首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
To develop a long cycle life and good rate capability electrode, 3D hierarchical porous α‐Fe2O3 nanosheets are fabricated on copper foil and directly used as binder‐free anode for lithium‐ion batteries. This electrode exhibits a high reversible capacity and excellent rate capability. A reversible capacity up to 877.7 mAh g?1 is maintained at 2 C (2.01 A g?1) after 1000 cycles, and even when the current is increased to 20 C (20.1 A g?1), a capacity of 433 mA h g?1 is retained. The unique porous 3D hierarchical nanostructure improves electronic–ionic transport, mitigates the internal mechanical stress induced by the volume variations of the electrode upon cycling, and forms a 3D conductive network during cycling. No addition of any electrochemically inactive conductive agents or polymer binders is required. Therefore, binder‐free electrodes further avoid the uneven distribution of conductive carbon on the current collector due to physical mixing and the addition of an insulator (binder), which has benefits leading to outstanding electrochemical performance.  相似文献   

2.
A flexible and free‐standing porous carbon nanofibers/selenium composite electrode (Se@PCNFs) is prepared by infiltrating Se into mesoporous carbon nanofibers (PCNFs). The porous carbon with optimized mesopores for accommodating Se can synergistically suppress the active material dissolution and provide mechanical stability needed for the film. The Se@PCNFs electrode exhibits exceptional electrochemical performance for both Li‐ion and Na‐ion storage. In the case of Li‐ion storage, it delivers a reversible capacity of 516 mAh g?1 after 900 cycles without any capacity loss at 0.5 A g?1. Se@PCNFs still delivers a reversible capacity of 306 mAh g?1 at 4 A g?1. While being used in Na‐Se batteries, the composite electrode maintains a reversible capacity of 520 mAh g?1 after 80 cycles at 0.05 A g?1 and a rate capability of 230 mAh g?1 at 1 A g?1. The high capacity, good cyclability, and rate capability are attributed to synergistic effects of the uniform distribution of Se in PCNFs and the 3D interconnected PCNFs framework, which could alleviate the shuttle reaction of polyselenides intermediates during cycling and maintain the perfect electrical conductivity throughout the electrode. By rational and delicate design, this type of self‐supported electrodes may hold great promise for the development of Li‐Se and Na‐Se batteries with high power and energy densities.  相似文献   

3.
Antimony (Sb) is a promising anode material for sodium‐ion batteries owing to its large capacity of 660 mAh g?1. However, its practical application is restricted by the rapid capacity decay resulted from a large volume expansion up to 390% upon Na alloying. Herein, construction of a self‐supported Sb array that has enough space allowing for effective accommodation of the volume change is reported. The array of Sb prisms is directly grown on a Cu substrate via a template‐free electrodeposition, followed by mild heating to consolidate the structural integrity between Sb and Cu. The resulting 3D architecture endows the Sb array with excellent sodium storage performance, exhibiting a reversible capacity of 578 mAh g?1 and retaining 531 mAh g?1 over 100 cycles at 0.5 C. The potential of Sb array in sodium‐ion full cells by pairing it with a Na0.67(Ni0.23Mg0.1Mn0.67)O2 cathode is further demonstrated. This full cell affords a specific energy of 197 Wh kg?1 at 0.2 C and a specific power of 1280 W kg?1 at 5 C. Considering its low cost and scale‐up capability, the template‐free route may find extensive applications in designing electrode architectures.  相似文献   

4.
Practical applications of room temperature sodium–sulfur batteries are still inhibited by the poor conductivity and slow reaction kinetics of sulfur, and dissolution of intermediate polysulfides in the commonly used electrolytes. To address these issues, starting from a novel 3D Zn‐based metal–organic framework with 2,5‐thiophenedicarboxylic acid and 1,4‐bis(pyrid‐4‐yl) benzene as ligands, a S, N‐doped porous carbon host with 3D tubular holes for sulfur storage is fabricated. In contrast to the commonly used melt‐diffusion method to confine sulfur physically, a vapor‐infiltration method is utilized to achieve sulfur/carbon composite with covalent bonds, which can join electrochemical reaction without low voltage activation. A polydopamine derived N‐doped carbon layer is further coated on the composite to confine the high‐temperature‐induced gas‐phase sulfur inside the host. S and N dopants increase the polarity of the carbon host to restrict diffusion of sulfur, and its 3D porous structure provides a large storage area for sulfur. As a result, the obtained composite shows outstanding electrochemical performance with 467 mAh g?1 (1262 mAh g?1(sulfur)) at 0.1 A g?1, 270 mAh g?1 (730 mAh g?1(sulfur)) after 1000 cycles at 1 A g?1 and 201 mAh g?1 (543 mAh g?1(sulfur)) at 5.0 A g?1.  相似文献   

5.
Alloy materials such as Si and Ge are attractive as high‐capacity anodes for rechargeable batteries, but such anodes undergo severe capacity degradation during discharge–charge processes. Compared to the over‐emphasized efforts on the electrode structure design to mitigate the volume changes, understanding and engineering of the solid‐electrolyte interphase (SEI) are significantly lacking. This work demonstrates that modifying the surface of alloy‐based anode materials by building an ultraconformal layer of Sb can significantly enhance their structural and interfacial stability during cycling. Combined experimental and theoretical studies consistently reveal that the ultraconformal Sb layer is dynamically converted to Li3Sb during cycling, which can selectively adsorb and catalytically decompose electrolyte additives to form a robust, thin, and dense LiF‐dominated SEI, and simultaneously restrain the decomposition of electrolyte solvents. Hence, the Sb‐coated porous Ge electrode delivers much higher initial Coulombic efficiency of 85% and higher reversible capacity of 1046 mAh g?1 after 200 cycles at 500 mA g?1, compared to only 72% and 170 mAh g?1 for bare porous Ge. The present finding has indicated that tailoring surface structures of electrode materials is an appealing approach to construct a robust SEI and achieve long‐term cycling stability for alloy‐based anode materials.  相似文献   

6.
A challenge still remains to develop high‐performance and cost‐effective air electrode for Li‐O2 batteries with high capacity, enhanced rate capability and long cycle life (100 times or above) despite recent advances in this field. In this work, a new design of binder‐free air electrode composed of three‐dimensional (3D) graphene (G) and flower‐like δ‐MnO2 (3D‐G‐MnO2) has been proposed. In this design, graphene and δ‐MnO2 grow directly on the skeleton of Ni foam that inherits the interconnected 3D scaffold of Ni foam. Li‐O2 batteries with 3D‐G‐MnO2 electrode can yield a high discharge capacity of 3660 mAh g?1 at 0.083 mA cm?2. The battery can sustain 132 cycles at a capacity of 492 mAh g?1 (1000 mAh gcarbon ?1) with low overpotentials under a high current density of 0.333 mA cm?2. A high average energy density of 1350 Wh Kg?1 is maintained over 110 cycles at this high current density. The excellent catalytic activity of 3D‐G‐MnO2 makes it an attractive air electrode for high‐performance Li‐O2 batteries.  相似文献   

7.
Aqueous zinc ion batteries (AZIBs) are steadily gaining attention based on their attractive merits regarding cost and safety. However, there are many obstacles to overcome, especially in terms of finding suitable cathode materials and elucidating their reaction mechanisms. Here, a mixed‐valence vanadium oxide, V6O13, that functions as a stable cathode material in mildly acidic aqueous electrolytes is reported. Paired with a zinc metal anode, this material exhibits performance metrics of 360 mAh g?1 at 0.2 A g?1, 92% capacity retention after 2000 cycles, and 145 mAh g?1 at a current density of 24.0 A g?1. A combination of experiments and density functional theory calculations suggests that hydrated intercalation, where water molecules are cointercalated with Zn ions upon discharge, accounts for the aforementioned electrochemical performance. This intercalation mechanism facilitates Zn ion diffusion throughout the host lattice and electrode–electrolyte interface via electrostatic shielding and concurrent structural stabilization. Through a correlation of experimental data and theoretical calculations, the promise of utilizing hydrated intercalation as a means to achieve high‐performance AZIBs is demonstrated.  相似文献   

8.
Sodium ion batteries (SIBs) have drawn significant attention owing to their low cost and inherent safety. However, the absence of suitable anode materials with high rate capability and long cycling stability is the major challenge for the practical application of SIBs. Herein, an efficient anode material consisting of uniform hollow iron sulfide polyhedrons with cobalt doping and graphene wrapping (named as CoFeS@rGO) is developed for high‐rate and long‐life SIBs. The graphene‐encapsulated hollow composite assures fast and continuous electron transportation, high Na+ ion accessibility, and strong structural integrity, showing an extremely small volume expansion of only 14.9% upon sodiation and negligible volume contraction during the desodiation. The CoFeS@rGO electrode exhibits high specific capacity (661.9 mAh g?1 at 100 mA g?1), excellent rate capability (449.4 mAh g?1 at 5000 mA g?1), and long cycle life (84.8% capacity retention after 1500 cycles at 1000 mA g?1). In situ X‐ray diffraction and selected‐area electron diffraction patterns show that this novel CoFeS@rGO electrode is based on a reversible conversion reaction. More importantly, when coupled with a Na3V2(PO4)3/C cathode, the sodium ion full battery delivers a superexcellent rate capability (496.8 mAh g?1 at 2000 mA g?1) and ≈96.5% capacity retention over 200 cycles at 500 mA g?1 in the 1.0–3.5 V window. This work indicates that the rationally designed anode material is highly applicable for the next generation SIBs with high‐rate capability and long‐term cyclability.  相似文献   

9.
Developing low‐cost, high‐capacity, high‐rate, and robust earth‐abundant electrode materials for energy storage is critical for the practical and scalable application of advanced battery technologies. Herein, the first example of synthesizing 1D peapod‐like bimetallic Fe2VO4 nanorods confined in N‐doped carbon porous nanowires with internal void space (Fe2VO4?NC nanopeapods) as a high‐capacity and stable anode material for potassium‐ion batteries (KIBs) is reported. The peapod‐like Fe2VO4?NC nanopeapod heterostructures with interior void space and external carbon shell efficiently prevent the aggregation of the active materials, facilitate fast transportation of electrons and ions, and accommodate volume variation during the cycling process, which substantially boosts the rate and cycling performance of Fe2VO4. The Fe2VO4?NC electrode exhibits high reversible specific depotassiation capacity of 380 mAh g?1 at 100 mA g?1 after 60 cycles and remarkable rate capability as well as long cycling stability with a high capacity of 196 mAh g?1 at 4 A g?1 after 2300 cycles. The first‐principles calculations reveal that Fe2VO4?NC nanopeapods have high ionic/electronic conductivity characteristics and low diffusion barriers for K+‐intercalation. This study opens up new way for investigating high‐capacity metal oxide as high‐rate and robust electrode materials for KIBs.  相似文献   

10.
The symmetric batteries with an electrode material possessing dual cathodic and anodic properties are regarded as an ideal battery configuration because of their distinctive advantages over the asymmetric batteries in terms of fabrication process, cost, and safety concerns. However, the development of high‐performance symmetric batteries is highly challenging due to the limited availability of suitable symmetric electrode materials with such properties of highly reversible capacity. Herein, a triple‐hollow‐shell structured V2O5 (THS‐V2O5) symmetric electrode material with a reversible capacity of >400 mAh g?1 between 1.5 and 4.0 V and >600 mAh g?1 between 0.1 and 3.0 V, respectively, when used as the cathode and anode, is reported. The THS‐V2O5 electrodes assembled symmetric full lithium‐ion battery (LIB) exhibits a reversible capacity of ≈290 mAh g?1 between 2 and 4.0 V, the best performed symmetric energy storage systems reported to date. The unique triple‐shell structured electrode makes the symmetric LIB possessing very high initial coulombic efficiency (94.2%), outstanding cycling stability (with 94% capacity retained after 1000 cycles), and excellent rate performance (over 140 mAh g?1 at 1000 mA g?1). The demonstrated approach in this work leaps forward the symmetric LIB performance and paves a way to develop high‐performance symmetric battery electrode materials.  相似文献   

11.
For the first time, environmentally friendly sulfur‐rich pyramidal MnS2 synthesized via a single‐step hydrothermal process is used as a high‐performance anode material in Li‐ion and Na‐ion batteries. The superior electrochemical performance of the MnS2 electrode along with its high compatibility with ether‐based electrolytes are analyzed in both half‐ and full‐cell configurations. The reversible capacities of ≈84 mAh g?1 and ≈74 mAh g?1 at a current density of 50 mA g?1 are retained in the Li‐ion and Na‐ion full‐cells, respectively, over 200 cycles with excellent capacity retentions. Moreover, important findings regarding activation processes in the presence of a new phase transition and protective electrolyte interphase layer are revealed using ab initio density function theory calculation and in situ potentio‐electrochemical impedance spectroscopy. The detailed complex redox mechanism of MnS2 in Li/Na half‐cells is also elucidated by ex situ X‐ray photoelectron spectroscopy.  相似文献   

12.
Rechargeable magnesium batteries (RMBs) are attractive candidates for large‐scale energy storage owing to the high theoretical specific capacity, rich earth abundance, and good safety characteristics. However, the development of desirable cathode materials for RMBs is constrained by the high polarity and slow intercalation kinetics of Mg2+ ions. Herein, it is demonstrated that 2‐ethylhexylamine pillared vanadium disulfide nanoflowers (expanded VS2) with enlarged interlayer distances exhibit greatly boosted electrochemical performance as a cathode material in RMBs. Through a one‐step solution‐phase synthesis and in situ 2‐ethylhexylamine intercalation process, VS2 nanoflowers with ultralarge interlayer spacing are prepared. A series of ex situ characterizations verify that the cathode of expanded VS2 nanoflowers undergoes a reversible intercalation reaction mechanism, followed by a conversion reaction mechanism. Electrochemical kinetics analysis reveal a relatively fast Mg‐ion diffusivity of expanded VS2 nanoflowers in the order of 10?11–10?12 cm2 s?1, and the pseudocapacitive contribution is up to 64% for the total capacity at 1 mV s?1. The expanded VS2 nanoflowers show highly reversible discharge capacity (245 mAh g?1 at 100 mA g?1), good rate capability (103 mAh g?1 at 2000 mA g?1), and stable cycling performance (90 mAh g?1 after 600 cycles at 1000 mA g?1).  相似文献   

13.
Nickel sulfides are regarded as promising anode materials for advanced rechargeable lithium‐ion batteries due to their high theoretical capacity. However, capacity fade arising from significant volume changes during operation greatly limits their practical applications. Herein, confined NiSx@C yolk–shell microboxes are constructed to address volume changes and confine the active material in the internal void space. Having benefited from the yolk–shell structure design, the prepared NiSx@C yolk–shell microboxes display excellent electrochemical performance in lithium‐ion batteries. Particularly, it delivers impressive cycle stability (460 mAh g?1 after 2000 cycles at 1 A g?1) and superior rate performance (225 mAh g?1 at 20 A g?1). Furthermore, the lithium storage mechanism is ascertained with in situ synchrotron high‐energy X‐ray diffractions and in situ electrochemical impedance spectra. This unique confined yolk–shell structure may open up new strategies to create other advanced electrode materials for high performance electrochemical storage systems.  相似文献   

14.
Layered transition metal sulfides (LTMSs) have tremendous commercial potential in anode materials for sodium‐ion batteries (SIBs) in large‐scale energy storage application. However, it is a great challenge for most LTMS electrodes to have long cycling life and high‐rate capability due to their larger volume expansion and the formation of soluble polysulfide intermediates caused by the conversion reaction. Herein, layered CuS microspheres with tunable interlayer space and pore volumes are reported through a cost‐effective interaction method using a cationic surfactant of cetyltrimethyl ammonium bromide (CTAB). The CuS–CTAB microsphere as an anode for SIBs reveals a high reversible capacity of 684.6 mAh g?1 at 0.1 A g?1, and 312.5 mAh g?1 at 10 A g?1 after 1000 cycles with high capacity retention of 90.6%. The excellent electrochemical performance is attributed to the unique structure of this material, and a high pseudocapacitive contribution ensures its high‐rate performance. Moreover, in situ X‐ray diffraction is applied to investigate their sodium storage mechanism. It is found that the long chain CTAB in the CuS provides buffer space, traps polysulfides, and restrains the further growth of Cu particles during the conversion reaction process that ensure the long cycling stability and high reversibility of the electrode material.  相似文献   

15.
Lithium alanates exhibit high theoretical specific capacities and appropriate lithiation/delithiation potentials, but suffer from poor reversibility, cycling stability, and rate capability due to their sluggish kinetics and extensive side reactions. Herein, a novel and facile solid‐state prelithiation approach is proposed to in situ prepare a Li3AlH6‐Al nanocomposite from a short‐circuited electrochemical reaction between LiAlH4 and Li with the help of fast electron and Li‐ion conductors (C and P63mc LiBH4). This nanocomposite consists of dispersive Al nanograins and an amorphous Li3AlH6 matrix, which enables superior electrochemical performance in solid‐state cells, as much higher specific capacity (2266 mAh g?1), Coulombic efficiency (88%), cycling stability (71% retention in the 100th cycle), and rate capability (1429 mAh g?1 at 1 A g?1) are achieved. In addition, this nanocomposite works well in the solid‐state full cell with LiCoO2 cathode, demonstrating its promising application prospects. Mechanism analysis reveals that the dispersive Al nanograins and amorphous Li3AlH6 matrix can dramatically enhance the lithiation and delithiation kinetics without side reactions, which is mainly responsible for the excellent overall performance. Moreover, this solid‐state prelithiation approach is general and can also be applied to other Li‐poor electrode materials for further modification of their electrochemical behavior.  相似文献   

16.
In spite of the satisfactory advancement in preparing TiO2‐based hybrid structures, most methods rely on additional template‐based multistep reactions for engineering the given structure. Herein, a unique self‐template and in situ recrystallization strategy is explored to synthesize uniform flowerlike multicompositional structures of nitrogen‐doped porous carbon nanosheet networks immobilizing TiO2 nanoparticles (TiO2∩NPCSs) via a self‐prepared single precursor and subsequent thermal treatment. Depending on the unique coordination ability of 2,4‐dihydroxybenzoic acid with metal ions under alkaline conditions to form a flowerlike network, a self‐produced single precursor can be achieved. Careful investigations of the self‐prepared precursor reveal a high practicability of the present synthetic scheme. Because of the novel structural and compositional features, these TiO2∩NCSN flowers indicate superior sodium storage properties when evaluated as anodes for sodium‐ion batteries. Impressively, the TiO2∩NCSN flowers deliver high reversible capacities of 152 mAh g?1 at 2C for 3000 cycles and 114 mAh g?1 at 10C for 10000 cycles, as well as an ultrahigh rate capability up to 50C with a capacity of 101 mAh g?1. The facile method could stimulate further capability in precise construction of complex architectures with complicated compositions for different device applications.  相似文献   

17.
In this study, a new dual‐ion battery (DIB) concept based on an aqueous/non‐aqueous electrolyte is reported, combining high safety in the form of a nonflammable water‐in‐salt electrolyte, a high cathodic stability by forming a protective interphase on the negative electrode (non‐aqueous solvent), and improved sustainability by using a graphite‐based positive electrode material. Far beyond the anodic stability limit of water, the formation of a stage‐2 acceptor‐type graphite intercalation compound (GIC) of bis(trifluoromethanesulfonyl) imide (TFSI) anions from an aqueous‐based electrolyte is achieved for the first time, as confirmed by ex‐situ X‐ray diffraction. The choice of negative electrode material shows a huge impact on the performance of the DIB cell chemistry, i.e., discharge capacities up to 40 mAh g?1 are achieved even at a high specific current of 200 mA g?1. In particular, lithium titanium phosphate (LiTi2(PO4)3; LTP) and lithium titanium oxide (Li4Ti5O12; LTO) are evaluated as negative electrodes, exhibiting specific advantages for this DIB setup. In this work, a new DIB storage concept combining an environmentally friendly, transition‐metal‐free, abundant graphite positive electrode material, and a nonflammable water‐based electrolyte is established, thus paving the path toward a sustainable and safe alternative energy storage technology.  相似文献   

18.
Orthorhombic α‐MoO3 is a potential anode material for lithium‐ion batteries due to its high theoretical capacity of 1100 mAh g?1 and excellent structural stability. However, its intrinsic poor electronic conductivity and high volume expansion during the charge–discharge process impede it from achieving a high practical capacity. A novel composite of α‐MoO3 nanobelts and single‐walled carbon nanohorns (SWCNHs) is synthesized by a facile microwave hydrothermal technique and demonstrated as a high‐performance anode material for lithium‐ion batteries. The α‐MoO3/SWCNH composite displays superior electrochemical properties (654 mAh g?1 at 1 C), excellent rate capability (275 mAh g?1 at 5 C), and outstanding cycle life (capacity retention of >99% after 3000 cycles at 1 C) without any cracking of the electrode. The presence of SWCNHs in the composite enhances the electrochemical properties of α‐MoO3 by acting as a lithium storage material, electronic conductive medium, and buffer against pulverization.  相似文献   

19.
Rechargeable aqueous zinc‐ion batteries (ZIBs) have been emerging as potential large‐scale energy storage devices due to their high energy density, low cost, high safety, and environmental friendliness. However, the commonly used cathode materials in ZIBs exhibit poor electrochemical performance, such as significant capacity fading during long‐term cycling and poor performance at high current rates, which significantly hinder the further development of ZIBs. Herein, a new and highly reversible Mn‐based cathode material with porous framework and N‐doping (MnOx@N‐C) is prepared through a metal–organic framework template strategy. Benefiting from the unique porous structure, conductive carbon network, and the synergetic effect of Zn2+ and Mn2+ in electrolyte, the MnOx@N‐C shows excellent cycling stability, good rate performance, and high reversibility for aqueous ZIBs. Specifically, it exhibits high capacity of 305 mAh g?1 after 600 cycles at 500 mA g?1 and maintains achievable capacity of 100 mAh g?1 at a quite high rate of 2000 mA g?1 with long‐term cycling of up to 1600 cycles, which are superior to most reported ZIB cathode materials. Furthermore, insight into the Zn‐storage mechanism in MnOx@N‐C is systematically studied and discussed via multiple analytical methods. This study opens new opportunities for designing low‐cost and high‐performance rechargeable aqueous ZIBs.  相似文献   

20.
Herein, a Mn‐based metal–organic framework is used as a precursor to obtain well‐defined α‐MnS/S‐doped C microrod composites. Ultrasmall α‐MnS nanoparticles (3–5 nm) uniformly embedded in S‐doped carbonaceous mesoporous frameworks (α‐MnS/SCMFs) are obtained in a simple sulfidation reaction. As‐obtained α‐MnS/SCMFs shows outstanding lithium storage performance, with a specific capacity of 1383 mAh g?1 in the 300th cycle or 1500 mAh g?1 in the 120th cycle (at 200 mA g?1) using copper or nickel foil as the current collector, respectively. The significant (pseudo)capacitive contribution and the stable composite structure of the electrodes result in impressive rate capabilities and outstanding long‐term cycling stability. Importantly, in situ X‐ray diffraction measurements studies on electrodes employing various metal foils/disks as current collector reveal the occurrence of the conversion reaction of CuS at (de)lithiation process when using copper foil as the current collector. This constitutes the first report of the reaction mechanism for α‐MnS, eventually forming metallic Mn and Li2S. In situ dilatometry measurements demonstrate that the peculiar structure of α‐MnS/SCMFs effectively restrains the electrode volume variation upon repeated (dis)charge processes. Finally, α‐MnS/SCMFs electrodes present an impressive performance when coupled in a full cell with commercial LiMn1/3Co1/3Ni1/3O2 cathodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号