首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The influence of glutathione (1 mmol/L) (GSH) on in vitro mucosal uptake and in vivo absorption of75Se-labeled selenite (10 μmol/L) was investigated in rat jejunum. For comparison, the effect ofl-cysteine (1 mmol/L) on in vivo absorption of75Se-labeled selenite was also studied. In the in vitro, uptake experiments, only the mucosal surface was exposed to the incubation medium for 3 min. For the in vivo experiments, a luminal perfusion technique was employed. GSH inhibited in vitro mucosal Se uptake, whereas absorption in vivo was stimulated by GSH.l-Cysteine also stimulated in vivo Se absorption, confirming former in vitro mucosal uptake experiments. Thus, unlikel-cysteine, GSH affected in vitro and in vivo absorption of Se from selenite differently. Enzymatic cleavage of products of the reaction of selenite with GSH occuring more efficiently under in vivo than in vitro conditions may be a prerequisite for the stimulatory effect of GSH on Se absorption. This apparently does not apply to the stimulatory effect of cysteine. Since, GSH occurs in the intestinal lumen under physiological conditions, it may contribute to the high bioavailability of Se from selenite.  相似文献   

2.
Determining the effect of selenium (Se) chemical form on uptake, transport, and glutathione peroxidase activity in human intestinal cells is critical to assess Se bioavailability at nutritional doses. In this study, we found that two sources of L-selenomethionine (SeMet) and Se-enriched yeast each increased intracellular Se content more effectively than selenite or methylselenocysteine (SeMSC) in the human intestinal Caco-2 cell model. Interestingly, SeMSC, SeMet, and digested Se-enriched yeast were transported at comparable efficacy from the apical to basolateral sides, each being about 3-fold that of selenite. In addition, these forms of Se, whether before or after traversing from apical side to basolateral side, did not change the potential to support glutathione peroxidase (GPx) activity. Although selenoprotein P has been postulated to be a key Se transport protein, its intracellular expression did not differ when selenite, SeMSC, SeMet, or digested Se-enriched yeast was added to serum-contained media. Taken together, our data show, for the first time, that the chemical form of Se at nutritional doses can affect the absorptive (apical to basolateral side) efficacy and retention of Se by intestinal cells; but that, these effects are not directly correlated to the potential to support GPx activity.  相似文献   

3.
The influence of cysteine (Cys) on mucosal uptake of 75Se-labeled selenite in sheep midjejunum was investigated using a short-term uptake technique. L-Cys (concn.: 1.0 mmol/L) significantly stimulated uptake of Se from selenite (concn.: 10 mumols/L). The stimulatory effect of L-Cys on mucosal uptake of Se from selenite was Na(+)- and pH-dependent. In the absence of Na+, or at an acidic pH (5.0), the stimulatory effect of L-Cys was abolished. L-alanine and L-lysine, but not L-glutamic acid inhibited uptake of Se from selenite in the presence of L-Cys. Preincubation of mucosal preparations with 10 mmol/L L-Cys produced enhanced mucosal uptake of Se from selenite. It is concluded from these results that L-Cys stimulates absorption of Se from selenite probably by generation of selenodicysteine and maybe cysteine selenopersulfide that are subsequently transported across the intestinal brush border membrane by Na(+)-dependent amino acid carriers. Furthermore, intracellular generation of selenodicysteine might contribute to the uptake of Se from selenite by maintaining the concentration gradient for diffusive uptake of selenite.  相似文献   

4.
Renal selenium excretion in sheep was measured during intravenous infusion of sodium selenite, and the post-infusion dynamics of Se levels in whole blood, plasma and red blood cells (RBC) were investigated for the next 5 days. The plasma Se level increased almost twenty fold with the infusion of Na2SeO3 (from 0.39 +/- 0.02 to 7.83 +/- 0.33 micromol x L(-1), P < 0.001) compared with the baseline value. The selenium concentration in urine (0.07 +/- 0.02 vs. 18.53 +/- 2.56 micromol x L(-1), P < 0.001), the amount of Se excreted (0.14 +/- 0.07 vs. 21.40 +/- 2.31 nmol x min(-1), P < 0.001) and the renal clearance of Se (0.1 9 +/- 0.03 vs. 3.01 +/- 0.34 mL x min(-1), P < 0.001) were found to be highly significantly elevated during selenite loading. The clearance measurements showed no changes in the urinary flow rate or in the glomerular filtration rate. During and at the end of infusion the highest Se level was attained in plasma, followed by whole blood and RBC. The plasma Se level fell rapidly within 10 min after the end of infusion, but the concentration of Se in RBC was stable up to the fourth hour, when it started to decrease too. On day 5 the Se concentrations in plasma, RBC and whole blood were found to be only slightly but still significantly higher than before the selenite infusion. The large disproportion between the infusion rate of Se (8.76 microg x min(-1)) and its renal excretion rate (1.69 microg x min(-1)) found in clearance measurements suggests low glomerular filtration of infused selenium, which might primarily be caused by the binding of selenite metabolites to blood constituents. The presented results confirm the low bioavailability to ruminants of Se from sodium selenite.  相似文献   

5.
Keshan disease is a cardiomyopathy restricted to the endemic areas of China and seen in residents having an extremely low selenium (Se) status. Prophylactic administration of sodium selenite has been shown to decrease significantly the incidence of acute and subacute cases. The aim of the study was to assess the relative bioavailability of selenite versus organic Se-yeast in a Se-deficient area in China with a randomized double-blind double-dummy design. Healthy children (n=30) between 14 and 16 yr of age were randomized into three equal groups receiving either 200 μg/d selenite Se or 200 μg/d Se-yeast or placebo for 12 wk. Blood was drawn at baseline, 4, 8, and 12 wk and 4 wk postsupplementation. The plasma Se concentration (mean ± SD) was 0.16±0.03 μmol/L at baseline. Selenite and Se-yeast supplementation increased plasma Se to plateau values, 1.0±0.2 and 1.3±0.2 μmol/L, respectively. In red cells, Se-yeast increased the selenium level sixfold and selenite threefold compared to placebo. The relative bioavailability of Se-yeast versus selenite measured as glutathione peroxidase (GSHPx) activity was similar in plasma, red blood cells, and platelets. GSHPx activity reached maximal levels in plasma and platelets of 300% and 200%, respectively, after 8 wk compared to the placebo group, but continued to increase in red cells for 16 wk. Our study showed that although both forms of Se were equally effective in raising GSHPx activity, Se-yeast provided a longer lasting body pool of Se. Se-yeast may be a better alternative to selenite in the prophylaxis of Keshan disease with respect to building up of body stores.  相似文献   

6.
Ralstonia metallidurans CH34, a soil bacterium resistant to a variety of metals, is known to reduce selenite to intracellular granules of elemental selenium (Se(0)). We have studied the kinetics of selenite (Se(IV)) and selenate (Se(VI)) accumulation and used X-ray absorption spectroscopy to identify the accumulated form of selenate, as well as possible chemical intermediates during the transformation of these two oxyanions. When introduced during the lag phase, the presence of selenite increased the duration of this phase, as previously observed. Selenite introduction was followed by a period of slow uptake, during which the bacteria contained Se(0) and alkyl selenide in equivalent proportions. This suggests that two reactions with similar kinetics take place: an assimilatory pathway leading to alkyl selenide and a slow detoxification pathway leading to Se(0). Subsequently, selenite uptake strongly increased (up to 340 mg Se per g of proteins) and Se(0) was the predominant transformation product, suggesting an activation of selenite transport and reduction systems after several hours of contact. Exposure to selenate did not induce an increase in the lag phase duration, and the bacteria accumulated approximately 25-fold less Se than when exposed to selenite. Se(IV) was detected as a transient species in the first 12 h after selenate introduction, Se(0) also occurred as a minor species, and the major accumulated form was alkyl selenide. Thus, in the present experimental conditions, selenate mostly follows an assimilatory pathway and the reduction pathway is not activated upon selenate exposure. These results show that R. metallidurans CH34 may be suitable for the remediation of selenite-, but not selenate-, contaminated environments.  相似文献   

7.
The reduction in incidence of chemically-induced colon cancer by foods high in selenium (Se) was investigated in Fisher-344 rats. The foods used were high-Se broccoli (produced in a greenhouse by addition of selenate to the media surrounding the plant roots) and a processed high-Se wheat product (made by milling high-Se wheat purchased from a seleniferous area). Weanling rats were fed diets containing different amounts of Se from these foods or from selenium salts (selenite and selenate). Early in the experiment the animals were injected with a chemical carcinogen. After 11 weeks on diets animals were killed and the colons examined for preneoplastic lesions (aberrant crypts foci, ACF). ACF were significantly reduced in animals fed supra-nutritional amounts of Se from broccoli, despite the finding that Se from broccoli was poorly bioavailable. Supra-nutritional amounts of Se from high-Se processed wheat also significantly reduced aberrant crypts (AC), although pure selenomethionine, (the predominant chemical form of Se in wheat), did not significantly reduce AC. These results emphasize the need to study Se in food forms, and not extrapolate from previous studies using pure chemical forms in cancer inhibition studies. They also demonstrate that foods with high Se bioavailability are not necessarily the most efficacious for cancer incidence reduction.  相似文献   

8.
The effects of cadmium (Cd), mercury (Hg), and three different chemical forms of selenium (Se) (selenite, selenocystine, and selenomethionine) on ram spermatozoal motility and oxygen consumption in vitro were studied over a 4-mo period. Concentrations of 10(-6) to 10(-2) M Cd and Hg were injurious to spermatozoa as indicated by depressed motility and reduced oxygen uptake. Equimolar concentrations of Se as selenite, selenocystine, or selenomethionine counteracted the toxicity of Cd and Hg at low concentrations (10(-5) and 10(-6) M) but not at higher concentrations (10(-4) to 10(-2) M). Gel filtration (Sephadex G-75) of seminal plasma and solubilized sperm prepared from semen incubated with Cd or Hg with or without the Se compounds revealed that Cd or Hg eluted with the void volume proteins in all treatments. Incubation of ram spermatozoa with any of the three chemical forms of Se ranging from 10(-6) to 2.5 X 10(-5) M significantly improved sperm motility and oxygen consumption.  相似文献   

9.
Prolactin has been reported to stimulate intestinal calcium absorption in young and mature, but not aging rats. The present study was performed on suckling rats to elucidate the actions of endogenous prolactin on calcium absorption in various intestinal segments. Before measuring the calcium fluxes, 9-day-old rats were administered for 7 days with 0.9% NaCl, s.c. (control), 3 mg/kg bromocriptine, i.p., twice daily to abolish secretion of endogenous prolactin, or bromocriptine plus exogenous 2.5 mg/kg prolactin, s.c. Thereafter, the 16-day-old rats were experimented upon by instilling the 45Ca-containing solution into the intestinal segments. The results showed that, under a physiological condition, the jejunum had the highest rate of calcium absorption compared with other segments (1.4 +/- 0.35 micromol.h-1.cm-1, p < 0.05). The duodenum and ileum also manifested calcium absorption, whereas the colon showed calcium secretion. Lack of endogenous prolactin decreased lumen-to-plasma and net calcium fluxes in jejunum from 2.07 +/- 0.31 to 1.19 +/- 0.12 and 1.40 +/- 0.35 to 0.88 +/- 0.18 micromol.h-1.cm-1 (p < 0.05), respectively, and exogenous prolactin restored the jejunal calcium absorption to the control value. Endogenous prolactin also had an effect on the duodenum but, in this case, exogenous prolactin did not reverse the effect of bromocriptine. However, neither ileal nor colonic calcium fluxes were influenced by prolactin. Because luminal sodium concentration has been demonstrated to affect calcium absorption in mature rats, the effect of varying luminal sodium concentrations on calcium fluxes in suckling rats was evaluated. The jejunum was used due to its highest rate of calcium absorption. After filling the jejunal segments with 124 (control), 80, 40 mmol/L Na+-containing or Na+-free solution, increases in calcium absorption were found to be inversely related to luminal sodium concentrations in both control and bromocriptine-treated rats. The plasma concentration of 45Ca under luminal sodium free condition was also higher than that of the control condition (2.26% +/- 0.07% vs. 2.01% +/- 0.09% administered dose, p < 0.05). However, 3H-mannitol, a marker of the widening of tight junction that was introduced into the lumen, had a stable level in the plasma during an increase in plasma 45Ca, suggesting that the widening of tight junction was not required for enhanced calcium absorption. In conclusion, calcium absorption in suckling rats was of the highest rate in the jejunum where endogenous prolactin modulated calcium absorption without increasing the paracellular transport of mannitol.  相似文献   

10.
Selenium (Se) is an essential micronutrient for animal and human nutrition, but whether it is essential to plants remains controversial. However, there are increasing experimental evidences that indicate a protective role of Se against the oxidative stress in higher plants through Se-dependent glutathione peroxidase (GSH-Px) activity. The effects of the Se chemical forms, selenite and selenate, the rate of their application on shoot Se concentration and their influence on the antioxidative system of ryegrass (Lolium perenne cv. Aries), through the measurement of GSH-Px activity and lipid peroxidation, were evaluated in an Andisol of Southern Chile. Moreover, a soil–plant relationship for Se was determined and a simple method to extract available Se from acid soils is proposed. In a 55-day experiment ryegrass seeds were sown in pots and soil was treated with sodium selenite or sodium selenate (0–10 mg Se kg−1). The results showed that the Se concentration in shoots increased with the application of both selenite and selenate. However, the highest shoot Se concentrations were obtained in selenate-treated plants. For both sources of Se, there was a significant positive correlation between the shoot Se concentration and the GSH-Px activity; and the Se-dependence of this enzymatic activity was related especially with the chemical form of applied Se rather than the Se concentration in plant tissues. Furthermore, the lipid peroxidation, as measured by Thiobarbituric Acid Reactive Substances (TBARS), decreased at low levels of shoot Se concentration, reaching the lowest level at approximately 20 mg Se kg−1 in plants and then increased steadily above this level. In addition, the acid extraction method used to evaluate available Se in soil showed a positive good correlation between soil Se and shoot Se concentrations irrespective of chemical form of Se applied.  相似文献   

11.
Glutathione peroxidase (GPx) activity and deposition of selenium (Se) were examined in tissues of rats given dietary Se for 7 wk as either selenite or selenomethionine (SeMet) with 75Se radiotracer of the same chemical form. On the basis of Se:75Se ratio, all tissues of the rats fed selenite were equilibrated with the dietary source, but tissues of the SeMet fed animals maintained a ratio of Se:75Se greater than the dietary ratio. Deposition of dietary Se and 75Se was higher in most tissues of rats fed SeMet. Muscle 75Se was the largest single tissue pool of 75Se in both groups accounting for one-third of recovered 75Se in the rats fed selenite, and one-half of recovered 75Se in the rats fed SeMet. Tissue GPx activities were not different between the two dietary groups. The proportion of Se as GPx in tissues was highest in erythrocytes of the rats fed selenite (.81) and lowest in testes and epididymides of the rats fed SeMet (.009). The proportion of Se present in cytosolic GPx was consistently higher in tissues of rats fed selenite. Erythrocytes of the rats fed SeMet had more 75Se associated with hemoglobin, and muscle cytosols of the rats fed selenite had more 75Se associated with the G-protein. The proportion of 75Se as SeMet determined by ion exchange chromatography of tissue hydrolysates was higher in tissues of rats fed SeMet (highest in muscle and hemoglobin, 70%, and lowest in testes, 16%). In contrast, selenocysteine was the predominant form of Se present in tissues of rats given selenite. These results indicate that the form of Se administered will influence the form in the tissues, the percentage of Se with GPx and the body burden of Se.  相似文献   

12.
BACKGROUND: Intestinal mucus not only facilitates substrate absorption, but also forms a hydrophobic, phosphatidylcholine (PC) enriched, barrier against luminal gut contents. METHODS: For evaluation of the origin of PC in intestinal mucus, we first analyzed the mucus PC in mice with absent biliary phospholipid secretion (mdr2 (-/-) mice) using electrospray ionization (ESI) tandem mass spectroscopy (MS/MS). Second, in situ perfused rat jejunum, ileum and colon were analyzed after i.v. bolus injections of 155 pmol [(3)H]-PC. Additional in vitro experiments were performed with isolated mucosal cells after incubation with the PC precursor [(3)H]-choline. RESULTS: In mdr2 (-/-) mice and control animals no significant quantitative difference in mucus PC was found, indicating that mucus PC is of intestinal and not biliary origin. In situ perfusion studies detected intestinal secretion of [(3)H]-PC, which was stimulated in presence of 2 mM taurocholate (TC). Secretion rates of [(3)H]-PC were highest in ileum (9.0+/-0.8 fmol h(-1)xcm(-1)), lower in jejunum (4.3+/-0.5) and minimal in colon (0.8+/-0.2). It compares to an intestinal secretion of native PC originating to 64% from bile, 9% from jejunum, 28% from ileum, and 1% from colon. Complementary in vitro studies showed 30-min secretion rates for [(3)H]-PC to be highest in enterocytes from ileum (26.5+/-5.3% of intracellular [(3)H]-PC) and jejunum (19.8+/-2.9%), and significantly lower in colonocytes (8.4+/-1.3%). CONCLUSION: PC in the intestinal mucus originates from secretion by ileal and jejunal enterocytes.  相似文献   

13.
Assessing the ability of a selenium (Se) sample to induce cellular glutathione peroxidase (GPx) activity in Se-deficient animals is the most commonly used method to determine Se bioavailability. Our goal is to establish a Se-deficient cell culture model with differential incorporation of Se chemical forms into GPx, which may complement the in vivo studies. In the present study, we developed a Se-deficient Caco-2 cell model with a serum gradual reduction method. It is well recognized that selenomethionine (SeMet) is the major nutritional source of Se; therefore, SeMet, selenite, or methylselenocysteine (SeMSC) was added to cell culture media with different concentrations and treatment time points. We found that selenite and SeMSC induced GPx more rapidly than SeMet. However, SeMet was better retained as it is incorporated into proteins in place of methionine; compared with 8-, 24-, or 48-h treatment, 72-h Se treatment was a more sensitive time point to measure the potential of GPx induction in all tested concentrations. Based on induction of GPx activity, the cellular bioavailability of Se from an extract of selenobroccoli after a simulated gastrointestinal digestion was comparable with that of SeMSC and SeMet. These in vitro data are, for the first time, consistent with previous published data regarding selenite and SeMet bioavailability in animal models and Se chemical speciation studies with broccoli. Thus, Se-deficient Caco-2 cell model with differential incorporation of chemical or food forms of Se into GPx provides a new tool to study the cellular mechanisms of Se bioavailability.  相似文献   

14.
The effects of an arsenic-rich fish diet and selenium (Se) supplementation on blood arsenic (As), Se, and thyroid hormones were studied in 32 women divided into four equal groups. Groups 1 and 4 received 400 μg Se-methionine daily, group 2 received 400 μg selenite daily, and group 3 received placebo tablets for 15 wk. In addition, groups 1–3 increased their fish intake, eating at least three fish dinners weekly. Mean blood Se concentrations (initially 1.68 ± 0.24 μmol/L) increased twofold in the Se-methionine groups (p < 0.0001) and by 32% in the selenite group (p < 0.01). Group means of blood As concentrations increased by 63% (p < 0.01), 50% (p < 0.01), 106% (p < 0.01), and 29% (p < 0.05) in the four groups, respectively. Analyzed As intake from duplicate portions of consumed fish correlated with final blood As concentrations (r=0.85, p < 0.001, n=32). In the group not receiving Se, there was a positive correlation between final blood As concentrations and plasma T4 : T3 ratio (r=0.80, p < 0.02, n=8). Initially, blood As concentrations correlated negatively with both T3 and T4 in plasma, but this correlation disappeared upon Se supplementation. The results demonstrate that increased intake of fish may influence blood As concentrations and that circulating thyroid hormones may be influenced by Se-As interactions.  相似文献   

15.
Selenium (Se) is an essential trace element for humans and animals. A hydroponic experiment was performed to study the effects of sulphur (S) on Se uptake, translocation, and assimilation in wheat (Triticum aestivum L.) seedlings. Sulphur starvation had a positive effect on selenate uptake and the form of Se supplied greatly influenced Se speciation in plants. Compared with the control plants, Se uptake by the S-starved plants was enhanced by 4.81-fold in the selenate treatment, and selenate was readily transported from roots to shoots. By contrast, S starvation had no significant effect on selenite uptake, and selenite taken up by roots was rapidly converted to organic forms and tended to accumulate in roots. X-ray absorption near edge spectroscopy (XANES) analysis showed that organic forms of selenium, including selenocystine, Se-methyl-selenocysteine (MeSeCys), and selenomethionine-Se-oxide, were dominant in the plants exposed to selenite and accounted for approximately 90 % of the total Se. Whereas selenate remained as the dominant species in the roots and shoots exposed to selenate, with little selenate converted to selenite and MeSeCys. Besides, sulphur starvation increased the proportion of inorganic Se species in the selenate-supplied plants, but had no significant effects on Se speciation in plants exposed to selenite. The present study provides important knowledge to understand the associated mechanism of Se uptake and metabolism in plants.  相似文献   

16.
The present study was undertaken to evaluate the in vitro availability of chemically varying forms of selenium (Se), supplemented in cow's milk. Two inorganic (selenite and selenate) and two organic (seleno-methionine [Se-Met] and seleno-cystine [Se-Cys]) Se sources were evaluated. The in vitro availability was estimated by the diffusibility of Se during simulated gastrointestinal digestion. First, the diffusibility was compared after adding a constant amount of Se as either selenate, selenite, seleno-methionine, or Se-Cys in milk samples. Se-Met and selenate were found to be significantly more diffusible than selenocystine and selenite under the simulated gastrointestinal conditions. The tendency for superior in vitro availability of selenate and Se-Met compared to selenite and Se-Cys was confirmed for a supplementation range of 5–40 ng/g of Se. This study suggests that the high diffusibility of selenate and Se-Met in a simulated gastrointestinal environment may contribute to their high absorption in vivo.  相似文献   

17.

Background and aims

Selenium is an essential micro-nutrient for animals, humans and microorganisms; it mainly enters food chains through plants. This study proposes to explore effect of inorganic Se forms on its uptake and accumulation in Zea mays.

Methods

Zea mays was grown in a controlled-atmosphere chamber for 2 weeks in a hydroponic solution of low-concentration selenium (10 μg/L (i.e.0.12 μM) or 50 μg/L (i.e. 0.63 μM) of Se). For each concentration, four treatments were defined: control (without selenium), selenite alone, selenate alone and selenite and selenate mixed.

Results

At low concentrations, selenium did not affect the biomass production of Zea mays. However, for both concentrations, Se accumulation following a selenite-only treatment was always higher than with selenate-only. Moreover, in the selenate-only treatment, Se mainly accumulated in shoots whereas in the selenite-only treatment, Se was stocked more in the roots. Interactions between selenate and selenite were observed only at the higher concentration (0.63 μM of selenium in the nutrient solution).

Conclusions

Se form and concentration in the nutrient solution strongly influenced the absorption, allocation and metabolism of Se in Zea mays. Selenate seems to inhibit selenite absorption by the roots.  相似文献   

18.
Li ZY  Guo SY  Li L 《Bioresource technology》2003,89(2):171-176
The bioeffects of selenium on the growth of Spirulina platensis and the selenium distribution were investigated. S. platensis was batch cultured in Zarrouk medium containing increasing concentrations of sodium selenite. The biotransformation characteristic of selenium was analysed by the determination of the detailed selenium distribution forms. At 35 degrees C, 315.2 microEm(-2) x s(-1), sodium selenite concentrations below 400 mg x l(-1) were found to stimulate algal growth, especially in the range of 0.5-40 mg x l(-1). However, above 500 mg x l(-1) sodium selenite was toxic to this alga with the toxicity being related to the sulfite level in the medium. S. platensis was found to resist higher selenite by reducing toxic Se(IV) to nonsoluble Se(0). Selenium was accumulated efficiently in S. platensis during cultivation with accumulated selenium increasing with selenite concentration in the medium. It was demonstrated that inorganic selenite could be transformed into organic forms through binding with protein, lipids and polysaccharides and other cell components. The organic selenium accounted for 85.1% of the total accumulated selenium and was comprised of 25.2% water-soluble protein-bound, 10.6% lipids-bound and 2.1% polysaccharides-bound selenium. Among the organic fractions lipid possessed the strongest ability to accumulate Se (6.47 mg x kg(-1)). The 14.9% inorganic selenium in S. platensis was composed of Se(IV) (13.7%) and Se(VI) (1.2%).  相似文献   

19.
In this work, possible interference with functional activities of human lymphocytes after in vitro treatment with selenium was examined. Sodium selenite and selenomethionine compounds were tested in parallel, and their capability to inhibit or to increase the antibody production by lymphocytes was investigated. Furthermore, after incubation for 7 d, total cell-associated Se was measured by a fluorimetric method. The in vitro doses of Se employed in this study mainly reflect those measured in blood of individuals with different Se intake. Low doses of Se (0.5–2.0μM) added either as sodium selenite or selenomethionine did not alter the secretion of antibodies. When Se was added at higher levels, instead, an inhibitory effect was found using selenite, whereas a progressive increase in immunoglobulin production was observed after exposure to selenomethionine. In both cases, modifications were detected at 5 μM (395 μg Se/L), and were significant at 10 μM (789 μg Se/L). A different trend between the two chemical forms was also observed with regard to Se uptake by cells. Interestingly, both Se uptake and cell sensitivity were influenced by the density of the cells in culture. Our data suggest that the biological effects of Se in mammalian systems are strongly influenced by its chemical form, and caution should be exerted to avoid toxic effects of selenium.  相似文献   

20.
Cultures of a purple nonsulfur bacterium, Rhodobacter sphaeroides, amended with approximately 1 or approximately 100 ppm selenate or selenite, were grown phototrophically to stationary phase. Analyses of culture headspace, separated cells, and filtered culture supernatant were carried out using gas chromatography, X-ray absorption spectroscopy, and inductively coupled plasma spectroscopy-mass spectrometry, respectively. While selenium-amended cultures showed much higher amounts of SeO(3)(2-) bioconversion than did analogous selenate experiments (94% uptake for SeO(3)(2-) as compared to 9.6% for SeO(4)(2-)-amended cultures from 100-ppm solutions), the chemical forms of selenium in the microbial cells were not very different except at exposure to high concentrations of selenite. Volatilization accounted for only a very small portion of the accumulated selenium; most was present in organic forms and the red elemental form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号