首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Wild-type measles virus (MV) strains use human signaling lymphocyte activation molecule (SLAM) as a cellular receptor, while vaccine strains such as the Edmonston strain can use both SLAM and CD46 as receptors. Although the expression of SLAM is restricted to cells of the immune system (lymphocytes, dendritic cells, and monocytes), histopathological studies with humans and experimentally infected monkeys have shown that MV also infects SLAM-negative cells, including epithelial, endothelial, and neuronal cells. In an attempt to explain these findings, we produced the enhanced green fluorescent protein (EGFP)-expressing recombinant MV (IC323-EGFP) based on the wild-type IC-B strain. IC323-EGFP showed almost the same growth kinetics as the parental recombinant MV and produced large syncytia exhibiting green autofluorescence in SLAM-positive cells. Interestingly, all SLAM-negative cell lines examined also showed green autofluorescence after infection with IC323-EGFP, although the virus hardly spread from the originally infected individual cells and thus did not induce syncytia. When the number of EGFP-expressing cells after infection was taken as an indicator, the infectivities of IC323-EGFP for SLAM-negative cells were 2 to 3 logs lower than those for SLAM-positive cells. Anti-MV hemagglutinin antibody or fusion block peptide, but not anti-CD46 antibody, blocked IC323-EGFP infection of SLAM-negative cells. This infection occurred under conditions in which entry via endocytosis was inhibited. These results indicate that MV can infect a variety of cells, albeit with a low efficiency, by using an as yet unidentified receptor(s) other than SLAM or CD46, in part explaining the observed MV infection of SLAM-negative cells in vivo.  相似文献   

2.
Measles virus has been reported to enter host cells via either of two cellular receptors, CD46 and CD150 (SLAM). CD46 is found on most cells of higher primates, while SLAM is expressed on activated B, T, and dendritic cells and is an important regulatory molecule of the immune system. Previous reports have shown that measles virus can down regulate expression of its two cellular receptors on the host cell surface during infection. In this study, the process of down regulation of SLAM by measles virus was investigated. We demonstrated that expression of the hemagglutinin (H) protein of measles virus was sufficient for down regulation. Our studies provided evidence that interactions between H and SLAM in the endoplasmic reticulum (ER) can promote the down regulation of SLAM but not CD46. In addition, we demonstrated that interactions between H and SLAM at the host cell surface can also contribute to SLAM down regulation. These results indicate that two mechanisms involving either intracellular interactions between H and SLAM in the ER or receptor-mediated binding to H at the surfaces of host cells can lead to the down regulation of SLAM during measles virus infection.  相似文献   

3.
Measles virus (MV) is a human pathogen using two distinct cell surface receptors for entry into host cells. We present here a comparative analysis for binding of the MV receptors CD46 and SLAM to the measles virus hemagglutinin protein (MVH, Edmonston strain). Soluble monomeric and dimeric MVH variants were prepared in mammalian cells and their conformation assessed using a panel of monoclonal antibodies. The two receptor molecules specifically bound to the MVH protein with distinct binding modes. The association rate (k(a)) for SLAM binding to MVH was very low ( approximately 3000 m(-1)s(-1)), about 20 times lower that the k(a) determined for CD46 binding. However, SLAM bound tighter to the virus protein than CD46, as revealed by a 5-fold lower dissociation rate (k(d), approximately 1.5 x 10(-3) s(-1)). These data suggest that the SLAM receptor binds to a less accessible and more hydrophobic surface on MVH than the CD46 receptor, as illustrated in a binding model. Despite the differences in kinetics, receptor competition binding experiments revealed that they recognize overlapping sites in MVH. Indeed, a panel of anti-MVH monoclonal antibodies equally inhibited binding of both receptor molecules. The similar immune reactivity of the two receptor binding sites suggests that the shift in receptor usage by MV may not be driven by immune responses.  相似文献   

4.
Signalling lymphocyte activation molecule (SLAM) has been identified as an immune cell receptor for the morbilliviruses, measles (MV), canine distemper (CDV), rinderpest and peste des petits ruminants (PPRV) viruses, while CD46 is a receptor for vaccine strains of MV. More recently poliovirus like receptor 4 (PVRL4), also known as nectin 4, has been identified as a receptor for MV, CDV and PPRV on the basolateral surface of polarised epithelial cells. PVRL4 is also up-regulated by MV in human brain endothelial cells. Utilisation of PVRL4 as a receptor by phocine distemper virus (PDV) remains to be demonstrated as well as confirmation of use of SLAM. We have observed that unlike wild type (wt) MV or wtCDV, wtPDV strains replicate in African green monkey kidney Vero cells without prior adaptation, suggesting the use of a further receptor. We therefore examined candidate molecules, glycosaminoglycans (GAG) and the tetraspan proteins, integrin β and the membrane bound form of heparin binding epithelial growth factor (proHB-EGF),for receptor usage by wtPDV in Vero cells. We show that wtPDV replicates in Chinese hamster ovary (CHO) cells expressing SLAM and PVRL4. Similar wtPDV titres are produced in Vero and VeroSLAM cells but more limited fusion occurs in the latter. Infection of Vero cells was not inhibited by anti-CD46 antibody. Removal/disruption of GAG decreased fusion but not the titre of virus. Treatment with anti-integrin β antibody increased rather than decreased infection of Vero cells by wtPDV. However, infection was inhibited by antibody to HB-EGF and the virus replicated in CHO-proHB-EGF cells, indicating use of this molecule as a receptor. Common use of SLAM and PVRL4 by morbilliviruses increases the possibility of cross-species infection. Lack of a requirement for wtPDV adaptation to Vero cells raises the possibility of usage of proHB-EGF as a receptor in vivo but requires further investigation.  相似文献   

5.
Wild-type measles virus (MV) strains use the signaling lymphocytic activation molecule (SLAM; CD150) and the adherens junction protein nectin-4 (poliovirus receptor-like 4 [PVRL4]) as receptors. Vaccine MV strains have adapted to use ubiquitous membrane cofactor protein (MCP; CD46) in addition. Recently solved cocrystal structures of the MV attachment protein (hemagglutinin [H]) with each receptor indicate that all three bind close to a hydrophobic groove located between blades 4 and 5 (β4-β5 groove) of the H protein β-propeller head. We used this structural information to focus our analysis of the functional footprints of the three receptors on vaccine MV H. We mutagenized this protein and tested the ability of individual mutants to support cell fusion through each receptor. The results highlighted a strong overlap between the functional footprints of nectin-4 and CD46 but not those of SLAM. A soluble form of nectin-4 abolished vaccine MV entry in nectin-4- and CD46-expressing cells but only reduced entry through SLAM. Analyses of the binding kinetics of an H mutant with the three receptors revealed that a single substitution in the β4-β5 groove drastically reduced nectin-4 and CD46 binding while minimally altering SLAM binding. We also generated recombinant viruses and analyzed their infections in cells expressing individual receptors. Introduction of a single substitution into the hydrophobic pocket affected entry through both nectin-4 and CD46 but not through SLAM. Thus, while nectin-4 and CD46 interact functionally with the H protein β4-β5 hydrophobic groove, SLAM merely covers it. This has implications for vaccine and antiviral strategies.  相似文献   

6.
A monoclonal antibody (MCI20.6) which inhibited measles virus (MV) binding to host cells was previously used to characterize a 57- to 67-kDa cell surface glycoprotein as a potential MV receptor. In the present work, this glycoprotein (gp57/67) was immunopurified, and N-terminal amino acid sequencing identified it as human membrane cofactor protein (CD46), a member of the regulators of complement activation gene cluster. Transfection of nonpermissive murine cells with a recombinant expression vector containing CD46 cDNA conferred three major properties expected of cells permissive to MV infection. First, expression of CD46 enabled MV to bind to murine cells. Second, the CD46-expressing murine cells were able to undergo cell-cell fusion when both MV hemagglutinin and MV fusion glycoproteins were expressed after infection with a vaccinia virus recombinant encoding both MV glycoproteins. Third, M12.CD46 murine B cells were able to support MV replication, as shown by production of infectious virus and by cell biosynthesis of viral hemagglutinin after metabolic labeling of infected cells with [35S]methionine. These results show that the human CD46 molecule serves as an MV receptor allowing virus-cell binding, fusion, and viral replication and open new perspectives in the study of MV pathogenesis.  相似文献   

7.
Both CD46 and signaling lymphocytic activation molecule (SLAM) have been shown to act as cellular receptors for measles virus (MV). The viruses on throat swabs from nine patients with measles in Japan were titrated on Vero cells stably expressing human SLAM. Samples from all but two patients produced numerous plaques on SLAM-expressing Vero cells, whereas none produced any plaques on Vero cells endogenously expressing CD46. The Edmonston strain of MV, which can use either CD46 or SLAM as a receptor, produced comparable titers on these two types of cells. The results strongly suggest that the viruses in the bodies of measles patients use SLAM but probably not CD46 as a cellular receptor.  相似文献   

8.
Measles is one of the most contagious human infectious diseases and remains a major cause of childhood morbidity and mortality worldwide. The signaling lymphocyte activation molecule (SLAM), also called CD150, is a cellular receptor for measles virus (MV), presumably accounting for its tropism for immune cells and its immunosuppressive properties. On the other hand, pathological studies have shown that MV also infects epithelial cells at a later stage of infection, although its mechanism has so far been unknown. In this study, we show that wild-type MV can infect and produce syncytia in human polarized epithelial cell lines independently of SLAM and CD46 (a receptor for the vaccine strains of MV). Progeny viral particles are released exclusively from the apical surface of these polarized epithelial cell lines. We have also identified amino acid residues on the MV attachment protein that are likely to interact with a putative receptor on epithelial cells. All of these residues have aromatic side chains and may form a receptor-binding pocket located in a different position from the putative SLAM- and CD46-binding sites on the MV attachment protein. Thus, our results indicate that MV has an intrinsic ability to infect both polarized epithelial and immune cells by using distinctive receptor-binding sites on the attachment protein corresponding to each of their respective receptors. The ability of MV to infect polarized epithelial cells and its exclusive release from the apical surface may facilitate its efficient transmission via aerosol droplets, resulting in its highly contagious nature.  相似文献   

9.
Measles virus (MV) propagates mainly in lymphoid organs throughout the body and produces syncytia by using signaling lymphocyte activation molecule (SLAM) as a receptor. MV also spreads in SLAM-negative epithelial tissues by unknown mechanisms. Ubiquitously expressed CD46 functions as another receptor for vaccine strains of MV but not for wild-type strains. We here show that MV grows and produces syncytia efficiently in a human lung adenocarcinoma cell line via a SLAM- and CD46-independent mechanism using a novel receptor-binding site on the hemagglutinin protein. This infection model could advance our understanding of MV infection of SLAM-negative epithelial cells and tissues.  相似文献   

10.
Natural or wild-type (wt) measles virus (MV) infection in vivo which is restricted to humans and certain monkeys represents an enigma in terms of receptor usage. Although wt MV is known to use the protein SLAM (CD150) as a cell receptor, many human tissues, including respiratory epithelium in which the infection initiates, are SLAM negative. These tissues are CD46 positive, but wt MV strains, unlike vaccinal and laboratory MV strains, are not thought to use CD46 as a receptor. We have identified a novel CD46 binding site at residues S548 and F549, in the hemagglutinin (H) protein from a laboratory MV strain, which is also present in wt H proteins. Our results suggest that although wt MV interacts with SLAM with high affinity, it also possesses the capacity to interact with CD46 with low affinity.  相似文献   

11.
Measles virus (MV) infection in children harboring human immunodeficiency virus type 1 (HIV-1) is often fatal, even in the presence of neutralizing antibodies; however, the underlying mechanisms are unclear. Therefore, the aim of the present study was to examine the interaction between HIV-1 and wild-type MV (MVwt) or an MV vaccine strain (MVvac) during dual infection. The results showed that the frequencies of MVwt- and MVvac-infected CD4(+) T cells within the resting peripheral blood mononuclear cells (PBMCs) were increased 3- to 4-fold after HIV-1 infection, and this was associated with a marked upregulation of signaling lymphocytic activation molecule (SLAM) expression on CD4(+) T cells but not on CD8(+) T cells. SLAM upregulation was induced by infection with a replication-competent HIV-1 isolate comprising both the X4 and R5 types and to a lesser extent by a pseudotyped HIV-1 infection. Notably, SLAM upregulation was observed in HIV-infected as well as -uninfected CD4(+) T cells and was abrogated by the removal of HLA-DR(+) cells from the PBMC culture. Furthermore, SLAM upregulation did not occur in uninfected PBMCs cultured together with HIV-infected PBMCs in compartments separated by a permeable membrane, indicating that no soluble factors were involved. Rather, CD4(+) T cell activation mediated through direct contact with dendritic cells via leukocyte function-associated molecule 1 (LFA-1)/intercellular adhesion molecule 1 (ICAM-1) and LFA-3/CD2 was critical. Thus, HIV-1 infection induces a high level of SLAM expression on CD4(+) T cells, which may enhance their susceptibility to MV and exacerbate measles in coinfected individuals.  相似文献   

12.
13.
Ohno S  Yanagi Y 《Uirusu》2006,56(1):27-34
Measles virus (MV) is a member of the genus Morbillivirus in the family Paramyxoviridae. Clinical isolates of MV use signaling lymphocyte activating molecule (SLAM) as a cellular receptor. SLAM is mainly expressed on immune cells such as immature thymocytes, activated lymphocytes and mature dendritic cells. This distribution of SLAM can account for the lymphotropism of MV. On the other hand, laboratory strains of MV use CD46 as an alternative receptor, through amino acid change(s) in the receptor binding hemagglutinin protein. Recently, several reports imply the existence of the cellular receptor(s) other than SLAM and CD46. In this review, we discuss the receptor usage of MV and its adaptation to cultured cells.  相似文献   

14.
Cotton rats (Sigmodon hispidus) replicate measles virus (MV) after intranasal infection in the respiratory tract and lymphoid tissue. We have cloned the cotton rat signaling lymphocytic activation molecule (CD150, SLAM) in order to investigate its role as a potential receptor for MV. Cotton rat CD150 displays 58% and 78% amino acid homology with human and mouse CD150, respectively. By staining with a newly generated cotton rat CD150 specific monoclonal antibody expression of CD150 was confirmed in cotton rat lymphoid cells and in tissues with a pattern of expression similar to mouse and humans. Previously, binding of MV hemagglutinin has been shown to be dependent on amino acids 60, 61 and 63 in the V region of CD150. The human molecule contains isoleucine, histidine and valine at these positions and binds to MV-H whereas the mouse molecule contains valine, arginine and leucine and does not function as a receptor for MV. In the cotton rat molecule, amino acids 61 and 63 are identical with the mouse molecule and amino acid 60 with the human molecule. After transfection with cotton rat CD150 HEK 293 T cells became susceptible to infection with single cycle VSV pseudotype virus expressing wild type MV glycoproteins and with a MV wildtype virus. After infection, cells expressing cotton rat CD150 replicated virus to lower levels than cells expressing the human molecule and formed smaller plaques. These data might explain why the cotton rat is a semipermissive model for measles virus infection.  相似文献   

15.
Measles has a host range restricted to humans and monkeys in captivity. Fresh measles virus (MV) isolates replicate readily in several human and simian B-cell lines but need a period of adaptation to other types of cells. The identification of CD46 and CD150 (SLAM) as cellular receptors for MV has helped to clarify certain aspects of the immunobiology of MV infections. We have examined the properties of an MV wild-type strain grown in the epithelial cell line Vero. After adaptation, this virus expressed high levels of both the viral glycoproteins (hemagglutinin and fusion protein) but did not induce fusion (syncytia). No changes in the amino acid sequence were found in either of the viral glycoproteins. Using several approaches, the Vero-adapted virus could not be shown to interact with CD46 either in the initiation or during the course of infection. The presence of human SLAM expressed in the Vero cells rapidly gave rise to fusion and lower yields of infectious virus.  相似文献   

16.
A major difference between vaccine and wild-type strains of measles virus (MV) in vitro is the wider cell specificity of vaccine strains, resulting from the receptor usage of the hemagglutinin (H) protein. Wild-type H proteins recognize the signaling lymphocyte activation molecule (SLAM) (CD150), which is expressed on certain cells of the immune system, whereas vaccine H proteins recognize CD46, which is ubiquitously expressed on all nucleated human and monkey cells, in addition to SLAM. To examine the effect of the H protein on the tropism and attenuation of MV, we generated enhanced green fluorescent protein (EGFP)-expressing recombinant wild-type MV strains bearing the Edmonston vaccine H protein (MV-EdH) and compared them to EGFP-expressing wild-type MV strains. In vitro, MV-EdH replicated in SLAM(+) as well as CD46(+) cells, including primary cell cultures from cynomolgus monkey tissues, whereas the wild-type MV replicated only in SLAM(+) cells. However, in macaques, both wild-type MV and MV-EdH strains infected lymphoid and respiratory organs, and widespread infection of MV-EdH was not observed. Flow cytometric analysis indicated that SLAM(+) lymphocyte cells were infected preferentially with both strains. Interestingly, EGFP expression of MV-EdH in tissues and lymphocytes was significantly weaker than that of the wild-type MV. Taken together, these results indicate that the CD46-binding activity of the vaccine H protein is important for determining the cell specificity of MV in vitro but not the tropism in vivo. They also suggest that the vaccine H protein attenuates MV growth in vivo.  相似文献   

17.
Signaling lymphocyte activation molecule (SLAM; also known as CD150) is a newly identified cellular receptor for measles virus (MV). MV Hemagglutinin protein (H) mediates MV entry into host cells by specifically binding to SLAM. Amino acid 27-135 of SLAM was previously shown to be the functional domain to interact with H and used to screen a 10-mer phage display peptide library in this study. After four rounds of screening and sequence analysis, the deduced amino acid sequence of screened peptides SGFDPLITHA and SDWDPLFTHK showed to be highly homologous with amino acid 429-438 of MV H (SGFGPLITHG). Peptides SGFDPLITHA and SDWDPLFTHK specifically inhibited binding of H to SLAM and further inhibition of MV infection suggests that these peptides can be developed to MV blocking reagents and amino acid 429-438 in H protein is functionally involved in receptor binding and may constitute part of the receptor-binding determinants on H protein.  相似文献   

18.
Previous research showed that the expression of measles virus receptor CD46 was downregulated after expression of measles virus hemagglutinin protein on the surface of the virus infected cell or triggered by infected cell-to-cell contact. We reported here that the mRNA level of CD46 in MV infected cells was not changed which was tested by real-time quantitative PCR. To further analyse the surface expression alteration of CD46 after MV infection, flow cytometric analysis and indirect immunofluorescence were used to detect the protein level of CD46. Altogether, our results provided a demonstration that the expression of CD46 was not downregulated by the infection of MV strain S191 both on mRNA level and cellular surface protein level. Previous results reported that the "downregulation" of CD46 expression on the cell surface may take place because H protein masks the antibody recognition site on CD46 which results in "downregulation" of the expression of CD46.  相似文献   

19.
Measles virus (MV) causes acute respiratory disease, infects lymphocytes and multiple organs, and produces immune suppression leading to secondary infections. In rare instances it can also cause persistent infections in the brain and central nervous system. Vaccine and laboratory-adapted strains of MV use CD46 as a receptor, whereas wild-type strains of MV (wtMV) cannot. Both vaccine and wtMV strains infect lymphocytes, monocytes, and dendritic cells (DCs) using the signaling lymphocyte activation molecule (CD150/SLAM). In addition, MV can infect the airway epithelial cells of the host. Nectin 4 (PVRL4) was recently identified as the epithelial cell receptor for MV. Coupled with recent observations made in MV-infected macaques, this discovery has led to a new paradigm for how the virus accesses the respiratory tract and exits the host. Nectin 4 is also a tumor cell marker which is highly expressed on the apical surface of many adenocarcinoma cell lines, making it a potential target for MV oncolytic therapy.  相似文献   

20.
Measles virus (MV) immunosuppression is due to infection of SLAM-positive immune cells, whereas respiratory shedding and virus transmission are due to infection of nectin4-positive airway epithelial cells. The vaccine lineage MV strain Edmonston (MV-Edm) acquired an additional tropism for CD46 which is the basis of its oncolytic specificity. VSVFH is a vesicular stomatitis virus (VSV) encoding the MV-Edm F and H entry proteins in place of G. The virus spreads faster than MV-Edm and is highly fusogenic and a potent oncolytic. To determine whether ablating nectin4 tropism from VSVFH might prevent shedding, increasing its safety profile as an oncolytic, or might have any effect on CD46 binding, we generated VSVFH viruses with H mutations that disrupt attachment to SLAM and/or nectin4. Disruption of nectin4 binding reduced release of VSVFH from the basolateral side of differentiated airway epithelia composed of Calu-3 cells. However, because nectin4 and CD46 have substantially overlapping receptor binding surfaces on H, disruption of nectin4 binding compromised CD46 binding and greatly diminished the oncolytic potency of these viruses on human cancer cells. Thus, our results support continued preclinical development of VSVFH without ablation of nectin4 binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号