首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With the application of organic–inorganic hybrid perovskites to liquid‐type solar cells, the unprecedented development of perovskite solar cells (Per‐SCs) has been boosted by the introduction of solid‐state hole transport materials (HTMs). The removal of liquid electrolyte has lead to improved efficiency and stability. Supported by high‐quality perovskite films, the certified efficiency of Per‐SCs has reached 25.2%. For Per‐SCs assembled in a conventional structure (n–i–p), the hole transport layer (HTL) plays an extra role in preventing the perovskite layer from external stimuli. In summary, the successful design and fabrication of the HTL must meet various requirements in terms of solubility, hole transport, recombination prevention, stability, and reproducibility, to name but a few. Many research strategies are focused on the development of high‐performance HTMs to meet such requirements. Such strategies for the development of HTMs employed in conventional n–i–p solar cells are reviewed herein. A vision of the future HTMs is proposed in this review based on the already proposed solutions and current trends.  相似文献   

2.
Over the past five years, a rapid progress in organometal‐halide perovskite solar cells has greatly influenced emerging solar energy science and technology. In perovksite solar cells, the overlying hole transporting material (HTM) is critical for achieving high power conversion efficiencies (PCEs) and for protecting the air‐sensitive perovskite active layer. This study reports the synthesis and implementation of a new polymeric HTM series based on semiconducting 4,8‐dithien‐2‐yl‐benzo[1,2‐d;4,5‐d′]bistriazole‐alt‐benzo[1,2‐b:4,5‐b′]dithiophenes (pBBTa‐BDTs), yielding high PCEs and environmentally‐stable perovskite cells. These intrinsic (dopant‐free) HTMs achieve a stabilized PCE of 12.3% in simple planar heterojunction cells—the highest value to date for a polymeric intrinsic HTM. This high performance is attributed to efficient hole extraction/collection (the most efficient pBBTa‐BDT is highly ordered and orients π‐face‐down on the perovskite surface) and balanced electron/hole transport. The smooth, conformal polymer coatings suppress aerobic perovskite film degradation, significantly enhancing the solar cell 85 °C/65% RH PCE stability versus typical molecular HTMs.  相似文献   

3.
With the recent developments in the efficiency of perovskite solar cells (PSCs), diverse functionalities are necessary for next‐generation charge‐transport layers. Specifically, the hole‐transport layer (HTL) in the various synthesized materials modified with functional groups is explored. A novel donor–acceptor type polymer, alkoxy‐PTEG, composed of benzo[1,2‐b:4,5:b′]dithiophene and tetraethylene glycol (TEG)‐substituted 2,1,3‐benzothiadiazole is reported. The alkoxy‐PTEG exhibits high solubility even in nonaromatic solvents, such as 3‐methylcyclohexanone (3‐MC), and can prevent possible lead leakage via chelation. The optical and electronic properties of alkoxy‐PTEG are thoroughly analyzed. Finally, a dopant‐free alkoxy‐PTEG device processed with 3‐MC exhibits 19.9% efficiency and a device with 2‐methyl anisole, which is a reported aromatic food additive, exhibits 21.2% efficiency in a tin oxide planar structure. The PSC device shows 88% stability after 30 d at ambient conditions (40–50% relative humidity and room temperature). In addition, nuclear magnetic resonance reveals that TEG groups can chelate lead ions with moderate strength (Kbinding = 2.76), and this strength is considered to be nondestructive to the perovskite lattice to prevent lead leakage. This is the first report to consider lead leakage and provide solutions to reduce this problem.  相似文献   

4.
Perovskite solar cells have delivered power conversion efficiency beyond 22% in less than seven years, implying the potential for the paradigm shift of low‐cost photovoltaics with high efficiency and low embedded energy. Besides the “perovskite fever,” the development of new hole transport materials (HTM), especially dopant‐free HTMs, is another research hotspot. This is because the currently used HTMs, such as spiro‐OMeTAD derivatives, require additional chemical doping process to ensure sufficient conductivity and proper ionic potential level for efficient hole transport and collection. However, the commonly used dopants are volatile and hygroscopic which not only increase the complexity and cost of device fabrication but also deteriorate the device stability. So far, there have been several reviews on new HTMs, but review or analysis on dopant‐free HTMs is scarce. In this review, all reported dopant‐free HTMs are categorized into four primary different types and lessons will be learned during the separate discussions. The stability test behavior of all the intrinsic HTMs will be evaluated directly. In the end, the correlations between the properties of the intrinsic HTMs and parameters of the devices will be plotted to shed light on the future direction of development of this field.  相似文献   

5.
Hole transport matertial (HTM) as charge selective layer in perovskite solar cells (PSCs) plays an important role in achieving high power conversion efficiency (PCE). It is known that the dopants and additives are necessary in the HTM in order to improve the hole conductivity of the HTM as well as to obtain high efficiency in PSCs, but the additives can potentially induce device instability and poor device reproducibility. In this work a new strategy to design dopant‐free HTMs has been presented by modifying the HTM to include charged moieties which are accompanied with counter ions. The device based on this ionic HTM X44 dos not need any additional doping and the device shows an impressive PCE of 16.2%. Detailed characterization suggests that the incorporated counter ions in X44 can significantly affect the hole conductivity and the homogeneity of the formed HTM thin film. The superior photovoltaic performance for X44 is attributed to both efficient hole transport and effective interfacial hole transfer in the solar cell device. This work provides important insights as regards the future design of new and efficient dopant free HTMs for photovotaics or other optoelectronic applications.  相似文献   

6.
Hole‐transporting materials (HTMs) are essential for enabling highly efficient perovskite solar cells (PVSCs) to extract and transport the hole carriers. Among numerous HTMs that are studied so far, the single‐spiro‐based compounds are the most frequently used HTMs for achieving highly efficient PVSCs. In fact, all the new spiro‐based HTMs reported so far that render PVSCs over 20% are based on spiro[fluorene‐9,9′‐xanthene] or spiro [cyclopenta [2,1‐b:3,4b′]dithiophene‐4,9′‐fluorene] cores; therefore, there is a need to diversify the design of their structures for further improving their function and performance. In addition, the fundamental understanding of structure–performance relationships for the spiro‐based HTMs is still lagging, for example, how molecular configuration, spiro numbers, and heteroatoms in spiro‐rings impact the efficacy of HTMs. To address these needs, two novel H‐shaped HTMs, G1 and G2 based on the di‐spiro‐rings as the cores are designed and synthesized. The combined good film‐forming properties, better interactions with perovskite, slightly deeper highest occupied molecular orbital, higher mobility and conductivity, as well as more efficient charge transfer for G2 help devices reach a very impressive power conversion efficiency of 20.2% and good stability. This is the first report of demonstrating the feasibility of using di‐spiro‐based HTMs for highly efficient PVSCs.  相似文献   

7.
In less than three years, the photovoltaic community has witnessed a rapid emergence of a new class of solid‐state heterojunction solar cells based on solution‐processable organometal halide perovskite absorbers. The energy conversion efficiency of solid‐state perovskite solar cells (PSCs) has been quickly increased to a certified value of 20.1% by the end of 2014 because of their unique characteristics, such as a broad spectral absorption range, large absorption coefficient, high charge carrier mobility and diffusion length. Here, the focus is specifically on recent developments of hole‐transporting materials (HTMs) in PSCs, which are essential components for achieving high solar cell efficiencies. Some fundamentals with regard to PSCs are first presented, including the history of PSCs, device architectures and general operational principles of PSCs as well as various techniques developed for the fabrications of uniform and dense perovskite complexes. A broad range of the state‐of‐the‐art HTMs being used in PSCs are then discussed in detail. Finally, an outlook on the design of more efficient HTMs for highly efficient PSCs is addressed.  相似文献   

8.
There has been considerable progress over the last decade in development of the perovskite solar cells (PSCs), with reported performances now surpassing 25.2% power conversion efficiency. Both long‐term stability and component costs of PSCs remain to be addressed by the research community, using hole transporting materials (HTMs) such as 2,2′,7,7′‐tetrakis(N,N′‐di‐pmethoxyphenylamino)‐9,9′‐spirbiuorene(Spiro‐OMeTAD) and poly[bis(4‐phenyl)(2,4,6‐trimethylphenyl)amine] (PTAA). HTMs are essential for high‐performance PSC devices. Although effective, these materials require a relatively high degree of doping with additives to improve charge mobility and interlayer/substrate compatibility, introducing doping‐induced stability issues with these HTMs, and further, additional costs and experimental complexity associated with using these doped materials. This article reviews dopant‐free organic HTMs for PSCs, outlining reports of structures with promising properties toward achieving low‐cost, effective, and scalable materials for devices with long‐term stability. It summarizes recent literature reports on non‐doped, alternative, and more stable HTMs used in PSCs as essential components for high‐efficiency cells, categorizing HTMs as reported for different PSC architectures in addition to use of dopant‐free small molecular and polymeric HTMs. Finally, an outlook and critical assessment of dopant‐free organic HTMs toward commercial application and insight into the development of stable PSC devices is provided.  相似文献   

9.
Having demonstrated incredibly fast progress in power conversion efficiency, rising to a level comparable with that of crystalline silicon cells, lead‐based organic–inorganic hybrid perovskite solar cells are now facing the stability tests needed for industrialization. Poor thermal stability (<150 °C) owing to organic constituents and interlayer diffusion of materials (dopants), and environmental incompatibility due to Pb has surged the development of organic‐free, Pb‐free perovskites and dopant‐free hole transport materials (HTMs). The recent rapid increase in efficiency of cells based on inorganic perovskites, crossing 18%, demonstrates the great potential of inorganic perovskites as thermally stable and high‐efficiency cells. Although all kinds of Pb‐free perovskites lag in efficiency in comparison to the hybrid and inorganic perovskites, they also demonstrate better structural and environmental stability. The performance of dopant‐free HTMs matching/surpassing dopant‐containing HTMs makes the former a better choice for stability. Even though the efforts to enhance the stability of Pb‐based hybrid perovskites should continue by different techniques, organic‐free and lead‐free perovskites, and dopant‐free HTMs must be pursued with greater interest for the future. This review describes the present issues and possible strategies to address them, and thus will help to improve the overall performance of robust organic‐free, Pb‐free, and dopant‐free perovskite solar cells.  相似文献   

10.
The rich molecular design of electron donor (D)–acceptor (A) polymers offers many valuable clues to obtain high‐efficiency hole‐transporting materials (HTMs) for use in perovskite solar cells (PVSCs). The fused aromatic or heteroaromatic units can increase the conjugation of the polymer backbone to facilitate electron delocalization, which increases the rigidity of adjacent units to prevent rotational disorder and lower the reorganization energy, leading to improved carrier mobility and optimized film morphology. In this work, fused‐ring ladder‐type indacenodithiophene and indacenodithieno[3,2‐b]thiophene are used as D units, benzodithiophene‐4,8‐dione as the A unit, and thienothiophene as a π‐bridge to form the D–A polymers PBDTT and PBTTT, respectively. Both polymers exhibit favorable properties as HTMs including suitable energy levels, high hole mobility, and excellent film quality. Both dopant‐free HTMs endow n‐i‐p PVSCs with promising performance and stability. A maximum power conversion efficiency of 20.28% is achieved for PBDTT‐based devices, which is among the highest values reported to date.  相似文献   

11.
Copper (II) phthalocyanines (CuPcs) have attracted growing interest as promising hole‐transporting materials (HTMs) in perovskite solar cells (PSCs) due to their low‐cost and excellent stability. However, the most efficient PSCs using CuPc‐based HTMs reported thus far still rely on hygroscopic p‐type dopants, which notoriously deteriorate device stability. Herein, two new CuPc derivatives are designed, namely CuPc‐Bu and CuPc‐OBu, by molecular engineering of the non‐peripheral substituents of the Pc rings, and applied as dopant‐free HTMs in PSCs. Remarkably, a small structural change from butyl groups to butoxy groups in the substituents of the Pc rings significantly influences the molecular ordering and effectively improves the hole mobility and solar cell performance. As a consequence, PSCs based on dopant‐free CuPc‐OBu as HTMs deliver an impressive power conversion efficiency (PCE) of up to 17.6% under one sun illumination, which is considerably higher than that of devices with CuPc‐Bu (14.3%). Moreover, PSCs containing dopant‐free CuPc‐OBu HTMs show a markedly improved ambient stability when stored without encapsulation under ambient conditions with a relative humidity of 85% compared to devices containing doped Spiro‐OMeTAD. This work thus provides a fundamental strategy for the future design of cost‐effective and stable HTMs for PSCs and other optoelectronic devices.  相似文献   

12.
Although perovskite solar cells (PVSCs) have achieved rapid progress in the past few years, most of the high‐performance device results are based on the doped small molecule hole‐transporting material (HTM), spiro‐OMeTAD, which affects their long‐term stability. In addition, some defects from under‐coordinated Pb atoms on the surface of perovskite films can also result in nonradiative recombination to affect device performance. To alleviate these problems, a dopant‐free HTM based on a donor‐acceptor polymer, PBT1‐C, synthesized from the copolymerization between the benzodithiophene and 1,3‐bis(4‐(2‐ethylhexyl)thiophen‐2‐yl)‐5,7‐bis(2‐alkyl)benzo[1,2‐c:4,5‐c′]dithiophene‐4,8‐dione units is introduced. PBT1‐C not only possesses excellent hole mobility, but is also able to passivate the surface traps of the perovskite films. The derived PVSC shows a high power conversion efficiency of 19.06% with a very high fill factor of 81.22%, which is the highest reported for dopant‐free polymeric HTMs. The results from photoluminescence and trap density of states measurements validate that PBT1‐C can effectively passivate both surface and grain boundary traps of the perovskite.  相似文献   

13.
Organic/inorganic hybrid solar cells, typically mesoscopic and perovskite solar cells, are regarded as promising candidates to replace conventional silicon or thin film photovoltaics. There have been intensive investigations on the development of advanced materials for improved power conversion efficiencies, however, economical feasibilities and reliabilities of the organic/inorganic photovoltaics are yet to reach at a sufficient level for practical utilizations. In this study, cobalt nitride (CoN) nanofilms prepared by room‐temperature vapor deposition in an inert N2 atmosphere, which is a facile and highly reproducible procedure, are proposed as a low‐cost counter electrode in mesoscopic dye‐sensitized solar cells (DSCs) and a hole transport material in inverted planar perovskite solar cells (PSCs) for the first time. The CoN film successfully replaces conventional Pt in DSCs, resulting in a power conversion efficiency comparable to the ones based on Pt. In addition, PSCs employing the CoN manifest high efficiency even up to 15.0%, which is comparable to state‐of‐the‐art performance in the cases of PSCs employing inorganic hole transporters. Furthermore, flexible solar cell applications of the CoN are performed in both mesoscopic and perovskite solar cells, verifying the advantages of the room‐temperature deposition process and feasibilities of the CoN nanofilms in various fields.  相似文献   

14.
A strategy for developing a novel donor–π–acceptor conducting polymeric hole transport material ( TTB–TTQ ) based on thiophene and benzothiadiazole as an alternative to spiro‐MeOTAD is reported. The resulting polymer is highly soluble in many organic solvents and exhibits excellent film formability. The addition of lithium bis(trifluoromethanesulfonyl) imide salt and tert‐butylpyridine to TTB–TTQ results in a rough film surface with a fibril structure and improved charge transport. A perovskite solar cell with the highest power conversion efficiency (η) yet achieved in such cells, 14.1%, which is 22.6% greater than that of a device employing a spiro‐MeOTAD is demonstrated. This strategy provides a novel approach to developing solar cell materials for efficient perovskite solar cells.  相似文献   

15.
A power conversion efficiency (PCE) as high as 19.7% is achieved using a novel, low‐cost, dopant‐free hole transport material (HTM) in mixed‐ion solution‐processed perovskite solar cells (PSCs). Following a rational molecular design strategy, arylamine‐substituted copper(II) phthalocyanine (CuPc) derivatives are selected as HTMs, reaching the highest PCE ever reported for PSCs employing dopant‐free HTMs. The intrinsic thermal and chemical properties of dopant‐free CuPcs result in PSCs with a long‐term stability outperforming that of the benchmark doped 2,2′,7,7′‐Tetrakis‐(N,N‐di‐p‐methoxyphenylamine)‐9,9′‐Spirobifluorene (Spiro‐OMeTAD)‐based devices. The combination of molecular modeling, synthesis, and full experimental characterization sheds light on the nanostructure and molecular aggregation of arylamine‐substituted CuPc compounds, providing a link between molecular structure and device properties. These results reveal the potential of engineering CuPc derivatives as dopant‐free HTMs to fabricate cost‐effective and highly efficient PSCs with long‐term stability, and pave the way to their commercial‐scale manufacturing. More generally, this case demonstrates how an integrated approach based on rational design and computational modeling can guide and anticipate the synthesis of new classes of materials to achieve specific functions in complex device structures.  相似文献   

16.
The development of effective and stable hole transporting materials (HTMs) is very important for achieving high‐performance planar perovskite solar cells (PSCs). Herein, copper salts (cuprous thiocyanate (CuSCN) or cuprous iodide (CuI)) doped 2,2,7,7‐tetrakis(N,N‐di‐p‐methoxyphenylamine)‐9,9‐spirobifluorene (spiro‐OMeTAD) based on a solution processing as the HTM in PSCs is demonstrated. The incorporation of CuSCN (or CuI) realizes a p‐type doping with efficient charge transfer complex, which results in improved film conductivity and hole mobility in spiro‐OMeTAD:CuSCN (or CuI) composite films. As a result, the PCE is largely improved from 14.82% to 18.02% due to obvious enhancements in the cell parameters of short‐circuit current density and fill factor. Besides the HTM role, the composite film can suppress the film aggregation and crystallization of spiro‐OMeTAD films with reduced pinholes and voids, which slows down the perovskite decomposition by avoiding the moisture infiltration to some extent. The finding in this work provides a simple method to improve the efficiency and stability of planar perovskite solar cells.  相似文献   

17.
A series of triphenylamine‐based small molecule organic hole transport materials (HTMs) with low crystallinity and high hole mobility are systematically investigated in solid‐state dye‐sensitized solar cells (ssDSCs). By using the organic dye LEG4 as a photosensitizer, devices with X3 and X35 as the HTMs exhibit desirable power conversion efficiencies (PCEs) of 5.8% and 5.5%, respectively. These values are slightly higher than the PCE of 5.4% obtained by using the state‐of‐the‐art HTM Spiro‐OMeTAD. Meanwhile, transient photovoltage decay measurement is used to gain insight into the complex influences of the HTMs on the performance of devices. The results demonstrate that smaller HTMs induce faster electron recombination in the devices and suggest that the size of a HTM plays a crucial role in device performance, which is reported for the first time.  相似文献   

18.
In this report, highly efficient and humidity‐resistant perovskite solar cells (PSCs) using two new small molecule hole transporting materials (HTM) made from a cost‐effective precursor anthanthrone (ANT) dye, namely, 4,10‐bis(1,2‐dihydroacenaphthylen‐5‐yl)‐6,12‐bis(octyloxy)‐6,12‐dihydronaphtho[7,8,1,2,3‐nopqr]tetraphene (ACE‐ANT‐ACE) and 4,4′‐(6,12‐bis(octyloxy)‐6,12‐dihydronaphtho[7,8,1,2,3‐nopqr]tetraphene‐4,10‐diyl)bis(N,N‐bis(4‐methoxyphenyl)aniline) (TPA‐ANT‐TPA) are presented. The newly developed HTMs are systematically compared with the conventional 2,2′,7,7′‐tetrakis(N,N′‐di‐p‐methoxyphenylamino)‐9,9′‐spirbiuorene (Spiro‐OMeTAD). ACE‐ANT‐ACE and TPA‐ANT‐TPA are used as a dopant‐free HTM in mesoscopic TiO2/CH3NH3PbI3/HTM solid‐state PSCs, and the performance as well as stability are compared with Spiro‐OMeTAD‐based PSCs. After extensive optimization of the metal oxide scaffold and device processing conditions, dopant‐free novel TPA‐ANT‐TPA HTM‐based PSC devices achieve a maximum power conversion efficiency (PCE) of 17.5% with negligible hysteresis. An impressive current of 21 mA cm?2 is also confirmed from photocurrent density with a higher fill factor of 0.79. The obtained PCE of 17.5% utilizing TPA‐ANT‐TPA is higher performance than the devices prepared using doped Spiro‐OMeTAD (16.8%) as hole transport layer at 1 sun condition. It is found that doping of LiTFSI salt increases hygroscopic characteristics in Spiro‐OMeTAD; this leads to the fast degradation of solar cells. While, solar cells prepared using undoped TPA‐ANT‐TPA show dewetting and improved stability. Additionally, the new HTMs form a fully homogeneous and completely covering thin film on the surface of the active light absorbing perovskite layers that acts as a protective coating for underlying perovskite films. This breakthrough paves the way for development of new inexpensive, more stable, and highly efficient ANT core based lower cost HTMs for cost‐effective, conventional, and printable PSCs.  相似文献   

19.
Organic p‐type materials are potential candidates as solution processable hole transport materials (HTMs) for colloidal quantum dot solar cells (CQDSCs) because of their good hole accepting/electron blocking characteristics and synthetic versatility. However, organic HTMs have still demonstrated inferior performance compared to conventional p‐type CQD HTMs. In this work, organic π‐conjugated polymer (π‐CP) based HTMs, which can achieve performance superior to that of state‐of‐the‐art HTM, p‐type CQDs, are developed. The molecular engineering of the π‐CPs alters their optoelectronic properties, and the charge generation and collection in CQDSCs using them are substantially improved. A device using PBDTTPD‐HT achieves power conversion efficiency (PCE) of 11.53% with decent air‐storage stability. This is the highest reported PCE among CQDSCs using organic HTMs, and even higher than the reported best solid‐state ligand exchange‐free CQDSC using pCQD‐HTM. From the viewpoint of device processing, device fabrication does not require any solid‐state ligand exchange step or layer‐by‐layer deposition process, which is favorable for exploiting commercial processing techniques.  相似文献   

20.
In this paper, two novel D‐π‐D hole‐transporting materials (HTM) are reported, abbreviated as BDT‐PTZ and BDT‐POZ , which consist of 4,8‐di(hexylthio)‐benzo[1,2‐b:4,5‐b′]dithiophene (BDT) as π‐conjugated linker, and N‐(6‐bromohexyl) phenothiazine (PTZ)/N‐(6‐bromohexyl) phenoxazine (POZ) as donor units. The above two HTMs are deployed in p‐i‐n perovskite solar cells (PSCs) as dopant‐free HT layers, exhibiting excellent power conversion efficiencies of 18.26% and 19.16%, respectively. Particularly, BDT‐POZ demonstrates a superior fill factor of 81.7%, which is consistent with its more efficient hole extraction and transport verified via steady‐state/transient fluorescence spectra and space‐charge‐limited current technique. Single‐crystal X‐ray diffraction characterization implies these two molecules present diverse packing tendencies, which may account for various interfacial hole‐transport ability in PSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号