首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Characterization of the Escherichia coli X-ray endonuclease, endonuclease III   总被引:34,自引:0,他引:34  
H L Katcher  S S Wallace 《Biochemistry》1983,22(17):4071-4081
The X-ray endonuclease endonuclease III of Escherichia coli has been purified to apparent homogeneity by using the criterion of sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The most purified fraction shows endonucleolytic activity against apurinic and apyrimidinic (AP) sites and a dose-dependent response to DNA that has been X irradiated, UV irradiated, or treated with OsO4. The endonuclease also nicks OsO4-treated DNA that has been subsequently treated with alkali to produce fragmented thymine residues and DNA treated with potassium permanganate. The enzyme does not incise the alkali-labile sites present in DNA X irradiated in vitro in the presence of hydroxyl radical scavengers. The most purified fractions exhibit two distinct activities, an AP endonuclease that cleaves on the 3' side of the damage leaving a 3'-OH and a 5'-PO4 and a DNA N-glycosylase that recognizes at least two substrates, thymine glycol residues and urea residues. The glycosylase activity is sensitive to N-ethylmaleimide while the AP endonuclease is not.  相似文献   

2.
An endonuclease which is active upon DNA exposed to ultraviolet light at a photoproduct other than thymine dimers has been extensively purified from Escherichia coli. The small (2.7 S) enzyme is active in the presence of EDTA, has a neutral pH optimum, and is inhibited by tRNA and 1 M NaCl. It has no detectable exonuclease, DNA-N-glycosidase, or ribonuclease activities. The enzyme also nicks duplex DNA exposed to OsO4, x-rays, or acid, but it does not act upon undamaged DNA or irradiated single-stranded DNA. The majority of sites of action in DNA exposed to ultraviolet light or OsO4 appear to be alkali-stable, but those in DNA exposed to x-rays or acid are not. The incisions created by the endonuclease contain 5'-phosphate termini. The enzyme is possibly the same as E. coli endonuclease III described by Radman (Radman, M. (1976) J. Biol. Chem. 251, 1438-1445), but it is distinguishable from the other endodeoxyribonucleases described from that organism.  相似文献   

3.
An endonuclease associated with the core of Friend leukemia virus (FLV) has been purified more than 10(3)-fold by ion exchange chromatography and gel filtration. Its molecular weight was determined by gel filtration to be about 40,000. Divalent cations were required for the endonuclease to function and KCl concentrations above 50 mM inhibited the enzyme activity. In the presence of Mg++ the purified enzyme nicked preferentially supercoiled circular DNA duplexes and in most of these molecules only one single-stranded nick was introduced per strand. The regions into which the nick could be introduced appeared to be randomly distributed on the circular molecule. When Mn++ was substituted for Mg++ the number of nicks introduced into DNA by the purified enzyme was greatly increased, and both relaxed circular and linear DNA duplexes were nicked as well as supercoiled circular DNA duplexes. Prior to its purification, however, in the presence of Mn++ the endonuclease activity in the virus extract was able to differentiate between circular and linear DNA duplexes, since both supercoiled and relaxed circular duplexes were nicked much more readily than linear duplexes. Single-stranded DNA functioned poorly as a substrate for the purified enzyme.  相似文献   

4.
Human nuclease Artemis belongs to the metallo-beta-lactamase protein family. It acquires double-stranded DNA endonuclease activity in the presence of DNA-PKcs. This double-stranded DNA endonuclease activity is critical for opening DNA hairpins in V(D)J recombination and is thought to be important for processing overhangs during the nonhomologous DNA end joining (NHEJ) process. Here we show that purified human Artemis exhibits single-stranded DNA endonuclease activity. This activity is proportional to the amount of highly purified Artemis from a gel filtration column. The activity is stimulated by DNA-PKcs and modulated by purified antibodies raised against Artemis. Moreover, the divalent cation-dependence and sequence-dependence of this single-stranded endonuclease activity is the same as the double-stranded DNA endonuclease activity of Artemis:DNA-PKcs. These findings further expand the range of DNA substrates upon which Artemis and Artemis:DNA-PKcs can act. The findings are discussed in the context of NHEJ.  相似文献   

5.
Five chromatographically distinct apurinic endonucleases (D1, D2, D3, D4, and E) were purified from Saccharomyces cerevisiae 234, 122, 1,000, 4,550, and 5,490-fold, respectively. All appeared to be class II apurinic endonucleases and were not contaminated with exonuclease or nonspecific endonuclease activities under the reaction conditions used. All had similar pH optima, but endonucleases D4 and E showed higher salt requirements and endonuclease D4 had a lower Mg2+ requirement for optimal activity than the other endonucleases. Endonuclease D4 also nicked OsO4-treated DNA. The molecular weights of the apurinic endonucleases as determined by glycerol gradient sedimentation analysis were 37,000, 49,000, and 10,000, for endonucleases E, D4, and D2, respectively. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of samples of radioiodinated endonuclease E showed the presence of two proteins.  相似文献   

6.
An apurinic/apyrimidinic (AP) endonuclease (E.C.3.1.25.2) has been purified 1100 fold to apparent homogeneity from calf thymus by a series of ion exchange, gel filtration and hydrophobic interaction chromatographies. The purified AP endonuclease is a monomeric protein with an apparent molecular weight on SDS-PAGE of 37,000. On gel filtration the protein behaves as a protein of apparent molecular weight 40,000. DNA cleavage by this AP endonuclease is dependent on the presence of AP sites in the DNA. DNA cleavage requires the divalent cation Mg2+ and has a broad pH optimum of 7.5-9.0. Maximal rates of catalysis occur at NaCl or KCl concentrations of 25-50 mM. The amino acid composition and the amino-terminal amino acid sequence for this AP endonuclease are presented. Comparison of the properties of this AP endonuclease purified from calf thymus with the reported properties of the human AP endonuclease purified from HeLa cells or placenta indicate that the properties of such an AP endonuclease are highly conserved in these two mammalian species.  相似文献   

7.
W F Burke  J Spizizen 《Biochemistry》1977,16(3):403-410
A major endodeoxyribonulcease was isolated from a mutant of the transformable Bacillus subtilis 168. The magnesium-dependent endonuclease was purified approximately 750-fold to electrophoretic homogeneity. The enzyme had a molecular weight of about 31 000, as determined by gel filtration and polyacrylamide gel electrophoresis. The protein appears to be composed of two subunits. The nuclease was dependent on magnesium or maganese ions for hydrolytic activity. The purified nuclease degraded DNA from several species of Bacillus, as well as Escherichia coli DNA, alkylated, depurinated, and thymine-dimer containing B. subtilis DNA, and hydroxymethyluracil-containing phage DNA. The enzyme also hydrolyzed single-stranded DNA, although native DNA was the preferred substrate. However, the nuclease was unable to degrade ribosomal RNA. The cleavage products of the DNA hydrolysis have 5'-phosphate and 3'-hydroxyl ends. The enzyme could be activated in crude extracts by heat treatment or treatment with guanidine hydrochloride. The nuclease activity was inhibited by phosphate and by high concentrations of NaCl. A possible function for this endonuclease in bacterial transformation is discussed.  相似文献   

8.
Bacillus subtilis Marburg TI (thy,trpC2) has at least four endonuclease activities as assayed by measuring the conversion of single-stranded circular f1 DNA to the linear form by agarose gel electrophoresis. One of them, which is specific for single-stranded DNA (named endonuclease MII), was purified about 320 times by two chromatographic steps and gel filtration, thereby eliminating exonuclease and phosphomonoesterase activities. This activity requires divalent cations but does not require ATP. The molecular weight estimated by gel filtration was about 57,000 daltons. The cleavage products have 5'-phosphoryl termini. At low concentrations, double-stranded DNA is not split to any detectable extent. At high concentrations, however, double-stranded superhelical DNA is attacked to yield open-circular and linear DNA's. The activity of the enzyme towards single-stranded circular DNA relative to that towards double-stranded linear DNA was calculated to be approximately 5,000:1 by comparing the initial rates of introducing single-strand breaks into the DNA's.  相似文献   

9.
A site-specific endonuclease (Endo.Sce I) which caused double-strand scission of DNA was highly purified from a eukaryote, Saccharomyces cerevisiae IAM4274. The molecular weight of the active form of Endo.Sce I was estimated to be 120,000 and 110,000 by sedimentation analysis on a glycerol density gradient and gel filtration on Ultrogel AcA34, respectively. Analysis of the fractions from the last column chromatography by polyacrylamide gel-electrophoresis in the presence of sodium dodecyl sulfate and by an assay of the endonucleolytic activities suggested that Endo.Sce I consists of two non-identical subunits with molecular weights of 75,000 and 50,000. Unlike restriction endonucleases, Endo.Sce I was active on chromosomal DNA of the cells which produced Endo.Sce I. Single-stranded DNA was not cleaved by Endo.Sce I, but inhibited the endonucleolytic activity of the enzyme on double-stranded DNA. The endonucleolytic activity of Endo.Sce I required the magnesium ions (Mg2+) as a sole cofactor; Mg2+ could not be replaced by Ca2+ or Zn2+. When Mg2+ was replaced by manganese ions (Mn2+), extensively purified Endo.Sce I cleaved double-stranded DNA at many other sites in addition to the sites at which DNA was cleaved in the presence of Mg2+. Experiments indicated that this is not the activation of contaminating endonuclease in the preparation of Endo.Sce I, but the result of relaxation in the site-specificity of cleavage.  相似文献   

10.
An endonuclease specific for apurinic sites in double stranded DNA has been purified 373-fold from the nuclei of mouse plasmacytoma cells (line MPC-11). The enzyme is free of any detectable amounts of aspecific nucleases. The enzyme does not act on methylated or OsO4-treated DNA. However, high doses of UV-light and gamma-rays render the DNA slightly susceptible to endonucleolytic attack, which is believed to be due to depurination of depyrimidination caused by the treatment. The molecular weight of the enzyme is determined to be 28,000 and its apparent Km of the purified enzyme is calculated to be 2.7 nM apurinic sites. The activity is not absolutely dependent upon the presence of Mg2+ in the assay mixture although metal chelating agents such as sodium citrate and EDTA abolish the activity completely. The nuclease was stimulated by moderate concentrations of potassium chloride optimizing at 50 mM, and higher concentrations inhibiting the activity. The pH optimun for the reaction was 9.5.  相似文献   

11.
The endogenous endonuclease activity of chromatin in isolated rat liver nuclei in the presence of Mn2+, Mg2+ and Ca2+ + Mg2+ was studied. The existence of a Mn2+-dependent endonuclease activity not coupled with the Ca2+, Mg2+-dependent endonuclease was demonstrated, which was weaker than the former one in isolated cell nuclei but higher than in the preparation of Ca2+, Mg2+-dependent nuclease obtained by gel filtration through Toyopearl HW 60F. The Mn2+-dependent splitting of chromatin predominantly occurs at linker DNA of distal parts of chromatin loops. A split-off of purified DNA was more universal than in the presence of Ca2+, Mg2+-dependent endonuclease; the hydrolysis rate of native and denaturated DNA appeared to be the same.  相似文献   

12.
An endonuclease, present in the microplasmodia of Physarum polycephalum, has been partially purified from isolated nuclei by DEAE-cellulose and Sephadex G-75 chromatography. 1. The endonuclease produced single-strand scissions in double-stranded DNA which resulted in the generation of 5'-phosphoryl and 3'-hydroxyl termini. No activity was observed with single-stranded DNA as substrate. 2. The pH optimum was approximately 8.5. 3. Divalent cations were essential for enzyme activity. MnCl2 and MgCl2 gave maximal activity. CaCl2, ZnCl2 or CoCl2 did not activate the enzyme. 4. The endonuclease activity was highly sensitive to monovalent cations. 5. Endonuclease activity was found in two forms after gel filtration: an activity in a homogeneous peak with a molecular weight of approx. 20 000, and an activity that had a heterogeneous molecular weight and which was isolated in a complex with DNA. A possible function of the endonuclease in DNA replication is discussed.  相似文献   

13.
The ATP-dependent deoxyribonuclease from Bacillus laterosporus has been purified to near homogeneity by a procedure involving ammonium sulfate fractionation, DEAE-cellulose chromatography, Sephadex G-150 gel filtration, DEAE-Sephadex A-25 chromatography and DNA-cellulose affinity chromatography. The purified enzyme has a molecular weight of 210,000 +/- 8,000 as determined by sucrose gradient sedimentation. It is composed of two nonidentical polypeptide chains with close molecular weights of around 110,000. The substrate preference of the pure enzyme is essentially identical with the previous result obtained with the partially purified enzyme preparation (Anai, M., Mihara, T., Yamanaka, M., Shibata, T., & Takagi, Y. (1975) J. Biochem. 78, 105-114). Thus, the enzyme degrades double-stranded DNA about 100 times faster than heat-denatured DNA in the presence of ATP. Double-stranded DNA is not degraded to any measurable extent in the absence of ATP, but the enzyme exhibits activity toward denatured DNA in the absence of ATP. Furthermore, no endonuclease activity is observed on covalently closed circular duplex DNA and open circular duplex DNA.  相似文献   

14.
Photoalkylation, the ultraviolet irradiation of DNA with isopropanol and di-tert-butylperoxide, causes a variety of base alterations. These include 8-(2-hydroxy-2-propyl)guanines, 8-(2-hydroxy-2-propyl)adenines and thymine dimers. An E. coli endonuclease against photoalkylated DNA was assayed by conversion of superhelical PM2 phage DNA to the nicked form. Enzyme activities were compared between extracts of strain BW9109 (xth-), lacking exonuclease III activity, and strain BW434 (xth-,nth-), deficient in both exonuclease III and endonuclease III. The endonuclease level in the double mutant against substrate photoalkylated DNA was under 20% of the activity in the mutant lacking only exonuclease III. Irradiation of the DNA substrate in the absence of isopropanol did not affect the activity in either strain. Analysis by polyacrylamide gel electrophoresis identified the sites of DNA cleavage by purified E. coli endonuclease III as cytosines, both in DNA irradiated at biologically significant wavelengths and in photoalkylated DNA. Neither 8-(2-hydroxy-2-propyl)purines, pyrimidine dimers, uracils nor 6-4'-(pyrimidin-2'-one)pyrimidines were substrates for the enzyme.  相似文献   

15.
A small endodeoxyribonuclease )2.3 S) that is active on single-stranded DNA has been extensively purified from Escherichia coli so as to be free of other known DNases. It has an alkaline pH optimum (9.5), requires Mg2+, and makes 3'-hydroxy and 5'-phosphate termini. The nuclease nicks duplex DNA, particularly if treated with OsO4, irradiated with ultraviolet light, or exposed to pH 5. The uracil-containing duplex DNA from the Bacillus subtilis phage PBS-2 is an especially good substrate; it is made acid-soluble by levels of the enzyme which fail to produce any acid-soluble material in other single-stranded or duplex DNAs. Neither RNA nor RNA-DNA hybrid are degraded by the enzyme. The enzyme specificity suggests that it might act at abnormal regions in DNA, so that its in vivo function could be to initiate an excision repair sequence. Its high activity on uracil-containing DNA could imply that the enzyme provides an alternative mechanism for excising uracil residues from DNA to the pathway utilizing uracil-DNA N-glycosidase. We suggest that this enzyme be designated as endonuclease V of E. coli.  相似文献   

16.
An endonuclease was purified from the cap tissues of basidiocarp of Coprinus cinereus collected at early meiotic prophase. It has an optimal activity at pH 7.0 and 37 degrees C. It is a cationic enzyme with a molecular mass of 22 kDa by gel filtration, and contains a 12-kDa and a 14-kDa peptide as revealed by SDS gel electrophoresis and Western blot analysis. An antiserum was produced in rabbits against the purified Coprinus endonuclease. The specificity of this antiserum was demonstrated in a dot-blot analysis and, more critically, in an immunoinhibition of endonuclease activity. The Coprinus endonuclease requires Mg2+ and/or Ca2+ as co-factors. Ca2+ is more efficient than Mg2+ while the effect of combining both co-factors is the highest. The Coprinus endonuclease has a substrate preference for single-strand and supercoiled DNA. It gives only single-strand nicks on supercoiled DNA at low enzyme concentration and limited time of incubation. At high enzyme concentration and/or long incubation time, double-strand fragmentation occurred. As is discussed, this endonuclease is believed to be involved in the early phase of meiotic recombination.  相似文献   

17.
A DNA repair endonuclease (redoxyendonuclease) was isolated from bakers' yeast (Saccharomyces cerevisiae). The enzyme has been purified by a series of column chromatography steps and cleaves OsO4-damaged, double-stranded DNA at sites of thymine glycol and heavily UV-irradiated DNA at sites of cytosine, thymine, and guanine photoproducts. The base specificity and mechanism of phosphodiester bond cleavage for the yeast redoxyendonuclease appear to be identical with those of Escherichia coli endonuclease III when thymine glycol containing, end-labeled DNA fragments of defined sequence are employed as substrates. Yeast redoxyendonuclease has an apparent molecular size of 38,000-42,000 daltons and is active in the absence of divalent metal cations. The identification of such an enzyme in yeast may be of value in the elucidation of the biochemical basis for radiation sensitivity in certain yeast mutants.  相似文献   

18.
Mechanism of action of Micrococcus luteus gamma-endonuclease   总被引:5,自引:0,他引:5  
Micrococcus luteus extracts contain gamma-endonuclease, a Mg2+-independent endonuclease that cleaves gamma-irradiated DNA. This enzyme has been purified approximately 1000-fold, and the purified enzyme was used to study its substrate specificity and mechanism of action. gamma-Endonuclease cleaves DNA containing either thymine glycols, urea residues, or apurinic sites but not undamaged DNA or DNA containing reduced apurinic sites. The enzyme has both N-glycosylase activity that releases thymine glycol residues from OsO4-treated DNA and an associated apurinic endonuclease activity. The location and nature of the cleavage site produced has been determined with DNA sequencing techniques. gamma-Endonuclease cleaves DNA containing thymine glycols or apurinic sites immediately 3' to the damaged or missing base. Cleavage results in a 5'-phosphate terminus and a 3' baseless sugar residue. Cleavage sites can be converted to primers for DNA polymerase I by subsequent treatment with Escherichia coli exonuclease III. The mechanism of action of gamma-endonuclease and its substrate specificity are very similar to those identified for E. coli endonuclease III.  相似文献   

19.
gamma-Endonuclease Y, an enzyme that hydrolyses phosphodiester bonds at alkalistable lesions in gamma-irradiated (N2, tris buffer) DNA, has been partially purified from Micrococcus luteus. The enzyme has a molecular weight of about 19 000, induces single-strand breaks with 3'OH-5'PO4 termini and contains endonuclease activity towards DNA treated with 7-bromomethylbenz(a)anthracene. gamma-Endonuclease Y induces breaks in OsO4-treated poly(dA-dT) and apparently is specific towards gamma-ray-induced base lesions of the t' type. The complete excision repair of gamma-endonuclease Y substrate sites has been performed in vitro by gamma-endonuclease Y, DNA polymerase and ligase.  相似文献   

20.
F Jensch  H Kosak  N C Seeman    B Kemper 《The EMBO journal》1989,8(13):4325-4334
We have purified a cruciform DNA resolving endonuclease (Endo X3) greater than 1000-fold from crude extracts of mitotically growing Saccharomyces cerevisiae. The enzyme shows high specificity for DNAs with secondary structures and introduces characteristic patterns of staggered 'nicks' in the immediate vicinity of the structure. The following substrates were analyzed in detail: (i) naturally occurring four-way X junctions in cruciform DNA of a supercoiled plasmid; (ii) synthetic four-way X junctions with arms of 9 bp; (iii) synthetic three-way Y junctions with arms of 10 bp; and (iv) heteroduplex loops with 19 nucleotides in the loop. Cleavages were always found in the double stranded portion of the DNA, located immediately adjacent to the junction of the respective structure. The Endo X3 induced cleavage patterns are identical or very similar to the cleavage patterns induced in the same substrates by endonuclease VII (Endo VII) from phage T4. Furthermore, the activity of Endo X3 is completely inhibited in the presence of anti-Endo VII antiserum. Endo X3 has an apparent mol. wt of 43,000 daltons, determined by gel filtration and of approximately 18,000 daltons in SDS--polyacrylamide gels. Maximum activity of the enzyme was obtained in the presence of 10 mM MgCl2 at 31 degrees C in Tris-HCl buffer over a broad pH range with a maximum approximately 8.0. About 70% of maximal activity was obtained when Mg2+ was replaced by equimolar amounts of Mn2+ or Ca2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号