首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This symposium marks the 15th anniversary of the discovery of microbodies in methylotrophic yeasts. In the intervening years much has been learned about the structure, function and biogenesis of these organelles and these advances are described. As our endeavours continued, unexpected results have confused commonly held views. This was for instance the case when microbody-minus mutants of yeasts became available which showed that some microbody matrix enzymes may be functional when present in the cytosol while others are not. At the molecular level, our understanding of structure/function relationships is also expanding. Examples are structural elements which relate to protein topogenesis and function of enzymes in different cell compartments. Other, perhaps more unusual, adaptations have also been encountered; some involve protein-protein interactions or even modified cofactors which possibly have helped methylotrophic yeasts to establish and/or maintain themselves in natural ecosystems.  相似文献   

2.
Abstract The methylotrophic yeasts, Hansenula polymorpha and Candida boidinii , and the methylotrophic Gram-negative bacteria, Paracoccus denitrificans and Thiobacillus versutus (but not Methylophaga marina ), contain NAD/GSH-dependent formaldehyde dehydrogenase when grown on C1-compounds. The enzymes appeared to be similar to each other and to the mammalian counterparts with respect to substrate specificity, including the ability to act as an alcohol dehydrogenase class III. The Gram-positive bacteria, Amycolatopsis methanolica and Rhodococcus erythropolis , possess NAD/Factor-dependent formaldehyde dehydrogenase when grown on C1-compounds or on C1-unit-containing substrates, respectively. These enzymes also exhibit alcohol dehydrogenase class III activity. Thus, like the mammalian ones, methylotrophic formaldehyde dehydrogenases show dual substrate specificity, suggesting that this is an inherent property of the enzyme.  相似文献   

3.
Pexophagy: the selective autophagy of peroxisomes   总被引:1,自引:0,他引:1  
Pichia pastoris and Hansenula polymorpha are methylotrophic yeasts capable of utilizing methanol, as a sole source of carbon and energy. Growth of these yeast species on methanol requires the synthesis of cytosolic and peroxisomal enzymes combined with the proliferation of peroxisomes. Peroxisomes are also abundantly present in the alkane-utilizing yeast Yarrowia lipolytica upon growth of cells on oleic acid. This feature has made these yeast species attractive model systems to dissect the molecular mechanisms controlling peroxisome biogenesis. We have found that upon glucose- or ethanol-induced catabolite inactivation, metabolically superfluous peroxisomes are rapidly and selectively degraded within the vacuole by a process called pexophagy, the selective removal of peroxisomes by autophagy-like processes. Utilizing several genetic screens, we have identified a number of genes that are essential for pexophagy. In this review, we will summarize our current knowledge of the molecular events of pexophagy.  相似文献   

4.
Abstract The maximum growth rate of methylotrophic yeasts during growth on methanol is about 0.2 h−1. Since they are able to grow faster on substrates such as glucose we tried to identify the putative limiting step in methanol metabolism within the assimilatory pathway, leading to the formation of a major precursor for biosyntheses, or within the linear dissimilatory sequence. Growth experiments with mixed substrates and determination of some kinetic parameters allowed us to restrict the number of possible pacemaker enzymes. The dissimilatory sequence does not seem to be growth-rate limiting. This also applies to transketolase, transaldolase and fructose-1,6-bisphosphatase. Surprisingly, methanol oxidase appears to be the prime candidate.  相似文献   

5.
《Autophagy》2013,9(2):75-83
Pichia pastoris and Hanseula polymorpha are methylotrophic yeasts capable of utilizing methanol, as a sole source of carbon and energy. Growth of these yeast species on methanol requires the synthesis of cytosolic and peroxisomal enzymes combined with the proliferation of peroxisomes. Peroxisomes are also abundantly present in the alkane-utilizing yeast Yarrowia lipolytica upon growth of cells on oleic acid. This feature has made these yeast species attractive model systems to dissect the molecular mechanisms controlling peroxisome biogenesis. We have found that upon glucose- or ethanol-induced catabolite inactivation of metabolically superfluous peroxisomes are rapidly and selectively degraded within the vacuole by a process called pexophagy, the selective removal of peroxisomes by autophagy-like processes. Utilizing several genetic screens, we have identified a number of genes that are essential for pexophagy. In this review, we will summarize our current knowledge of the molecular events of pexophagy.  相似文献   

6.
Heterologous protein production in methylotrophic yeasts   总被引:15,自引:0,他引:15  
The facultative methylotrophic yeasts Candida boidinii, Pichia methanolica, Pichia pastoris and Hansenula polymorpha have been developed as systems for heterologous gene expression. They are based on strong and regulatable promoters for expression control derived from methanol metabolism pathway genes. An increasing number of biotechnological applications attest to their status as preferred options among the various gene expression hosts. The well-established P. pastoris and H. polymorpha systems have been utilized in especially competitive and consistent industrial-scale production processes. Pharmaceuticals and technical enzymes produced in these methylotrophs have either already entered the market or are expected to do so in the near future. The article describes the present status of the methylotrophic yeasts as expression systems, focusing on applied examples of the recent past. Received: 9 May 2000 / Received revision: 20 June 2000 / Accepted: 23 June 2000  相似文献   

7.
甲醇酵母由于独特优点被认为是绿色生物制造的潜在宿主。特别是其天然甲醇利用性能有望建立甲醇生物转化路线,拓展生物炼制底物,具有重要经济价值和环保意义。文中综述了代谢工程改造甲醇酵母合成蛋白质和化学品的最新研究进展,并比较了其与模式生物酿酒酵母作为细胞工厂的优缺点。随后,分析了甲醇酵母代谢工程改造面临的挑战,并展望了潜在解决方案。随着基因操作工具开发和细胞代谢阐释,甲醇酵母将在未来绿色生物制造发挥越来越重要的作用。  相似文献   

8.
甲醛是一种毒性很高的一碳化合物,甲基营养菌是一类能在有高浓度甲醛的环境中生存的微生物,它们体内有多种降解甲醛的氧化途径和将甲醛转化为细胞组分的同化途径。丝氨酸途径和酮糖单磷酸途径是同时存在于甲基营养型细菌中的两种甲醛同化途径,木酮糖单磷酸途径是甲基营养型酵母菌中独有的甲醛同化途径。为了充分挖掘甲基营养型微生物在环境生物技术中的潜在应用价值,最近有很多研究尝试利用甲基营养微生物的细胞及其甲醛代谢途径关键酶开发甲醛污染检测方法和生物治理技术,对这方面的研究进展进行综述。  相似文献   

9.
The maximum growth rate of methylotrophic yeasts during growth on methanol is about 0.2 h-1. Since they are able to grow faster on substrates such as glucose we tried to identify the putative limiting step in methanol metabolism within the assimilatory pathway, leading to the formation of a major precursor for biosyntheses, or within the linear dissimilatory sequence. Growth experiments with mixed substrates and determination of some kinetic parameters allowed us to restrict the number of possible pacemaker enzymes. The dissimilatory sequence does not seem to be growth-rate limiting. This also applies to transketolase, transaldolase and fructose-1,6-bisphosphatase. Surprisingly, methanol oxidase appears to be the prime candidate.  相似文献   

10.
3-Hexulose-6-phosphate synthase (HPS) and 6-phospho-3-hexuloisomerase (PHI) are the key enzymes of the ribulose monophosphate pathway. This pathway, which was originally found in methylotrophic bacteria, is now recognized as a widespread prokaryotic pathway involved in formaldehyde fixation and detoxification. Recent progress, involving biochemical and genetic approaches in elucidating the physiological functions of HPS and PHI in methylotrophic as well as non-methylotrophic bacteria are described in this review. HPS and PHI orthologs are also found in a variety of archaeal strains. Some archaeal HPS orthologs are fused with other genes to form single ORF (e.g., the hps-phi gene of Pyrococcus spp. and the faeB-hpsB gene of Methanosarcina spp). These fused gene products exhibit functions corresponding to the individual enzyme activities, and are more efficient than equivalent systems made up of discrete enzymes. Recently, a novel metabolic function for HPS and PHI has been proposed in which these enzymes catalyze the reverse reaction for the biosynthesis of pentose phosphate in some archaeal strains. Thus the enzyme system plays a different role in bacteria and archaea by catalyzing the forward and reverse reactions respectively.  相似文献   

11.
In this review article, the extracellular enzymes production, their properties and cloning of the genes encoding the enzymes from marine yeasts are overviewed. Several yeast strains which could produce different kinds of extracellular enzymes were selected from the culture collection of marine yeasts available in this laboratory. The strains selected belong to different genera such as Yarrowia, Aureobasidium, Pichia, Metschnikowia and Cryptococcus. The extracellular enzymes include cellulase, alkaline protease, aspartic protease, amylase, inulinase, lipase and phytase, as well as killer toxin. The conditions and media for the enzyme production by the marine yeasts have been optimized and the enzymes have been purified and characterized. Some genes encoding the extracellular enzymes from the marine yeast strains have been cloned, sequenced and expressed. It was found that some properties of the enzymes from the marine yeasts are unique compared to those of the homologous enzymes from terrestrial yeasts and the genes encoding the enzymes in marine yeasts are different from those in terrestrial yeasts. Therefore, it is of very importance to further study the enzymes and their genes from the marine yeasts. This is the first review on the extracellular enzymes and their genes from the marine yeasts.  相似文献   

12.
A perspective on the biotechnological potential of extremophiles.   总被引:9,自引:0,他引:9  
It is well recognized that many environments considered by man to be extreme are colonized by microorganisms which are specifically adapted to these ecological niches. A diverse range of bacteria, cyanobacteria, algae and yeasts have been isolated from such habitats and it is now widely accepted that these microorganisms provide a valuable resource not only for exploitation in novel biotechnological processes but also as models for investigating how biomolecules are stabilized when subjected to extreme conditions. This short review summarizes our current state of knowledge of this unique group of microorganisms and their enzymes, and attempts to identify their future biotechnological potential.  相似文献   

13.
The present paper reviews oxidases catalyzing conversion of glycolaldehyde into glyoxal. The enzymatic oxidation of glycolaldehyde into glyoxal was first reported in alcohol oxidases (AODs) from methylotrophic yeasts such as Candida and Pichia, and glycerol oxidase (GLOD) from Aspergillus japonicus, although it had been reported that these enzymes are specific to short-chain linear aliphatic alcohols and glycerol, respectively. These enzymes continuously oxidized ethylene glycol into glyoxal via glycolaldehyde. The AODs produced by Aspergillus ochraceus and Penicillium purpurescens also oxidized glycolaldehyde. A new enzyme exhibiting oxidase activity for glycolaldehyde was reported from a newly isolated bacterium, Paenibacillus sp. AIU 311. The Paenibacillus enzyme exhibited high activity for aldehyde alcohols such as glycolaldehyde and glyceraldehyde, but not for methanol, ethanol, ethylene glycol or glycerol. The deduced amino acid sequence of the Paenibacillus AOD was similar to that of superoxide dismutases (SODs), but not to that of methylotrophic yeast AODs. Then, it was demonstrated that SODs had oxidase activity for aldehyde alcohols including glycolaldehyde. The present paper describes characteristics of glycolaldehyde oxidation by those enzymes produced by different microorganisms.  相似文献   

14.
Many enzymes of methanol metabolism of methylotrophic yeasts are located in peroxisomes whereas some of them have the cytosolic localization. After shift of methanol-grown cells of methylotrophic yeasts to glucose medium, a decrease in the activity of cytosolic (formaldehyde dehydrogenase, formate dehydrogenase, and fructose-1,6-bisphosphatase [FBP]) along with peroxisomal enzymes of methanol metabolism is observed. Mechanisms of inactivation of cytosolic enzymes remain unknown. To study the mechanism of FBP inactivation, the changes in its specific activity of the wild type strain GS200, the strain with the deletion of the GSS1 hexose sensor gene and strain defected in autophagy pathway SMD1163 of Komagataella phaffii with or without the addition of the MG132 (proteasome degradation inhibitor) were investigated after shift of methanol-grown cells in glucose medium. Western blot analysis showed that inactivation of FBP in GS200 occurred due to protein degradation whereas inactivation in the strains SMD1163 and gss1Δ was negligible in such conditions. The effect of the proteasome inhibitor MG132 on FBP inactivation was insignificant. To confirm FBP degradation pathway, the recombinant strains with GFP-labeled Fbp1 of K. phaffii and red fluorescent protein-labeled peroxisomes were constructed on the background of GS200 and SMD1163. The fluorescent microscopy analysis of the constructed strains was performed using the vacuolar membrane dye FM4-64. Microscopic data confirmed that Fbp1 degrades by autophagy pathway in K. phaffii. K. phaffii transformants, which express heterologous β-galactosidase under FLD promoter, have been constructed.  相似文献   

15.
Emerging applications of the methylotrophic yeasts   总被引:8,自引:0,他引:8  
The use of methylotrophic yeasts for the production of single-cell-protein (SCP), alcohol oxidase and fine chemicals has been proposed. Fermentation technology developed for the growth of these yeasts on methanol at high cell densities has been commercialized. However, it is the production of heterologous recombinant proteins by Pichia pastoris that is emerging as the most significant application of the methylotrophic yeasts.  相似文献   

16.
Abstract The use of methylotrophic yeasts for the production of single-cell-protein (SCP), alcohol oxidase and fine chemicals has been proposed. Fermentation technology developed for the growth of these yeasts on methanol at high cell densities has been commercialized. However, it is the production of heterologous recombinant proteins by Pichia pastoris that is emerging as the most significant application of the methylotrophic yeasts.  相似文献   

17.
Kazuo Iwata 《Mycopathologia》1978,65(1-3):141-154
Although the mechanism of fungal infections, particularly that of opportunistic fungus infections, has been studied extensively, much still remains to be clarified. As is the case for certain bacterial infections, it has long been assumed by numerous investigators that some toxins, enzymes and other metabolites produced in vitro as well as in vivo by pathogenic fungi or their cellular constituents might be responsible for the establishment of fungal infections. However, there are very few papers which deal with isolation and/or characterization of pathogenic fungus-derived toxins, particularly those of high molecular weight, to sufficiently meet various criteria for toxins including etiopathological ability. Likewise, it has been speculated that certain enzymes produced by pathogenic fungi are related to the pathogenesis of infections with the fungi implicated, but no direct evidence has been provided.It is commonly held by researchers concerned with medical mycology that the lowering of specific and/or nonspecific resistance of a host to pathogenic fungi is a prerequisite for the establishment of infections, particularly opportunistic infections. However, it is also accepted that if a given fungus possesses no parasite factors (e.g. toxigenicity, invasiveness and others), it would be unable to initiate infection even when the host is in a severe immunodeficient state. This is supported by our recent studies working with Saccharomyces cerevisiae and some other so-called nonpathogenic yeasts (unpublished data). Based on these considerations, the author and his co-workers have attempted to isolate several high and low molecular weight toxins in a pure state from virulent strains of Candida albicans and Aspergillus fumigatus as opportunist. Studies have also been made on the etiopathological roles of some successfully isolated toxins in infections with the fungi implicated (46).In addition to our experimental results, general concepts in fungal toxins, particularly those related to such toxins as isolated in our laboratory are outlined. Since opportunistic fungus infections have created a global problem because of their world-wide prevalence, a sharp demarcation between the so-called pathogenic and nonpathogenic fungi has become vague. Despite this situation, two terms are conventionally used throughout this paper.The author thanks Drs. H. Yamaguchi and K. Uchida, Y. Yamamoto, T. Hiratani, and Y. Nozu for their collaboration during these studies.  相似文献   

18.
Since the mid-1990s, there have been tremendous advances in our understanding of the roles that lipid-modifying enzymes play in various intracellular membrane trafficking events. Phospholipases represent the largest group of lipid-modifying enzymes and accordingly display a wide range of functions. The largest class of phospholipases are the phospholipase A(2) (PLA2) enzymes, and these have been most extensively studied for their roles in the generation lipid signaling molecules, e.g. arachidonic acid. In recent years, however, cytoplasmic PLA2 enzymes have also become increasingly associated with various intracellular trafficking events, such as the formation of membrane tubules from the Golgi complex and endosomes, and membrane fusion events in the secretory and endocytic pathways. Moreover, the ability of cytoplasmic PLA2 enzymes to directly affect the structure and function of membranes by altering membrane curvature suggests novel functional roles for these enzymes. This review will focus on the role of cytoplasmic PLA2 enzymes in intracellular membrane trafficking and the mechanisms by which they influence membrane structure and function .  相似文献   

19.
Houard S  Heinderyckx M  Bollen A 《Biochimie》2002,84(11):1089-1093
Methylotrophic yeasts, named after their ability to grow on methanol as the sole carbon source, have raised large interest as recombinant protein factories. In this review, we explain the basic mechanisms underlying this interest and describe the minimal requirements to transform the two genera recognized as methylotrophic, Pichia and Candida, into a powerful protein production tool. We present a comparison between this group of yeasts and the conventional yeasts used as expression system in view of productivity, level of secretion and quality of post-translational modifications. Selected examples of recombinant protein produced by methylotrophic yeast are also included.  相似文献   

20.
Routine screening of indigenous and recombinant plasmids in pink facultative methylotrophic bacteria has been difficult, time-consuming, and yields variable results. We report a modified alkaline hydrolysis method for rapid plasmid isolation from these organisms that reproducibly results in good yields of closed circular plasmid DNA which can be readily digested with restriction enzymes. This method greatly facilitates direct screening of indigenous and introduced recombinant plasmids in the methylotrophic host strain. We have confirmed earlier findings that the original NCIB wild-type strain of Methylobacterium sp. strain AM1 (NCIB 9133) contains three cryptic plasmids. However, sizing of these plasmids by comparison to standards and by restriction fragment analysis suggests that they are larger than previously reported. We have designated these plasmids pAM1-1 (65 kb), pAM1-2 (40 kb) and pAM1-3 (33 kb). We have also shown that a rifamycin-resistant strain of Methylobacterium sp. strain AM1 used routinely in our laboratory lacks pAM1-2, although no phenotype has been associated with its loss. Finally, we have shown that another pink facultative methylotroph, Methylobacterium isolate (#YK1), contains three cryptic plasmids of approximately 43, 37 and 22 kb, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号