首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rechargeable lithium‐oxygen (Li‐O2) batteries are one of the most promising technologies for next‐generation energy storage, which is also a critical part of the future renewable energy portfolio; however, its commercialization is still hindered by several challenges. The high charge overpotential, in particular, not only causes problems by increasing the possibility of electrolyte decomposition but also induces a low round‐trip efficiency and coulombic efficiency. Here, by choosing the right component proportion in Pt‐Cu bimetallic electrocatalysts that optimize electrocatalytic activity of electrochemical reactions, especially of oxygen evolution reactions, a superior electrochemical behavior is demonstrated, with a low charge overpotential of 0.2 V and cycleability of 50 discharge/charge cycles before capacity fading. The optimized Pt‐Cu bimetallic electrocatalysts significantly reduce the charge overpotential and furthermore enhance the efficiency, stability, and cycleability of an aprotic Li‐O2 battery.  相似文献   

2.
The development of efficient catalysts for both oxygen reduction and evolution reactions (oxygen reduction reaction (ORR) and oxygen evolution reaction (OER)) is central to regenerative fuel cells and rechargeable metal–air batteries. It is highly desirable to achieve the efficient integration of dual active components into the catalysts and to understand the interaction between the dual components. Here, a facile approach is demonstrated to construct defective carbon–CoP nanoparticle hybrids as bifunctional oxygen electrocatalysts, and further probe the interfacial charge distribution behavior. By combining multiple synchrotron‐based X‐ray spectroscopic characterizations with density functional theory calculations, the interfacial charge polarization with the electrons gathering at the defective carbon surface and the holes gathering at the CoP surface due to strong interfacial coupling is revealed, which simultaneously facilitates the ORR and OER with remarkable bifunctional oxygen electrode activities. This work not only offers a bifunctional oxygen catalyst with outstanding performance, but also unravels the promoting factor of the hybrids from the view of interfacial charge distribution.  相似文献   

3.
Efficient and cost‐effective bifunctional electrocatalysts for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are of vital importance in energy conversion and storage devices. Despite the recent progress in bifunctional oxygen electrocatalysts, their unbalanced and insufficient OER and ORR activities has continued to pose challenges for the practical application of such energy devices. The design of highly integrated, high‐performance, bifunctional oxygen electrocatalysts composed of highly graphitic nanoshells embedded in mesoporous carbon (GNS/MC) is reported. The GNS/MC exhibits very high oxygen electrode activity, which is one of the best performances among nonprecious metal bifunctional oxygen electrocatalysts, and substantially outperforms Ir‐ and Pt‐based catalysts. Moreover, the GNS/MC shows excellent durability for both OER and ORR. In situ X‐ray absorption spectroscopy and square wave voltammetry reveal the roles of residual Ni and Fe entities in enhancing OER and ORR activities. Raman spectra indicate highly graphitic, defect‐rich nature of the GNS/MC, which can contribute to the enhanced OER activity and to high stability for the OER and ORR. In aqueous Na–air battery tests, the GNS/MC air cathode‐based cell exhibits superior performance to Ir/C‐ and Pt/C‐based batteries. Significantly, the GNS/MC‐based cell demonstrates the first example of rechargeable aqueous Na–air battery.  相似文献   

4.
Efficient bifunctional oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalysts are of great importance for rechargeable metal–air batteries. Herein, FeNx/C catalysts are synthesized by pyrolysis of thiourea and agarose containing α‐Fe2O3 nanoplate as Fe precursor, where α‐Fe2O3 nanoplate can prevent the aggregation of carbon sheets to effectively improve the specific surface area during the carbonization process. The FeNx/C‐700‐20 catalyst displays excellent catalytic performance for both ORR and OER activity in alkaline conditions with more positive onset potential (1.1 V vs the reversible hydrogen electrode) and half‐wave potential, higher stability, and stronger methanol tolerance in alkaline solution, which are all superior to that of the commercial Pt/C catalyst. In this study, the detailed analyses demonstrate that the coexistence of Fe‐based species and high content of Fe‐Nx both play an important role for the catalytic activity. Furthermore, FeNx/C‐700‐20 as cathode catalyst in Zn–air battery possesses higher charge–discharge stability and power density compared with that of commercial Pt/C catalyst, displaying great potential in practical implementation of for the rechargeable energy devices.  相似文献   

5.
Rare earth doped materials with unique electronic ground state configurations are considered emerging alternatives to conventional Pt/C for the oxygen reduction reaction (ORR). Herein, gadolinium (Gd)‐induced valence structure engineering is, for the first, time investigated for enhanced oxygen electrocatalysis. The Gd2O3–Co heterostructure loaded on N‐doped graphene (Gd2O3–Co/NG) is constructed as the target catalyst via a facile sol–gel assisted strategy. This synthetic strategy allows Gd2O3–Co nanoparticles to distribute uniformly on an N‐graphene surface and form intimate Gd2O3/Co interface sites. Upon the introduction of Gd2O3, the ORR activity of Gd2O3–Co/NG is significantly increased compared with Co/NG, where the half‐wave potential (E1/2) of Gd2O3–Co/NG is 100 mV more positive than that of Co/NG and even close to commercial Pt/C. The density functional theory calculation and spectroscopic analysis demonstrate that, owing to intrinsic charge redistribution at the engineered interface of Gd2O3/Co, the coupled Gd2O3–Co can break the OOH*–OH* scaling relation and result in a good balance of OOH* and OH* binding on Gd2O3–Co surface. For practical application, a rechargeable Zn–air battery employing Gd2O3–Co/NG as an air–cathode achieves a large power density and excellent charge–discharge cycle stability.  相似文献   

6.
The future large‐scale deployment of rechargeable zinc–air batteries requires the development of cheap, stable, and efficient bifunctional electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). In this work, a highly efficient bifunctional electrocatalyst is prepared by depositing 3–5 nm NiFe layered double hydroxide (NiFe‐LDH) nanoparticles on Co,N‐codoped carbon nanoframes (Co,N‐CNF). The NiFe‐LDH/Co,N‐CNF electrocatalyst displayed an OER overpotential of 0.312 V at 10 mA cm?2 and an ORR half‐wave potential of 0.790 V. The outstanding performance of the electrocatalyst is attributable to the high electrical conductivity and excellent ORR activity of Co,N‐CNF, together with the strong anchoring of 3–5 nm NiFe‐LDH nanoparticles, which preserves active sites. Inspired by the excellent OER and ORR performance of NiFe‐LDH/Co,N‐CNF, a prototype rechargeable zinc–air battery is developed. The battery exhibited a low discharge–charge voltage gap (1.0 V at 25 mA cm?2) and long‐term cycling durability (over 80 h), and superior overall performance to a counterpart battery constructed using a mixture of IrO2 and Pt/C as the cathode. The strategy developed here can easily be adapted to synthesize other bifunctional CNF‐based hybrid electrodes for ORR and OER, providing a practical route to more efficient rechargeable zinc–air batteries.  相似文献   

7.
Lithium‐oxygen batteries represent a significant scientific challenge for high‐rate and long‐term cycling using oxygen electrodes that contain efficient electrocatalysts. The mixed transition metal oxide catalysts provide the most efficient catalytic activity for partial heterogeneous surface cations with oxygen vacancies as the active phase. They include multiple oxidation states and oxygen vacancies. Here, using a combination of transmission electron microscopy, differential electrochemical mass spectrometry, X‐ray photoelectron spectroscopy, and electrochemical properties to probe the surface of the MnMoO4 nanowires, it is shown that the intrinsic MnMoO4 oxygen vacancies on the oxygen electrode are an effective strategy to achieve a high reversibility and high efficiency for lithium‐oxygen (Li‐O2) batteries. The modified MnMoO4 nanowires exhibit a highly stable capacity at a fixed capacity of 5000 mA h gsp?1 (calculated weight of Super P carbon black) during 50 cycles, a high‐rate capability at a current rate of 3000 mA gsp?1 during 70 cycles, and a long‐term reversible capacity during 188 cycles at a fixed capacity of 1000 mA h gsp?1. It is demonstrated that this strategy for creating mixed transition metal oxides (e.g., MnMoO4) may pave the way for the new structural design of electrocatalysts for Li‐O2 batteries.  相似文献   

8.
Rational design and exploration of robust and low‐cost bifunctional oxygen reduction/evolution electrocatalysts are greatly desired for metal–air batteries. Herein, a novel high‐performance oxygen electrode catalyst is developed based on bimetal FeCo nanoparticles encapsulated in in situ grown nitrogen‐doped graphitic carbon nanotubes with bamboo‐like structure. The obtained catalyst exhibits a positive half‐wave potential of 0.92 V (vs the reversible hydrogen electrode, RHE) for oxygen reduction reaction, and a low operating potential of 1.73 V to achieve a 10 mA cm?2 current density for oxygen evolution reaction. The reversible oxygen electrode index is 0.81 V, surpassing that of most highly active bifunctional catalysts reported to date. By combining experimental and simulation studies, a strong synergetic coupling between FeCo alloy and N‐doped carbon nanotubes is proposed in producing a favorable local coordination environment and electronic structure, which affords the pyridinic N‐rich catalyst surface promoting the reversible oxygen reactions. Impressively, the assembled zinc–air batteries using liquid electrolytes and the all‐solid‐state batteries with the synthesized bifunctional catalyst as the air electrode demonstrate superior charging–discharging performance, long lifetime, and high flexibility, holding great potential in practical implementation of new‐generation powerful rechargeable batteries with portable or even wearable characteristic.  相似文献   

9.
10.
Rational design and massive production of bifunctional catalysts with superior oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) activities are essential for developing metal–air batteries and fuel cells. Herein, controllable large‐scale synthesis of sulfur‐doped CaMnO3 nanotubes is demonstrated via an electrospinning technique followed by calcination and sulfurization treatment. The sulfur doping can not only replace oxygen atoms to increase intrinsic electrical conductivity but also introduce abundant oxygen vacancies to provide enough catalytically active sites, which is further demonstrated by density functional theory calculation. The resulting sulfur‐modified CaMnO3 (CMO/S) exhibits better electrocatalytic activity for ORR and OER in alkaline solution with higher stability performance than the pristine CMO. These results highlight the importance of sulfur treatment as a facile yet effective strategy to improve the ORR and OER catalytic activity of the pristine CaMnO3. As a proof‐of‐concept, a rechargeable Zn–air battery using the bifunctional catalyst exhibits a small charge–discharge voltage polarization, and long cycling life. Furthermore, a solid‐state flexible and rechargeable Zn–air battery gives superior discharge–charge performance and remarkable stability. Therefore, the CMO/S nanotubes might be a promising replacement to the Pt‐based electrocatalysts for metal–air batteries and fuel cells.  相似文献   

11.
Developing low‐cost and efficient electrocatalysts for the oxygen evolution reaction and oxygen reduction reaction is of critical significance to the practical application of some emerging energy storage and conversion devices (e.g., metal–air batteries, water electrolyzers, and fuel cells). Lithium cobalt oxide is a promising nonprecious metal‐based electrocatalyst for oxygen electrocatalysis; its activity, however, is still far from the requirements of practical applications. Here, a new LiCoO2‐based electrocatalyst with nanosheet morphology is developed by a combination of Mg doping and shear force‐assisted exfoliation strategies toward enhanced oxygen reduction and evolution reaction kinetics. It is demonstrated that the coupling effect of Mg doping and the exfoliation can effectively modulate the electronic structure of LiCoO2, in which Co3+ can be partially oxidized to Co4+ and the Co–O covalency can be enhanced, which is closely associated with the improvement of intrinsic activity. Meanwhile, the unique nanosheet morphology also helps to expose more active Co species. This work offers new insights into deploying the electronic structure engineering strategy for the development of efficient and durable catalysts for energy applications.  相似文献   

12.
The challenges for rechargeable lithium‐oxygen batteries of low practical capacity and poor round‐trip efficiency urgently demand effective cathode materials to overcome the limitations. However, the synergy between the multiple active materials is not well understood. Here, findings of the synergistic effect between electrospun zinc oxide (ZnO) nanofibers and graphene nanoribbons (GNRs) unzipped from carbon nanotubes (CNTs) as cathode materials in rechargeable lithium‐oxygen batteries are described. Furthermore, the overpotentials and discharge capacities are tuned by the surface defect states of ZnO nanofibers and Pt nanocrytals in GNRs. It is observed that the optimized zinc oxide nanofibers hybridized with GNRs achieved a high reversible capacity of 6300 mAh g‐1carbon and enhanced stable cyclability under specific 50% of full discharge capacities. This report demonstrates that the ZnO nanofibers with a high degree of defects and hydrophilicity of the surface may be a promising cathode component for rechargeable lithium‐oxygen batteries and the optimum synergy between ZnO nanofibers and GNRs can balance the discharge capacity and cycle life.  相似文献   

13.
Improving the electrochemical performance of both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) has been of great interest in emerging renewable energy technologies. This study reports an advanced bifunctional hybrid electrocatalyst for both ORR and OER, which is composed of tungsten disulphide (WS2) and carbon nanotube (CNT) connected via tungsten carbide (WC) bonding. WS2 sheets on the surface of CNTs provide catalytic active sites for electrocatalytic activity while the CNTs act as conduction channels and provide a large surface area. Moreover, the newly formed WC crystalline structure provides an easy path for electron transfer by spin coupling and helps to solve stability issues to enable excellent electrocatalytic activity. In addition, it is found that four to five layers of WS2 sheets on the surface of CNTs produce excellent catalytic activity toward both ORR and OER, which is comparable to noble metals (Pt, RuO2, etc.). These findings show the many advantages enabled by designing highly active, durable, and cost‐effective ORR and OER electrocatalysts.  相似文献   

14.
15.
16.
17.
18.
The pressing demand on the electronic vehicles with long driving range on a single charge has necessitated the development of next‐generation high‐energy‐density batteries. Non‐aqueous Li‐O2 batteries have received rapidly growing attention due to their higher theoretical energy densities compared to those of state‐of‐the‐art Li‐ion batteries.To make them practical for commercial applications, many critical issues must be overcome, including low round‐trip efficiency and poor cycling stability, which are intimately connected to the problems resulting from cathode degradation during cycling. Encouragingly, during the past years, much effort has been devoted to enhancing the stability of the cathode using a variety of strategies and these have effectively surmounted the challenges derived from cathode deteriorations,thus endowing Li‐O2 batteries with significantly improved electrochemical performances. Here, a brief overview of the general development of Li‐O2 battery is presented. Then, critical issues relevant to the cathode instability are discussed and remarkable achievements in enhancing the cathode stability are highlighted. Finally, perspectives towards the development of next generation highly stable cathode are also discussed.  相似文献   

19.
Sustainable energy production at an acceptable cost is key for its widespread application. At present, noble metals and metal oxides are the most widely used for electrocatalysis, but they suffer from low selectivity, poor durability, and scarcity. Because of this, metal‐free carbons have become the subject of great interest as promising alternative electrocatalysts for energy conversion and storage devices, and remarkable progress has been accomplished in the advance of metal‐free carbons as electrocatalysts for renewable energy technologies. Particularly interesting are 3D porous carbon architectures, which exhibit outstanding features for electrocatalysis applications, including broad range of active sites, interconnected porosity, high conductivity, and mechanical stability. This review summarizes the latest advances in 3D porous carbon structures for oxygen and hydrogen electrocatalysis. The structure–performance relationship of these materials is consequently rationalized and perspectives on creating more efficient 3D carbon electrocatalysts are suggested.  相似文献   

20.
The inhibitively high cost of the noble‐metal‐containing materials has become a major obstacle for the large‐scale application of rechargeable zinc‐air batteries (ZABs). To solve this problem in a practical way, a green and scalable method to prepare sandwich‐like reduced graphene oxide /carbon black/amorphous cobalt borate nanocomposites (rGO/CB/Co‐Bi) is reported. These composites are shown to be a highly efficient and robust bifunctional electrocatalyst for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). In this system, the spontaneous assembly of the GO sheet and CB nanoparticles is demonstrated by noncovalent interactions to build the sandwich‐like structure with hierarchical pore distribution. The impressive ORR and OER activities of the obtained nanocomposite are attributed to the high conductivity, large surface area, and the hierarchically porous channels. With room‐temperature synthesis and significant activities shown in the demonstrative battery test, the prepared nanocomposite can potentially serve as an alternative for noble‐metal‐based rechargeable ZAB cathode materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号