首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis of a new family of antiviral compounds, 2-methoxy-, and 2-methylthio-6-[(2'-alkylamino)ethyl]-4(3H)-pyrimidinones, has been accomplished. The activity of these agents against positive strand (rubella virus and sindbis virus) and negative strand (vesicular stomatitis virus) RNA viruses is reported. Some of these compounds are efficient and selective inhibitors of rubella virus.  相似文献   

2.
Cell cultures and chicken embryos were treated with maximum tolerant concentrations of different compounds and infected with Newcastle disease virus simultaneously or 24 hours after the compounds were introduced. The similar results were obtained in both cases. It was found that Reglone inhibited Carbaryl increased virus multiplication. The study on dynamics of virus multiplication indicates that only in the case of IPO and Carbaryl their stimulatory effect on virus at the final stage was preceded by its inhibition.  相似文献   

3.
Eight compounds were tested in vitro for virucidal and antiviral activity against poliovirus and vaccinia virus. These compounds included five quaternary ammonium salts, two bromosalicylanilides, and neomycin sulfate, an antibiotic. None of the compounds was active against poliovirus, but virucidal activity was demonstrated against vaccinia virus with three of the quarternary ammonium compounds: n-alkyl (C14, C12, C16) dimethyl benzyl ammonium chloride, di-isobutyl cresoxy ethoxy ethyl dimethyl benzyl ammonium chloride monohydrate, and n-alkyl (60% C14, 30% C16, 5% C12, 5% C18) dimethyl benzyl ammonium chlorides plus n-alkyl (50% C12, 30% C14, 17% C16, 3% C18) dimethyl ethylbenzyl ammonium chlorides. Wool blanketing, wool gabardine, and cotton sheeting materials were impregnated with the first of the above virucidal compounds, and the persistence of vaccinia virus on these fabrics was compared with the persistence of the agent on nonimpregnated fabrics of the same type held at 25 C in 35 and 78% relative humidity. No virus could be recovered from the chemically treated fabrics at any time after virus exposure, whereas the virus persisted as long as 4 weeks on nonimpregnated materials. Viable vaccinia virus was also found to persist less than 1 day on a cotton fabric finished with a wash-and-wear modified triazone resin. Poliovirus persisted less than 5 days on this wash-and-wear fabric.  相似文献   

4.
In order to obtain new, cluster-forming antibiotic compounds, teicoplanin pseudoaglycone derivatives containing two lipophilic n-octyl chains have been synthesized. The compounds proved to be poor antibacterials, but, surprisingly, they exhibited potent anti-influenza virus activity against influenza A strains. This antiviral action was related to inhibition of the binding interaction between the virus and the host cell. Related analogs bearing methyl substituents in lieu of the octyl chains, displayed no anti-influenza virus activity. Hence, an interaction between the active, dually n-octylated compounds and the lipid bilayer of the host cell can be postulated, to explain the observed inhibition of influenza virus attachment.  相似文献   

5.
The in vivo anti-influenza virus and antivaccinia virus activity of 156 biologically active compounds was determined. One of two criteria was used for evaluating activity against the influenza virus. The criteria were increase in survivor number and mean survival time, and reduction in virus-induced lung consolidation in treated, infected Swiss mice. Increase in survivor number and mean survival time were the criteria for evaluation of antivaccinia virus activity. Several drug doses were tested against two virus concentrations to demonstrate antiviral activity more clearly. Two compounds were considered significantly active against the influenza virus: DL-noformicin (NSC 72942) and amantadine hydrochloride (NSC 83653). Eleven compounds had reproducible activity against vaccinia virus: isatin-beta-thiosemicarbazone (NSC 721), 6-azauracil (NSC 3425), 9-alpha-fluoro-2alpha-methylhydrocortisone 21-acetate (NSC 12601), 5-[bis(2-chloroethyl)amino]uracil (NSC 34462), 5-iodo-2'-deoxyuridine (NSC 39661), streptonigrin (NSC 45383), N-methylisatin beta-thiosemicarbazone (NSC 69811), cytovirin (NSC 91770), 9-beta-D-arabinofuranosyladenine (NSC 404241), and 5-(mercaptomethyl)uracil (NSC 529351).  相似文献   

6.
A microwave-assisted three-component one-pot cyclocondensation method was applied for the synthesis of novel N-(1-thia-4-azaspiro[4.5]decan-4-yl)carboxamide compounds carrying an adamantyl moiety. The structures of the compounds were confirmed by spectral and elemental analysis. All compounds were evaluated for antiviral activity against influenza A (H1N1 and H3N2) and influenza B virus in MDCK cell cultures. The compounds displayed a confined structure-activity relationship. The N-(2,8-dimethyl-3-oxo-1-thia-4-azaspiro[4.5]dec-4-yl)adamantane-1-carboxamide 3b was the most potent inhibitor [antiviral EC50: 1.4 μM against influenza A/H3N2 virus]. Its strong inhibitory effect in a virus hemolysis assay supports that 3b acts as an influenza virus fusion inhibitor by preventing the conformational change of the influenza virus hemagglutinin at low pH.  相似文献   

7.
West Nile virus (WNV) has spread throughout the United States and Canada and now annually causes a clinical spectrum of human disease ranging from a self-limiting acute febrile illness to acute flaccid paralysis and lethal encephalitis. No therapy or vaccine is currently approved for use in humans. Using high-throughput screening assays that included a luciferase expressing WNV subgenomic replicon and an NS1 capture enzyme-linked immunosorbent assay, we evaluated a chemical library of over 80,000 compounds for their capacity to inhibit WNV replication. We identified 10 compounds with strong inhibitory activity against genetically diverse WNV and Kunjin virus isolates. Many of the inhibitory compounds belonged to a chemical family of secondary sulfonamides and have not been described previously to inhibit WNV or other related or unrelated viruses. Several of these compounds inhibited WNV infection in the submicromolar range, had selectivity indices of greater than 10, and inhibited replication of other flaviviruses, including dengue and yellow fever viruses. One of the most promising compounds, AP30451, specifically blocked translation of a yellow fever virus replicon but not a Sindbis virus replicon or an internal ribosome entry site containing mRNA. Overall, these compounds comprise a novel class of promising inhibitors for therapy against WNV and other flavivirus infections in humans.  相似文献   

8.
Several compounds that specifically inhibited replication of the H1 and H2 subtypes of influenza virus type A were identified by screening a chemical library for antiviral activity. In single-cycle infections, the compounds inhibited virus-specific protein synthesis when added before or immediately after infection but were ineffective when added 30 min later, suggesting that an uncoating step was blocked. Sequencing of hemagglutinin (HA) genes of several independent mutant viruses resistant to the compounds revealed single amino acid changes that clustered in the stem region of the HA trimer in and near the HA2 fusion peptide. One of the compounds, an N-substituted piperidine, could be docked in a pocket in this region by computer-assisted molecular modeling. This compound blocked the fusogenic activity of HA, as evidenced by its inhibition of low-pH-induced cell-cell fusion in infected cell monolayers. An analog which was more effective than the parent compound in inhibiting virus replication was synthesized. It was also more effective in blocking other manifestations of the low-pH-induced conformational change in HA, including virus inactivation, virus-induced hemolysis of erythrocytes, and susceptibility of the HA to proteolytic degradation. Both compounds inhibited viral protein synthesis and replication more effectively in cells infected with a virus mutated in its M2 protein than with wild-type virus. The possible functional relationship between M2 and HA suggested by these results is discussed.  相似文献   

9.
New small molecule inhibitors of HCV were discovered by screening a small library of indoline alkaloid-type compounds. An automated assay format was employed which allowed identification of dimerization inhibitors of core, the capsid protein of the virus. These compounds were subsequently shown to block production of infectious virus in hepatoma cells.  相似文献   

10.
Two click chemistry-derived focused libraries based on the benz[d]isothiazol-3(2H)-one scaffold were synthesized and screened against Dengue virus and West Nile virus NS2B-NS3 proteases. Several compounds (4l, 7j-n) displayed noteworthy inhibitory activity toward Dengue virus NS2B-NS3 protease in the absence and presence of added detergent. These compounds could potentially serve as a launching pad for a hit-to-lead optimization campaign.  相似文献   

11.
It has been proposed that the pathogenicity of the influenza and Sendai virus is primarily determined by host cellular proteases that activate viral infectivity. We isolated trypsin-type serine proteases from rat lungs, candidates for the processing proteases of viral envelope glycoproteins, such as tryptase Clara localized in the Clara cells of the bronchial epithelium and mini-plasmin. These enzymes specifically cleave the precursor of fusion glycoprotein HA of influenza virus at Arg325, and the F0 of Sendai virus at Arg116 in the consensus cleavage motif, Gln(Glu)-X-Arg, resulting in the induction of infectivity of these viruses. Proteolytic activation of viruses by these enzymes occurs extracellularly, probably on the surface and/or in the lumen of the respiratory tract. On the other hand, we isolated two compounds from human bronchial lavage, which inhibit the activity of tryptase Clara. One was a mucus protease inhibitor and the other was a pulmonary surfactant. These compounds inhibited multiple cycles of virus replication in vitro and in vivo, but did not themselves affect the hemagglutination and the infectivity of the virus. Administration of these compounds in the airway may be useful for preventing and treating infection with influenza virus and Sendai virus.  相似文献   

12.
Basic solutions of beef extract and casein were able to elute poliovirus adsorbed to four membrane filters with different chemical compositions. Hydrolyzed protein and individual amino acids were able to elute virus adsorbed to certain filters but were unable to elute virus adsorbed to other filters efficiently. A solution of 4 M urea buffered at pH 9 with 0.05 M lysine was able to elute greater than 60% of the virus adsorbed to each of the filters tested. Certain solutions of amino acids were capable of eluting virus adsorbed to one filter but permitted adsorption of virus to another filter with a different chemical composition. Acidic amino acids could interfere with elution of virus from membrane filters. Aromatic compounds with an amino group attached to the ring were good eluents for virus adsorbed to epoxy-fiberglass membrane filters. In contrast, aromatic compounds with other substituents were generally poor eluents.  相似文献   

13.
l-(α-carboxyalkyl)-4,5-dimethyl imidazol-3-oxides were tested as D forms, L forms and racements to their antiviral activity to red clover mottle virus (RCMV) and alfalfa mosaic virus (AMV) in systemically infected host plants. A high enantioselective activity of antiphytoviral compounds was detected. While the D forms reduce the virus content by more than 90 %, the L forms do no show any antiviral activity. With a virus-inhibiting activity of 40 to 50 %, the racemates are in between these two forms and similar to Virazole. The optimal effective dose is 10–2 mol × 1–1 for the D forms. Reduced virus concentrations were observed in the systemically infected hosts more than six weeks after application of the compounds. The growth reduction of pea plants caused by the virus infection could be partially abolished by the viral inhibiting activity of the compounds.  相似文献   

14.
Some cyclic and acyclic nucleosides of thieno[2,3-d]-pyrimidine derivatives were synthesized via the reaction of compounds 1 and 2 or 3 and 4 with 2-chloroethyl methyl ether or 2,3,4, 6-tetra-O-acetyl-alpha-D-glucopyranosyl bromide. Nucleosides 9, 10, 15, and 16 were tested as antiviral agents against herpes simplex virus type-1 (HSV-1) and hepatitis-A virus (HAV). Compound 15 showed the highest effect on HSV-1 than the other three compounds, while the four tested compounds did not show any activity against HAV.  相似文献   

15.
A novel series of tyrosine-derived HIV protease inhibitors was synthesized and evaluated for in vitro antiviral activity against wild-type virus and two protease inhibitor-resistant viruses. All of the compounds had wild-type antiviral activities that were similar to or greater than several currently marketed HIV protease inhibitors. In addition, a number of compounds in this series were more potent against the drug-resistant mutant viruses than they were against wild-type virus.  相似文献   

16.
Twenty kinds of disinfectants were examined for ability to inactivate variola virus. Cytopathic effect and plaque formation on monolayer cultures of an established monkey kidney cell line were used as indicators of virus inactivation. A micromethod using microplate cultures, and not requiring a CO2 incubator, was adopted. The procedures were straightforward, showing good reproducibility. Among the compounds tested, several were found to be superior because of the minimum concentrations required for complete inactivation of virus. The purified viruses were shown to be more sensitive to the compounds than were the crude samples. The virus inactivation kinetics curves were determined by plaque counting. The usefulness of this method for quantitative analysis of disinfecting effect is suggested.  相似文献   

17.
Twenty kinds of disinfectants were examined for ability to inactivate variola virus. Cytopathic effect and plaque formation on monolayer cultures of an established monkey kidney cell line were used as indicators of virus inactivation. A micromethod using microplate cultures, and not requiring a CO2 incubator, was adopted. The procedures were straightforward, showing good reproducibility. Among the compounds tested, several were found to be superior because of the minimum concentrations required for complete inactivation of virus. The purified viruses were shown to be more sensitive to the compounds than were the crude samples. The virus inactivation kinetics curves were determined by plaque counting. The usefulness of this method for quantitative analysis of disinfecting effect is suggested.  相似文献   

18.
Selected cationic and anionic surface-active compounds were tested to determine their virucidal effect on the foot-and-mouth disease virus, type O, strain M11, propagated in primary calf kidney cells. The chemical inactivation of the virus was tested with 0.5, 1.0, 2.0, and 5.0% concentrations of the selected compounds. Virus controls with pH adjusted to cover the expected range of the mixtures of the chemicals and virus were also tested. The absence of virus from the mixtures of chemical and virus after reaction at 28 C for 2 hr was assayed by inoculating suckling mice with the mixtures. One cationic compound, alkyl methyl isoquinilinium chloride, showed considerable antiviral activity due largely to pH effect. The use of the surface-active agents investigated in this study, in the presence of organic material, would not be recommended as virucides.  相似文献   

19.
There are no specific approved drugs or vaccines for the treatment or prevention of infectious dengue virus and there are very few compounds known that inhibit the replication of this virus. This letter describes the concise synthesis of two uracil-based multifunctional compounds. One of these compounds (1) has strong activity against dengue virus. It also exhibits low activity against a few other RNA viruses, but is highly active against yellow fever virus, a related flavivirus. It is likely that the mechanism of action of the antiviral activity of this compound is through its inhibition of the enzyme, inosine monophosphate dehydrogenase (IMPDH). Molecular modeling studies reveal that the compound can have specific hydrogen bonding interactions with a number of amino acids in the active site of IMPDH, a stacking interaction with the bound natural substrate, IMP, and the ability to interfere with the binding of NAD+ with IMPDH, prior to the hydration step.  相似文献   

20.
Human immunodeficiency virus type 1 nucleocapsid protein is a major structural component of the virion core and a key factor involved in proviral DNA synthesis and virus formation. 2,2'-Dithiobenzamides (DIBA-1) and related compounds that are inhibitors of NCp7 are thought to eject zinc ions from NCp7 zinc fingers, inhibiting the maturation of virion proteins. Here, we show that the presence of DIBA-1 at the time of virus formation causes morphological malformations of the virus and reduces proviral DNA synthesis. Thus, it seems that DIBA-1 is responsible for a "core-freezing effect," as shown by electron microscopy analyses. DIBA-1 can also directly interfere with the fate of the newly made proviral DNA in a manner independent of its effects on virion core formation. These data strongly suggest that nucleocapsid protein is a prime target for new compounds aimed at inhibiting human immunodeficiency virus and other retroviruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号