pore sizes (2.9–10.1 nm) are readily tailored by changing the reaction temperature. The photocatalytic activity of mesoporous TiO2 polymorphs is evaluated by photocatalytic hydrogen evolution. The triphasic TiO2 exhibits an excellent photocatalytic H2 generation rate of 3.57 mmol h?1 g?1 as compared to other polymorphs, which is attributed to the synergistic effects of heterophase junctions and mesostructure. The band diagram of possible electron transfer pathway for triphasic TiO2 is also elucidated.  相似文献   

17.
Hollow and hierarchical nanostructures have received wide attention in new‐generation, high‐performance, lithium ion battery (LIB) applications. Both TiO2 and Fe2O3 are under current investigation because of their high structural stability (TiO2) and high capacity (Fe2O3), and their low cost. Here, we demonstrate a simple strategy for the fabrication of hierarchical hollow TiO2@Fe2O3 nanostructures for the application as LIB anodes. Using atomic layer deposition (ALD) and sacrificial template‐assisted hydrolysis, the resulting nanostructure combines a large surface area with a hollow interior and robust structure. As a result, such rationally designed LIB anodes exhibit a high reversible capacity (initial value 840 mAh g?1), improved cycle stability (530 mAh g?1 after 200 cycles at the current density of 200 mA g?1), as well as outstanding rate capability. This ALD‐assisted fabrication strategy can be extended to other hierarchical hollow metal oxide nanostructures for favorable applications in electrochemical and optoelectronic devices.  相似文献   

18.
A highly selective and simple chemiluminescence (CL) method for determination of penicillin G potassium (PGK) was developed. In the proposed method, CL was elicited from PGK upon its oxidation with H2O2. The light emission was enhanced in the presence of N‐cetyl‐N,N,N‐trimethylammonium bromide (CTMAB). An experimental design, central composite design (CCD), was used to realize the optimized variables, including pH, surfactant (CTMAB) and H2O2 concentrations. Under optimum condition, the calibration graph was linear in the range 3.3 × 10?3–3.3 × 10?1 mmol/L, with a detection limit of 8.8 × 10?4 mmol/L for PGK. The precision was calculated by analysing samples containing 1.6 × 10?1 mmol/L PGK (n = 5) and the relative standard deviation (RSD) was 1.40%. The utility of this method was demonstrated by determining PGK in pharmaceutical formulations for injection. The proposed method was validated by a reference method. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Novel thin film composite photocathodes based on device‐grade Cu(In,Ga)Se2 chalcopyrite thin film absorbers and transparent conductive oxide Pt‐implemented TiO2 layers on top are presented for an efficient and stable solar‐driven hydrogen evolution. Thin films of phase‐pure anatase TiO2 are implemented with varying Pt‐concentrations in order to optimize simultaneously i) conductivity of the films, ii) electrocatalytic activity, and iii) light‐guidance toward the chalcopyrite. Thereby, high incident‐photon‐to‐current‐efficiencies of more than 80% can be achieved over the full visible light range. In acidic electrolyte (pH 0.3), the most efficient Pt‐implemented TiO2–Cu(In,Ga)Se2 composite electrodes reveal i) photocurrent densities up to 38 mA cm?2 in the saturation region (?0.4 V RHE, reversible hydrogen electrode), ii) 15 mA cm?2 at the thermodynamic potential for H2‐evolution (0 V RHE), and iii) an anodic onset potential shift for the hydrogen evolution (+0.23 V RHE). It is shown that the gradual increase of the Pt‐concentration within the TiO2 layers passes through an efficiency‐ and stability‐maximum of the device (5 vol% of Pt precursor solution). At this maximum, optimized light‐incoupling into the device‐grade chalcopyrite light‐absorber as well as electron conductance properties within the surface layer are achieved while no degradation are observed over more than 24 h of operation.  相似文献   

20.
The photodegradation of 2-chlorobenzoic acid (2-CBA) in suspensions of TiO2 was examined under different operational parameters. The optimal condition could be obtained through the experiment, i.e. that the concentration of 2-CBA was 30 mg/L and the dosing quantity of TiO2 was 0.01 g under UV light in the case of pH 3.5. Above reaction process was in accordance with first order kinetics model. The influence on photocatalytic degradation caused by typical anions in eutrophicated water body such as NO3 and H2PO4 was explored in this work, which revealed that both two anions had inhibitory effect on the degradation process. In addition, alcohol was introduced into the process to identify the degradation mechanism of 2-CBA with TiO2, and the reaction route of 2-CBA could be predicted through the analysis on the intermediate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号