首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 51 毫秒
1.
2.
3.
4.
5.
TGFbeta/activin/Nodal receptors activate both Smad2 and Smad3 intracellular effector proteins. The functional activities of these closely related molecules have been extensively studied in cell lines. We show both are expressed in the early mouse embryo from the blastocyst stage onwards and mediate Foxh1-dependent activation of the Nodal autoregulatory enhancer in vitro. Genetic manipulation of their expression ratios reveals that Smad3 contributes essential signals at early post-implantation stages. Thus, loss of Smad3 in the context of one wild-type copy of Smad2 results in impaired production of anterior axial mesendoderm, while selective removal of both Smad2 and Smad3 from the epiblast additionally disrupts specification of axial and paraxial mesodermal derivatives. Finally, we demonstrate that Smad2;Smad3 double homozygous mutants entirely lack mesoderm and fail to gastrulate. Collectively, these results demonstrate that dose-dependent Smad2 and Smad3 signals cooperatively mediate cell fate decisions in the early mouse embryo.  相似文献   

6.
7.
8.
The vertebrate body plan arises during gastrulation, when morphogenetic movements form the ectoderm, mesoderm, and endoderm. In zebrafish, mesoderm and endoderm derive from the marginal region of the late blastula, and cells located nearer the animal pole form the ectoderm [1]. Analysis in mouse, Xenopus, and zebrafish has demonstrated that Nodal-related proteins, a subclass of the TGF-beta superfamily, are essential for mesendoderm development [2], but previous mutational studies have not established whether Nodal-related signals control fate specification, morphogenetic movements, or survival of mesendodermal precursors. Here, we report that Nodal-related signals are required to allocate marginal cells to mesendodermal fates in the zebrafish embryo. In double mutants for the zebrafish nodal-related genes squint (sqt) and cyclops (cyc) [3] [4] [5], dorsal marginal cells adopt neural fates, whereas in wild-type embryos, cells at this position form endoderm and axial mesoderm. Involution movements characteristic of developing mesendoderm are also blocked in the absence of Nodal signaling. Because it has been proposed [6] that inhibition of Nodal-related signals promotes the development of anterior neural fates, we also examined anteroposterior organization of the neural tube in sqt;cyc mutants. Anterior trunk spinal cord is absent in sqt;cyc mutants, despite the presence of more anterior and posterior neural fates. These results demonstrate that nodal-related genes are required for the allocation of dorsal marginal cells to mesendodermal fates and for anteroposterior patterning of the neural tube.  相似文献   

9.
Dorsal root ganglia (DRGs) arise from trunk neural crest cells that emerge from the dorsal neuroepithelium and coalesce into segmental streams that migrate ventrally along the developing somites. Proper formation of DRGs involves not only normal trunk neural crest migration, but also the ability of DRG progenitors to pause at a particular target location where they can receive DRG-promoting signals. In mammalian embryos, a receptor tyrosine kinase proto-oncogene, ErbB3, is required for proper trunk neural crest migration. Here, we show that in zebrafish mutants lacking ErbB3 function, neural crest cells do not pause at the location where DRGs normally form and DRG neurons are not generated. We also show that these mutants lack trunk neural crest-derived sympathetic neurons, but that cranial neural crest-derived enteric neurons appear normal. We isolated three genes encoding neuregulins, ErbB3 ligands, and show that two neuregulins function together in zebrafish trunk neural crest cell migration and in DRG formation. Together, our results suggest that ErbB3 signaling is required for normal migration of trunk, but not cranial, neural crest cells.  相似文献   

10.
11.
12.
13.
Proteins in thermophilic organisms remain stable and function optimally at high temperatures. Owing to their important applicability in many industrial processes, such thermostable proteins have been studied extensively, and several structural factors attributed to their enhanced stability. How these factors render the emergent property of thermostability to proteins, even in situations where no significant changes occur in their three-dimensional structures in comparison to their mesophilic counter-parts, has remained an intriguing question. In this study we treat Lipase A from Bacillus subtilis and its six thermostable mutants in a unified manner and address the problem with a combined complex network-based analysis and molecular dynamic studies to find commonality in their properties. The Protein Contact Networks (PCN) of the wild-type and six mutant Lipase A structures developed at a mesoscopic scale were analyzed at global network and local node (residue) level using network parameters and community structure analysis. The comparative PCN analysis of all proteins pointed towards important role of specific residues in the enhanced thermostability. Network analysis results were corroborated with finer-scale molecular dynamics simulations at both room and high temperatures. Our results show that this combined approach at two scales can uncover small but important changes in the local conformations that add up to stabilize the protein structure in thermostable mutants, even when overall conformation differences among them are negligible. Our analysis not only supports the experimentally determined stabilizing factors, but also unveils the important role of contacts, distributed throughout the protein, that lead to thermostability. We propose that this combined mesoscopic-network and fine-grained molecular dynamics approach is a convenient and useful scheme not only to study allosteric changes leading to protein stability in the face of negligible over-all conformational changes due to mutations, but also in other molecular networks where change in function does not accompany significant change in the network structure.  相似文献   

14.
15.
16.
17.
Wingless (Wg) and other Wnt proteins play a crucial role in a number of developmental decisions in a variety of organisms. In the ventral nerve cord of the Drosophila embryo, Wg is non-autonomously required for the formation and specification of a neuronal precursor cell, NB4-2. NB4-2 gives rise to a well-studied neuronal lineage, the RP2/sib lineage. While the various components of the Wg-signaling pathway are also required for generating NB4-2, the target gene(s) of this pathway in the signal-receiving cell is not known. In this paper, we show that sloppy paired 1 and sloppy paired 2 function as the downstream targets of the Wg signaling to generate the NB4-2 cell. Thus, while the loss-of-function mutations in wg and slp have the same NB4-2 formation and specification defects, these defects in wg mutants can be rescued by expressing slp genes from a heterologous promoter. That slp genes function downstream of the Wg signaling is also indicated by the result that expression of slp genes is lost from the neuroectoderm in wg mutants and that ectopic expression of wg induces ectopic expression of slp. Finally, previous results show that Gooseberry (Gsb) prevents Wg from specifying NB4-2 identity to the wg-expressing NB5-3. In this paper, we also show that gsb interacts with slp and prevents Slp from specifying NB4-2 identity. Overexpression of slp overcomes this antagonistic interaction and respecifies NB5-3 as NB4-2. This respecification, however, can be suppressed by a simultaneous overexpression of gsb at high levels. This mechanism appears to be responsible for specifying NB5-3 identity to a row 5 neuroblast and preventing Wg from specifying NB4-2 identity to that cell.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号