首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract The gene encoding the Rhodopseudomonas viridis cytochrome c 2 (cycA) has been introduced on a broad host range vector into Paracoccus denitrificans , leading to high-level expression of the holo-cytochrome with the heme moiety covalently attached to the apoprotein. The cytochrome was demonstrated to reside in the periplasmic space of the host cell. In contrast to R. viridis , aerobic rather than anaerobic growth conditions led to higher production levels of the holo-cytochrome in P. denitrificans . This heterologous expression system provides a suitable genetic background for the functional expression and mutagenesis of polypeptides involved in bacterial photosynthesis, offering the possibility of detailed structural and functional investigation.  相似文献   

2.
Abstract Two mutant strains, M35 and M89, were obtained by UV irradiation from a wild-type Bacillus subtilis producing iturin and surfactin. Sporulation and surfactin production were similar in both mutants and in the parent strain, while the iturin production of M35 was 300-fold less than that of the wild-type strain; M89 did not produce any iturin. The analysis of the incorporation of sodium [1-14C]acetate into cellular lipids and lipopeptides showed that M89 still synthesized β-amino fatty acids, the lipid moiety of iturin.  相似文献   

3.
The enzymes dolichol phosphate glucose synthase and dolichol phosphate mannose synthase (DPMS), which catalyze essential steps in glycoprotein biosynthesis, were solubilized and partially characterized in Candida albicans. Sequential incubation of a mixed membrane fraction with increasing concentrations of Nonidet P-40 released a soluble fraction that transferred glucose from UDP-Glc to dolichol phosphate glucose and minor amounts of glucoproteins in the absence of exogenous dolichol phosphate. Studies with the soluble fraction revealed that some properties were different from those previously determined for the membrane-bound enzyme. Accordingly, the soluble enzyme exhibited a twofold higher affinity for UDP-Glc and a sixfold higher affinity over the competitive inhibitor UMP, and the transfer reaction was fourfold more sensitive to inhibition by amphomycin. On the other hand, a previously described protocol for the solubilization of mannosyl transferases that rendered a fraction exhibiting both DPMS and protein mannosyl transferase (PMT) activities operating in a functionally coupled reaction was modified by increasing the concentration of Nonidet P-40. This resulted in a solubilized preparation enriched with DPMS and nearly free of PMT activity which remained membrane bound. DPMS solubilized in this manner exhibited an absolute dependence on exogenous Dol-P. Uncoupling of these enzyme activities was a fundamental prerequisite for future individual analysis of these transferases.  相似文献   

4.
A mixed membrane fraction isolated from C. albicans yeast cells catalyzed the transfer of glucose from UDP-Glc into three classes of endogenous acceptors: glucolipid, glycoprotein and lipid-linked oligosaccharides. About 80 of the total radioactivity transferred into these products corresponded to the glucolipid which was identified as dolichol phosphate glucose by several criteria. The remainder was detected in about equal proportions in the other two fractions. Conditions that stimulated or inhibited glucolipid synthesis did not affect the extent of glycoprotein labeling. The synthesis of dolichol phosphate glucose exhibited a Kmof 104 M UDP-Glc and was stimulated by Mg2+but not by Mn2+or Ca2+. The latter cations were, however, better stimulators of glycoprotein labeling than Mg2+. Most nucleotides strongly inhibited the synthesis of dolichol phosphate glucose, UMP being a competitive inhibitor with a Kiof 100 M. The dolichol phosphate glucose synthase reaction was reversed about 57 by 0.62 mM UDP but not by UMP.  相似文献   

5.
The effect of glutaraldehyde on the uptake of L-alanine, and subsequent germination, in spores of Bacillus subtilis NCTC 8236 was examined. Germination was induced by single amino acids, D-glucose and phosphate buffer at 37 degrees C. L-alanine was the best germinant of all amino acids tested. Pretreatment of spores with low concentrations of acid and alkaline glutaraldehyde inhibited subsequent germination, complete inhibition being observed at concentrations of 0.1% (w/v). This concentration also prevented the loss of heat resistance of spores placed in germination medium and exposed to 75 degrees C. Radioactive studies indicated that maximum uptake of L-alanine occurred after ca 30 min at 37 degrees C. Only 1.2% of available L-alanine was taken up during germination. Pretreatment of spores with glutaraldehyde did not interfere with L-alanine uptake at aldehyde concentrations up to 0.5% (w/v). However, this was significantly reduced at a glutaraldehyde concentration of 1.0% (w/v). Minimal differences were observed between acid and alkaline forms of the aldehyde. The results are discussed in terms of the mode of action of glutaraldehyde.  相似文献   

6.
Uptake of radiolabelled chlorhexidine gluconate (14C-CHG) to Saccharomyces cerevisiae, Candida albicans and C. glabrata was very rapid and near maximal within 30 s. The organism, S. cerevisiae , most sensitive to the lethal action of chlorhexidine, took up significantly more biocide than the other organisms. Cells from cultures of different ages took up different amounts of 14C-CHG.  相似文献   

7.
Following incubation with ATP and a cAMP-dependent protein kinase under optimal conditions of lipid acceptor, phospholipid and metal ion requirements, the transfer activity of partially purified dolichol phosphate mannose synthase (DPMS) increased about 60% and this activation correlated with a 50% increase in V(max) with no alteration in the apparent K(m) for GDP-Manose. Phosphorylation with [gamma-(32)P]ATP resulted in the labeling of several polypeptides, one of which exhibited the molecular weight of the enzyme (30 kDa) and was also recognized using a specific anti-DPMS monoclonal antibody. This and the fact that the phosphate label could be removed by an alkaline phosphatase indicate that Candida DPMS may be regulated by phosphorylation-dephosphorylation, a mechanism that has been proposed for the enzyme in other organisms.  相似文献   

8.
Abstract A transient rise in the PM-ATPase activity was observed at the time of commitment of Candida albicans cells to either bud or hyphal formation. However, the changes in PM-ATPase activity did not correlate with the level of enzyme protein detected by ELISA. It was found to be fairly constant during differentiation, implying that there was no de novo synthesis of the protein. Post-translational modification(s) of enzyme protein is suggested to account for variation in PM-ATPase activity during morphogenesis.  相似文献   

9.
Following incubation with ATP and a cAMP-dependent protein kinase under optimal conditions of lipid acceptor, phospholipid and metal ion requirements, the transfer activity of partially purified dolichol phosphate mannose synthase (DPMS) increased about 60% and this activation correlated with a 50% increase in Vmax with no alteration in the apparent Km for GDP-Manose. Phosphorylation with [γ-32P]ATP resulted in the labeling of several polypeptides, one of which exhibited the molecular weight of the enzyme (30 kDa) and was also recognized using a specific anti-DPMS monoclonal antibody. This and the fact that the phosphate label could be removed by an alkaline phosphatase indicate that Candida DPMS may be regulated by phosphorylation–dephosphorylation, a mechanism that has been proposed for the enzyme in other organisms.  相似文献   

10.
Abstract The in situ method for determination of reduction levels of cytochromes b and c pools during steady-state growth (Pronk et al., Anal. Biochem. 214, 149–155, 1993) was applied to chemostat cultures of the wild-type, a cytochrome aa3 single mutant and a cytochrome aa3/d double mutant of Azorhizobium caulinodans . For growth with NH4+ as the N source, the results indicate that (i) the aa3 mutant strains growing at a dissolved O2 tension of 0.5% possess an active alternative cytochrome c oxidase, which is hardly present during fully aerobic growth, and assuming that (i) also pertains to the wild-type, (ii) the wild-type uses cytochrome aa3 under fully aerobic conditions. For growth with N2 as the N source, it was found that the aa3 mutant strains growing at dissolved O2 tensions ranging from 0.5 to 3.0% also contain an active alternative cytochrome c oxidase.  相似文献   

11.
The biosynthesis of one riboflavin (vitamin B2) molecule requires one molecule of GTP and two molecules of ribulose 5-phosphate. The imidazole ring of GTP is hydrolytically opened, yielding a 2,5-diaminopyrimidine that is converted to 5-amino-6-ribitylamino-2,4(1 H ,3 H )-pyrimidinedione by a sequence of deamination, side chain reduction and dephosphorylation. Condensation of 5-amino-6-ribitylamino-2,4(1 H ,3 H )-pyrimidinedione with 3,4-dihydroxy-2-butanone 4-phosphate obtained from ribulose 5-phosphate yields 6,7-dimethyl-8-ribityllumazine. Dismutation of the lumazine derivative yields riboflavin and 5-amino-6-ribitylamino-2,4(1 H ,3 H )-pyrimidinedione, which is recycled in the biosynthetic pathway. Characteristic architectural features of most enzymes involved in the plant riboflavin pathway resemble those of eubacteria, whereas the similarities between plants and yeasts are less pronounced. Moreover, riboflavin biosynthesis in plants proceeds by the same reaction steps as in eubacteria, whereas fungi use a somewhat different pathway.  相似文献   

12.
The effects of EDTA, EGTA, SKF 525-A (a selective inhibitor of cytochrome P-450) and rotenone were studied in betacyanin induction by 6 h red and 5 min far-red light, using etiolated, three-day-old Amaranthus caudatus L. half-seedlings. With 0.1 m M EDTA, EGTA and rotenone, and with 10 μ M SKF 525-A, mainly the far-red reversible betacyanin induction by red light was suppressed. Only in 0.1 m M rotenone was about 50% of that effect compensated by an increased far-red irreversible betacyanin induction. An unspecific inhibition was obtained with 0.1 m M SKF 525-A in both control and illuminated plants.
These results are consistent with the view that red light, but not far-red, causes Ca2+ efflux from both mitochondria and cytoplasm, whereas Ca2+ uptake is indicated mainly after illumination. The resulting switch in the coupling of the mitochondrial electron transport to a Ca2+ dependent one in cytochrome P-450 system via respiratory complex 1, appears to be responsible for the far-red reversibility. However, the bulk of the high irradiance reaction seems to be related to another secondary messenger, alternative to Ca2+.  相似文献   

13.
Abstract A cytochrome aa3 terminal oxidase was isolated from protoplast membrane vesicles of Micrococcus luteus grown under aerobic conditions. The purified complex showed similarities to cytochrome c oxidase (EC 1.9.3.1) of the electron transport chain of mitochondria and many prokaryotes. The enzyme was solubilized by subsequent treatment with the detergents CHAPS and n-dodecyl-β-d-maltoside and purified by ion-exchange chromatography using poly-L-lysine agarose and TMAE-fractogel-650 (S) columns, followed by hydroxyapatite chromatography. The purified complex is composed of two major subunits with apparent molecular masses of 54 and 32 kDa. After purification the isolated enzyme contains 12.1 nmol of heme A (mg protein)−1 and exhibits absorption maxima at 424 nm and 598 nm in the oxidized state and at 442 nm and 599 nm in the reduced state. The CO-difference spectrum shows peaks at 428 and 590 nm which is indicative of heme a 3, furthermore oxygen consumption was found to be sensitive to cyanide.  相似文献   

14.
Abstract Two new c -type cytochromes have been purified from cell membranes of the acidophilic Thiobacillus ferrooxidans . In contrast to a soluble cytochrome c with molecular mass of 14 kDa reported earlier, a membrane-bound cytochrome c with a mass of 21 kDa was solubilized with octylthioglucoside and purified to homogeneity. In addition, a high molecular mass c -type cytochrome (68 kDa) was also solubilized and purified using Triton X-100 as a detergent. Both acid-stable species are partially released during osmotic shock and chloroform treatment of the bacteria; they are integral components in the respiratory chain donating electrons to the terminal cytochrome oxidase.  相似文献   

15.
16.
17.
Incubation of a mixed membrane fraction isolated from C. albicans yeast cells with Nonidet P-40 at a detergent/protein ratio as low of 0.025 (0.016–0.019%, w/v) yielded a soluble fraction that catalyzed the transfer of mannose from GDP-[14C] Man into dolichol phosphate mannose and from this intermediate into mannoproteins. Over 95% of the sugar in mannoproteins was O-linked as judged from its release after -elimination. Mannose was identified as the sole product after this treatment. Transfer activity did not depend on exogenous lipid acceptor indicating that the latter was solubilized along with the mannosyl transferases. Synthesis of mannolipid and mannoproteins occurred at optima temperatures of 20 °C and 37 °C, respectively, and at a pH in the range of 7.5-9.5. Mannosyl transfer into the mannolipid was stimulated by Mg2+and inhibited by Ca2+and Mn2+whereas mannoprotein labeling was stimulated by Mn2+and to a lower extent by Mg2+. When measured as a function of substrate concentration, the synthesis of the mannolipid was a nearly linear function of GDP-Man concentration in the range of 5 to 32 M whereas protein mannosylation exhibited hyperbolic kinetics with saturation reached at about 10 M. The solubilized preparation was able to utilize an exogenous source of mannolipid as sugar donor for protein mannosylation. Dinucleotides and, to a higher extent trinucleotides, inhibited mannosyl transfer into the mannolipid and hence into mannoproteins.  相似文献   

18.
19.
20.
Newly formed prostaglandins (PGs), which are assumed to act as modulators of afferent sensory messages, were studied in chick dorsal root ganglia (DRG) during development. [1-14C]Arachidonic acid was converted by DRG homogenates from 1-week-old chickens into two major 14C-PGs: PGE2 and PGD2. The enzymatic conversion of arachidonic acid was characterized as follows: (a) Boiled preparations were inactivated; (b) synthesis of PGs was inhibited by pretreatment with aspirin or indomethacin and enhanced by esculetin, a protector of cyclooxygenase; and (c) [14C]PGE2 and [14C]PGD2 accumulation was a protein dose-dependent process. Further fractionation of crude homogenates indicated that PG endoperoxide synthetase (EC 1.14.99.1) and PGE2 synthetase (EC 5.3.99.3) were membrane-bound enzymes, whereas PGD2 synthetase (EC 5.3.99.2) was recovered in the cytosol. During development, from embryonic day 10 to day 14 after hatching, PGD2 synthetase activity remained constant; in contrast, a sharp rise in [14C]PGE2 synthesis was observed from embryonic day 14 to 18. The time curves of PGD2 and PGE2 synthetase specific activity may be related to changes taking place in the cell population of developing DRG. It is therefore suggested that arachidonic acid would be enzymatically converted early into PGD2 by maturing ganglion cells and then later into PGE2 by proliferating fibroblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号