首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
High‐capacity electrode materials play a vital role for high‐energy‐density lithium‐ion batteries. Silicon (Si) has been regarded as a promising anode material because of its outstanding theoretical capacity, but it suffers from an inherent volume expansion problem. Binders have demonstrated improvements in the electrochemical performance of Si anodes. Achieving ultrahigh‐areal‐capacity Si anodes with rational binder strategies remains a significant challenge. Herein, a binder‐lithiated strategy is proposed for ultrahigh‐areal‐capacity Si anodes. A hard/soft modulated trifunctional network binder (N‐P‐LiPN) is constructed by the partially lithiated hard polyacrylic acid as a framework and partially lithiated soft Nafion as a buffer via the hydrogen binding effect. N‐P‐LiPN has strong adhesion and mechanical properties to accommodate huge volume change of the Si anode. In addition, lithium‐ions are transferred via the lithiated groups of N‐P‐LiPN, which significantly enhances the ionic conductivity of the Si anode. Hence, the Si@N‐P‐LiPN electrodes achieve the highest initial Coulombic efficiency of 93.18% and a stable cycling performance for 500 cycles at 0.2 C. Specially, Si@N‐P‐LiPN electrodes demonstrate an ultrahigh‐areal‐capacity of 49.59 mAh cm?2. This work offers a new approach for inspiring the battery community to explore novel binders for next‐generation high‐energy‐density storage devices.  相似文献   

2.
3.
Lithium‐ion batteries (LIBs) with outstanding energy and power density have been extensively investigated in recent years, rendering them the most suitable energy storage technology for application in emerging markets such as electric vehicles and stationary storage. More recently, sodium, one of the most abundant elements on earth, exhibiting similar physicochemical properties as lithium, has been gaining increasing attention for the development of sodium‐ion batteries (SIBs) in order to address the concern about Li availability and cost—especially with regard to stationary applications for which size and volume of the battery are of less importance. Compared with traditional intercalation reactions, conversion reaction‐based transition metal oxides (TMOs) are prospective anode materials for rechargeable batteries thanks to their low cost and high gravimetric specific capacities. In this review, the recent progress and remaining challenges of conversion reactions for LIBs and SIBs are discussed, covering an overview about the different synthesis methods, morphological characteristics, as well as their electrochemical performance. Potential future research directions and a perspective toward the practical application of TMOs for electrochemical energy storage are also provided.  相似文献   

4.
Silicon‐based anodes with high theoretical capacity have intriguing potential applications for next‐generation high‐energy lithium‐ion batteries, but suffer from huge volumetric change that causes pulverization of electrodes. Rational design and construction of effective electrode structures combined with versatile binders remain a significant challenge. Here, a unique natural binder of konjac glucomannan (KGM) is developed and an amorphous protective layer of SiO2 is fabricated on the surface of Si nanoparticles (Si@SiO2) to enhance the adhesion. Benefiting from a plethora of hydroxyl groups, the KGM binder with inherently high adhesion and superior mechanical properties provides abundant contact sites to active materials. Molecular mechanics simulations and experimental results demonstrate that the enhanced adhesion between KGM and Si@SiO2 can bond the particles tightly to form a robust electrode. In addition to bridging KGM molecules, the SiO2‐functionalized surface may serve as a buffer layer to alleviate the stresses of Si nanoparticles resulting from the volume change. The as‐fabricated KGM/Si@SiO2 electrode exhibits outstanding structural stability upon long‐term cycles. A highly reversible capacity of 1278 mAh g?1 can be achieved over 1000 cycles at a current density of 2 A g?1, and the capacity decay is as small as 0.056% per cycle.  相似文献   

5.
6.
There are growing concerns over the environmental, climate, and health impacts caused by using non‐renewable fossil fuels. The utilization of green energy, including solar and wind power, is believed to be one of the most promising alternatives to support more sustainable economic growth. In this regard, lithium‐ion batteries (LIBs) can play a critically important role. To further increase the energy and power densities of LIBs, silicon anodes have been intensively explored due to their high capacity, low operation potential, environmental friendliness, and high abundance. The main challenges for the practical implementation of silicon anodes, however, are the huge volume variation during lithiation and delithiation processes and the unstable solid‐electrolyte interphase (SEI) films. Recently, significant breakthroughs have been achieved utilizing advanced nanotechnologies in terms of increasing cycle life and enhancing charging rate performance due partially to the excellent mechanical properties of nanomaterials, high surface area, and fast lithium and electron transportation. Here, the most recent advance in the applications of 0D (nanoparticles), 1D (nanowires and nanotubes), and 2D (thin film) silicon nanomaterials in LIBs are summarized. The synthetic routes and electrochemical performance of these Si nanomaterials, and the underlying reaction mechanisms are systematically described.  相似文献   

7.
8.
This study presents the first laser porosificated silicon anode for lithium‐ion batteries. The pulsed laser induced pore creation improves the cycling stability of the d = 210 nm thick sputtered thin film anodes compared to plain Si. Galvanostatic cycling with a charge capacity limited to C = 932 mAh g?1 and a 2C current rate shows a stable cycling for more than N = 600 cycles. After N = 3000 cycles the laser porosificated and crystallized Si has a remaining capacity of C3000 > 120 mAh g?1. Postmortem scanning electron microscopy images after N = 3000 cycles prove that the laser porosification reduces cracks in the active layer.  相似文献   

9.
Silicon anodes are regarded as one of the most promising alternatives to graphite for high energy‐density lithium‐ion batteries (LIBs), but their practical applications have been hindered by high volume change, limited cycle life, and safety concerns. In this work, nonflammable localized high‐concentration electrolytes (LHCEs) are developed for Si‐based anodes. The LHCEs enable the Si anodes with significantly enhanced electrochemical performances comparing to conventional carbonate electrolytes with a high content of fluoroethylene carbonate (FEC). The LHCE with only 1.2 wt% FEC can further improve the long‐term cycling stability of Si‐based anodes. When coupled with a LiNi0.3Mn0.3Co0.3O2 cathode, the full cells using this nonflammable LHCE can maintain >90% capacity after 600 cycles at C/2 rate, demonstrating excellent rate capability and cycling stability at elevated temperatures and high loadings. This work casts new insights in electrolyte development from the perspective of in situ Si/electrolyte interphase protection for high energy‐density LIBs with Si anodes.  相似文献   

10.
The ever‐increasing demand for large‐scale energy storage systems requires novel battery technologies with low‐cost and sustainable properties. Due to earth‐abundance and cost effectiveness, the development of rechargeable potassium ion batteries (PIBs) has recently attracted much attention. Since carbon‐based materials are abundant, inexpensive, nontoxic, and safe, extensive feasibility investigations have suggested that they can become promising anode materials for PIBs. This review not only attempts to provide better understanding of the potassium storage mechanism, but also summarizes the availability of new carbon‐based materials and their electrochemical performance covering graphite, graphene, and hard carbon materials plus carbon‐based composites. Finally, the critical issues, challenges, and perspectives are discussed to demonstrate the developmental direction of PIBs.  相似文献   

11.
The application of lithium (Li) metal anodes in Li metal batteries has been hindered by growth of Li dendrites, which lead to short cycling life. Here a Li‐ion‐affinity leaky film as a protection layer is reported to promote a dendrite‐free Li metal anode. The leaky film induces electrokinetic phenomena to enhance Li‐ion transport, leading to a reduced Li‐ion concentration polarization and homogeneous Li‐ion distribution. As a result, the dendrite‐free Li metal anode during Li plating/stripping is demonstrated even at an extremely high deposition capacity (6 mAh cm?2) and current density (40 mA cm?2) with improved Coulombic efficiencies. A full cell battery with the leaky‐film protected Li metal as the anode and high‐areal‐capacity LiNi0.8Co0.1Mn0.1O2 (NCM‐811) (≈4.2 mAh cm?2) or LiFePO4 (≈3.8 mAh cm?2) as the cathode shows improved cycling stability and capacity retention, even at lean electrolyte conditions.  相似文献   

12.
13.
While the practical application of electrode materials depends intensively on the Li+ ion storage mechanisms correlating ultimately with the coulombic efficiency, reversible capacity, and morphology variation of electrode material upon cycling, only intercalation‐type electrode materials have proven viable for commercialization up to now. This paper reviews the promising anode materials of metal vanadates (MxVyOz, M = Co, Cu, Mn, Fe, Zn, Ni, Li) that have high capacity, low cost, and abundant resource, and also discusses the related Li+ ion storage mechanism. It is concluded that most of these (MxVyOz, M = Co, Cu, Mn, Fe, Zn, Ni) exhibit irreversible redox reactions upon lithiation/delithiation accompanied by large volume expansion, which is not favorable for industrial applications. In particular, Li3VO4 with specific intercalation Li+ ion storage mechanism and compatible merits of safety and energy density exhibits great potential for practical application. This review systematically summarizes the latest progress in Li3VO4 research, including the representative fabrication approaches for advanced morphology and state‐of‐the‐art technologies to boost performance and the morphology variation associated with Li+ ion storage mechanisms. Furthermore, an outlook on where breakthroughs for Li3VO4 may be most likely achieved will be provided.  相似文献   

14.
Hard carbon (HC) is the state‐of‐the‐art anode material for sodium‐ion batteries (SIBs). However, its performance has been plagued by the limited initial Coulombic efficiency (ICE) and mediocre rate performance. Here, experimental and theoretical studies are combined to demonstrate the application of lithium‐pretreated HC (LPHC) as high‐performance anode materials for SIBs by manipulating the solid electrolyte interphase in tetraglyme (TEGDME)‐based electrolyte. The LPHC in TEGDME can 1) deliver > 92% ICE and ≈220 mAh g?1 specific capacity, twice of the capacity (≈100 mAh g?1) in carbonate electrolyte; 2) achieve > 85% capacity retention over 1000 cycles at 1000 mA g?1 current density (4 C rate, 1 C = 250 mA g?1) with a specific capacity of ≈150 mAh g?1, ≈15 times of the capacity (10 mAh g?1) in carbonate. The full cell of Na3V2(PO4)3‐LPHC in TEGDME demonstrated close to theoretical specific capacity of ≈98 mAh g?1 based on Na3V2(PO4)3 cathode, ≈2.5 times of the value (≈40 mAh g?1) with nontreated HC. This work provides new perception on the anode development for SIBs.  相似文献   

15.
The development of alternative anode materials with higher volumetric and gravimetric capacity allowing for fast delithiation and, even more important, lithiation is crucial for next‐generation lithium‐ion batteries. Herein, the development of a completely new active material is reported, which follows an insertion‐type lithiation mechanism, metal‐doped CeO2. Remarkably, the introduction of carefully selected dopants, herein exemplified for iron, results in an increase of the achievable capacity by more than 200%, originating from the reduction of the dopant to the metallic state and additional space for the lithium ion insertion due to a significant off‐centering of the dopant atoms in the crystal structure, away from the original Ce site. In addition to the outstanding performance of such materials in high‐power lithium‐ion full‐cells, the selective reduction of the iron dopant under preservation of the crystal structure of the host material is expected to open up a new field of research.  相似文献   

16.
17.
The electrochemical performance of mesoporous carbon (C)/tin (Sn) anodes in Na‐ion and Li‐ion batteries is systematically investigated. The mesoporous C/Sn anodes in a Na‐ion battery shows similar cycling stability but lower capacity and poorer rate capability than that in a Li‐ion battery. The desodiation potentials of Sn anodes are approximately 0.21 V lower than delithiation potentials. The low capacity and poor rate capability of C/Sn anode in Na‐ion batteries is mainly due to the large Na‐ion size, resulting in slow Na‐ion diffusion and large volume change of porous C/Sn composite anode during alloy/dealloy reactions. Understanding of the reaction mechanism between Sn and Na ions will provide insight towards exploring and designing new alloy‐based anode materials for Na‐ion batteries.  相似文献   

18.
A self‐healing polymer (SHP) with abundant hydrogen bonds, appropriate viscoelasticity, and stretchability is a promising binder to improve cycle performance of Si microparticle anodes in lithium (Li) ion batteries. Besides high capacity and long cycle life, efficient rate performance is strongly desirable for practical Si anode implementation. Here, polyethylene glycol (PEG) groups are incorporated into the SHP, facilitating Li ionic conduction within the binder. The concept of the SHP‐PEG binder involves improving the interface between Si microparticles and electrolytes after cycling based on the combination of self‐healing ability and fast Li ionic conduction. Through the systematic study of mixing PEG Mw and ratio, the polymeric binder combining SHP and PEG with Mw 750 in an optimal ratio of 60:40 (mol%) achieves a high discharging capacity of ≈2600 mA h g?1, reasonable rate performance especially when >1C and maintains 80% of their initial capacity even after ≈150 cycles at 0.5C. The described concept for the polymeric binder, embedding both self‐healing ability and high Li ionic conductivity, should be equally useful for next generation batteries utilizing high capacity materials which suffer from huge volume change during cycling.  相似文献   

19.
20.
To be a thinner and more lightweight lithium‐ion battery with high energy density, the next‐generation anode with high gravimetric and volumetric capacity is a prerequisite. In this regard, utilizing high silicon (3579 mAh g?1) content in the electrode for the anode has been highlighted as a practically relevant approach. However, there still remains a crucial issue related to intrinsic volume expansion (>300%) of silicon upon lithiation, which can directly affect severe electrode swelling as well as accelerate its capacity fading by triggering structural degradation and electrical contact loss between particles. Herein, macropore‐exploited design, which can accommodate the volume change of high silicon content within the extended pore of graphite upon repeated cycling, is introduced. Such unique macropore‐exploited design leads to much less electrode swelling, by preserving its morphological integrity and contact between particles, than that of the comparative group with different sized pore and silicon distribution. As a result, this anode (914 mAh g?1) demonstrates notable gravimetric (220 Wh kg?1 at 6000 W kg?1) and volumetric energy density (623 Wh L?1 upon full lithiation after 100 cycles), exceeding that of a nano‐silicon blended graphite anode (127 Wh kg?1 and 229 Wh L?1) in the full‐cell system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号