首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We isolated a 38 kDa ssDNA-binding protein from the unicellular cyanobacterium Synechococcus sp. strain PCC 6301 and determined its N-terminal amino acid sequence. A genomic clone encoding the 38 kDa protein was isolated by using a degenerate oligonucleotide probe based on the amino acid sequence. The nucleotide sequence and predicted amino acid sequence revealed that the 38 kDa protein is 306 amino acids long and homologous to the nuclear-encoded 370 amino acid chloroplast ribosomal protein CS1 of spinach (48% identity), therefore identifying it as ribosomal protein (r-protein) S1. Cyanobacterial and chloroplast S1 proteins differ in size from Escherichia coli r-protein S1 (557 amino acids). This provides an additional evidence that cyanobacteria are closely related to chloroplasts. The Synechococcus gene rps1 encoding S1 is located 1.1 kb downstream from psbB, which encodes the photosystem 11 P680 chlorophyll a apoprotein. An open reading frame encoding a potential protein of 168 amino acids is present between psbB and rps1 and its deduced amino acid sequence is similar to that of E. coli hypothetical 17.2 kDa protein. Northern blot analysis showed that rps1 is transcribed as a monocistronic mRNA.  相似文献   

2.
The ribosomal protein gene rps4 was cloned and sequenced from the chloroplast genome of Chlamydomonas reinhardtii. The N-terminal 213 amino acid residues of the S4 protein are encoded in the single-copy region (SCR) of the genome, while the C-terminal 44 amino acid residues are encoded in the inverted repeat (IR). The deduced 257 amino acid sequence of C. reinhardtii S4 is considerably longer (by 51–59 residues) than S4 proteins of other photosynthetic species and Escherichia coli, due to the presence of two internal insertions and a C-terminal extension. A short conserved C-terminal motif found in all other S4 proteins examined is missing from the C. reinhardtii protein. In E. coli, mutations in the S4 protein suppress the streptomycin-dependent (sd) phenotype of mutations in the S12 protein. Because we have been unable to identify similar S4 mutations among suppressors of an sd mutation in C. reinhardtii S12 obtained using UV mutagenesis, we made site-directed mutations [Arg68 (CGT) to Len (CTG and CTT)] in the wild-type rps4 gene equivalent to an E. coli Gln53 to Len ribosomal ambiguity mutation (ram), which suppresses the sd phenotype and decreases translational accuracy. These mutants were tested for their ability to transform the sd S 12 mutation of C. reinhardtii to streptomycin independence. The streptomycin-independent isolates obtained by biolistic transformation all possessed the original sd mutation in rps12, but none had the expected donor Leu68 mutations in rps4. Instead, six of 15 contained a Gln73 (CAA) to Pro (CCA) mutation five amino acids downstream from the predicted mutant codon, irrespective of rps4 donor DNA. Two others contained six- and ten-amino acid, in-frame insertions at S4 positions 90 and 92 that appear to have been induced by the biolistic process itself. Eight streptomycin-independent isolates analyzed had wild-type rps4 genes and may possess mutations identical to previously isolated suppressors of sd that define at least two additional chloroplast loci. Cloned rps4 genes from streptomycin-independent isolates containing the Gln73 to Pro mutation and the 6-amino acid insertion in r-protein S4 transform the sd strain to streptomycin independence.  相似文献   

3.
Cyanobacteria are prokaryotes that carry out plant-type photosynthesis and contain several eukaryotic-type RNA-binding proteins. Using a single-stranded DNA column, a 33-kDa protein was isolated and characterized from Synechococcus sp. PCC6301. This protein of 293 amino acids is similar in overall structure to the ribosomal protein S1 found in the same species, and contains three repeated units that are highly similar to the S1 motif originally found in the ribosomal protein S1 of Escherichia coli. However, the 33-kDa protein was found not to be associated with ribosomes and its nucleic acid binding specificity is distinct from that of the ribosomal protein S1. As this protein has high affinity for both single- and double-stranded DNA, as well as for poly(G) and poly(A), we tentatively named it nucleic acid-binding protein 1 (Nbp1). Received: 8 October 1999 / Accepted: 24 January 2000  相似文献   

4.
Arabidopsis thaliana ribosomal protein (r-protein) RPL23A-1 shows 54% amino acid sequence identity to the Saccharomyces cerevisiae equivalent r-protein, L25. AtRPL23A-1 also shows high amino acid sequence identity to members of the L23/L25 r-protein family in other species. R-protein L25 in S. cerevisiae has been identified as a primary rRNA-binding protein that directly binds to a specific site on yeast 26S rRNA. It is translocated to the nucleolus where it binds to 26S rRNA during early large ribosome subunit assembly; this binding is thought to play an important role in ribosome assembly. The S. cerevisiae mutant strain YCR61 expresses L25 when grown on galactose, but not glucose, medium. Transformation of YCR61 with a shuttle vector containing the AtRPL23A-1 cDNA allowed transformed colonies to grow in and on glucose selection medium. R-protein AtRPL23A-1 can complement the L25 mutation, demonstrating the functional equivalence of the two r-proteins and introducing AtRPL23A-1 as the first plant member of the L23/L25 r-protein family.  相似文献   

5.
A 2.9 kbp region from within the inverted repeat of Nicotiana chloroplast DNA hybridized with a chloroplast DNA fragment from Euglena containing the complete rps12 gene coding for ribosomal protein S12. Nucleotide sequencing within this region revealed the existance of two rps12 coding stretches interrupted by 540 bp having class II intron structure. Joining and decoding the exon regions produced a sequence of 85 amino acids colinear and 81% homologous to the S12 protein of Euglena chloroplasts and E. coli, starting from amino acid residue 38 to the stop codon. Immediately upstream of codon 38, conserved intron sequences were located. However, the 5' 37 codon of Nicotiana chloroplast rps12 could not be identified by electron microscopy of RNA-DNA hybrids within a DNA region extending 4000 bp upstream of codon 38, nor by computer search of a completely sequenced region extending for more than 9000 bp upstream of this codon. In E. coli, alteration in rps12 codons 42 or 87 causes streptomycin resistance. However, the nucleotide sequence of the identified rps12 exons in two Nicotiana chloroplast mutants resistant to streptomycin were found to be identical to that of wild type.  相似文献   

6.
We have isolated a nuclear mutant (tsp-1) of Chlamydomonas reinhardtii which is resistant to thiostrepton, an antibiotic that blocks bacterial protein synthesis. The tsp-1 mutant grows slowly in the presence or absence of thiostrepton, and its chloroplast ribosomes, although resistant to the drug, are less active than chloroplast ribosomes from the wild type. Chloroplast ribosomal protein L-23 was not detected on stained gels or immunoblots of total large subunit proteins from tsp-1 probed with antibody to the wild-type L-23 protein from C. reinhardtii. Immunoprecipitation of proteins from pulse-labeled cells showed that tsp-1 synthesizes small amounts of L-23 and that the mutant protein is stable during a 90 min chase. Therefore the tsp-1 phenotype is best explained by assuming that the mutant protein synthesized is unable to assemble into the large subunit of the chloroplast ribosome and hence is degraded over time. L-23 antibodies cross-react with Escherichia coli r-protein L11, which is known to be a component of the GTPase center of the 50S ribosomal subunit. Thiostrepton-resistant mutants of Bacillus megaterium and B. subtilis lack L11, show reduced ribosome activity, and have slow growth rates. Similarities between the thiostreptonresistant mutants of bacteria and C. reinhardtii and the immunological relatedness of Chlamydomonas L-23 to E. coli L11 suggest that L-23 is functionally homologous to the bacterial r-protein L11.  相似文献   

7.
8.
9.
The complete amino acid sequences of ribosomal proteins S11 from the Gram-positive eubacterium Bacillus stearothermophilus and of S19 from the archaebacterium Halobacterium marismortui have been determined. A search for homologous sequences of these proteins revealed that they belong to the ribosomal protein S11 family. Homologous proteins have previously been sequenced from Escherichia coli as well as from chloroplast, yeast and mammalian ribosomes. A pairwise comparison of the amino acid sequences showed that Bacillus protein S11 shares 68% identical residues with S11 from Escherichia coli and a slightly lower homology (52%) with the homologous chloroplast protein. The halophilic protein S19 is more related to the eukaryotic (45–49%) than to the eubacterial counterparts (35%)  相似文献   

10.
The gene encoding the ribosomal protein from Thermus thermophilus, TL5, which binds to the 5S rRNA, has been cloned and sequenced. The codon usage shows a clear preference for G/C rich codons that is characteristic for many genes in thermophilic bacteria. The deduced amino acid sequence consists of 206 residues. The sequence of TL5 shows a strong similarity to a general shock protein from Bacillus subtilis, named CTC. The protein CTC is homologous in its N-terminal part to the 5S rRNA binding protein, L25, from E coli. An alignment of the TL5, CTC and L25 sequences displays a number of residues that are totally conserved. No clear sequence similarity was found between TL5 and other proteins which are known to bind to 5S rRNA. The evolutionary relationship of a heat shock protein in mesophiles and a ribosomal protein in thermophilic bacteria as well as a possible role of TL5 in the ribosome are discussed.  相似文献   

11.
The ribosomal protein gene rps4 was cloned and sequenced from the chloroplast genome of Chlamydomonas reinhardtii. The N-terminal 213 amino acid residues of the S4 protein are encoded in the single-copy region (SCR) of the genome, while the C-terminal 44 amino acid residues are encoded in the inverted repeat (IR). The deduced 257 amino acid sequence of C. reinhardtii S4 is considerably longer (by 51–59 residues) than S4 proteins of other photosynthetic species and Escherichia coli, due to the presence of two internal insertions and a C-terminal extension. A short conserved C-terminal motif found in all other S4 proteins examined is missing from the C. reinhardtii protein. In E. coli, mutations in the S4 protein suppress the streptomycin-dependent (sd) phenotype of mutations in the S12 protein. Because we have been unable to identify similar S4 mutations among suppressors of an sd mutation in C. reinhardtii S12 obtained using UV mutagenesis, we made site-directed mutations [Arg68 (CGT) to Len (CTG and CTT)] in the wild-type rps4 gene equivalent to an E. coli Gln53 to Len ribosomal ambiguity mutation (ram), which suppresses the sd phenotype and decreases translational accuracy. These mutants were tested for their ability to transform the sd S 12 mutation of C. reinhardtii to streptomycin independence. The streptomycin-independent isolates obtained by biolistic transformation all possessed the original sd mutation in rps12, but none had the expected donor Leu68 mutations in rps4. Instead, six of 15 contained a Gln73 (CAA) to Pro (CCA) mutation five amino acids downstream from the predicted mutant codon, irrespective of rps4 donor DNA. Two others contained six- and ten-amino acid, in-frame insertions at S4 positions 90 and 92 that appear to have been induced by the biolistic process itself. Eight streptomycin-independent isolates analyzed had wild-type rps4 genes and may possess mutations identical to previously isolated suppressors of sd that define at least two additional chloroplast loci. Cloned rps4 genes from streptomycin-independent isolates containing the Gln73 to Pro mutation and the 6-amino acid insertion in r-protein S4 transform the sd strain to streptomycin independence.  相似文献   

12.
13.
A rice (Oryza sativa L.) cDNA clone coding for the cytoplasmic ribosomal protein L5, which associates with 5 S rRNA for ribosome assembly, was cloned and its nucleotide sequence was determined. The primary structure of rice L5, deduced from the nucleotide sequence, contains 294 amino acids and has intriguing features some of which are also conserved in other eucaryotic homologues. These include: four clusters of basic amino acids, one of which may serve as a nucleolar localization signal; three repeated amino acid sequences; the conservation of glycine residues. This protein was identified as the nuclear-encoded cytoplasmic ribosomal protein L5 of rice by sequence similarity to other eucaryotic ribosomal 5 S RNA-binding proteins of rat, chicken, Xenopus laevis, and Saccharomyces cerevisiae. Rice L5 shares 51 to 62% amino acid sequence identity with the homologues. A group of ribosomal proteins from archaebacteria including Methanococcus vanniellii L18 and Halobacterium cutirubrum L13, which are known to be associated with 5 S rRNA, also related to rice L5 and the other eucaryotic counterparts, suggesting an evolutionary relationship in these ribosomal 5 S RNA-binding proteins.  相似文献   

14.
Summary By screening a wheat mitoplast cDNA bank, we have identified an open reading frame of 444 by that has a derived amino acid sequence homologous to bacterial-type S7 ribosomal proteins. This gene, designated rps7, is located upstream of one of two 26S rRNA gene copies in the wheat mitochondrial genome and is expressed as an abundant mRNA of approximately 0.7 kb. Its 5 terminus maps to the end of an 80 by element that is closely related to sequences preceding the wheat coxII, orf25 and atp6 genes. Southern hybridization analysis indicates that rps7-homologous sequences are present in the mitochondria of rice and pea, but not soybean.  相似文献   

15.
Summary The trmD operon of Escherichia coli consists of the genes for the ribosomal protein (r-protein) S16, a 21 kDa protein (21K) of unknown function, the tRNA(m1G37)methyltransferase (TrmD), and r-protein L19, in this order. Previously we have shown that the steady-state amount of the two r-proteins exceeds that of the 21K and TrmD proteins 12- and 40-fold, respectively, and that this differential expression is solely explained by translational regulation. Here we have constructed translational gene fusions of the trmD operon and lacZ. The expression of a lacZ fusion containing the first 18 codons of the 21K protein gene is 15-fold higher than the expression of fusions containing 49 or 72 codons of the gene. This suggests that sequences between the 18th and the 49th codon may act as a negative element controlling the expression of the 21K protein gene. Evidence is presented which demonstrates that this regulation is achieved by reducing the efficiency of translation.  相似文献   

16.
The primary structure of the 23S rRNA binding ribosomal protein L1 from the 50S ribosomal subunit ofThermus thermophilus ribosomes has been elucidated by direct protein sequencing of selected peptides prepared by enzymatic and chemical cleavage of the intact purified protein. The polypeptide chain contains 228 amino acids and has a calculated molecular mass of 24,694 D. A comparison with the primary structures of the corresponding proteins fromEscherichia coli andBacillus stearothermophilus reveals a sequence homology of 49% and 58%, respectively. With respect to both proteins, L1 fromT. thermophilus contains particularly less Ala, Lys, Gln, and Val, whereas its content of Glu, Gly, His, Ile, and Arg is higher. In addition, two fragments obtained by limited proteolysis of the intact, unmodified protein were characterized.  相似文献   

17.
C M Jacks  C B Powaser  P B Hackett 《Gene》1988,74(2):565-570
The nucleotide sequence of a mouse ribosomal protein gene, identified by hybridization with the gene encoding the Drosophila ribosomal (r-) protein 49, was determined by cloning in the phage M13 and dideoxy sequencing. The mouse gene, L32', is a member of the multigene family encoding mammalian r-protein L32. L32' is a processed gene that could encode a 135 amino acid protein similar to that of mouse L32 and Drosophila r-protein 49.  相似文献   

18.
Summary Chloroplast ribosomal protein L-18 is made in the cytoplasm as a precursor, imported into the chloroplast, and processed to the mature form in two steps. We report here that the intermediate produced following the first processing step associates specifically with a ribosomal complex migrating with the chloroplast ribosome large subunit peak in sucrose gradients, and is then processed into mature L-18. This processing event is slowed down in mutant cells deficient in synthesis of non-ribosomal proteins in the chloroplast. Thus the second processing step of L-18 occurs during ribosome assembly, depends on one or more nonribosomal proteins made in the chloroplast, and may be required for the maturation of the 50 S ribosome subunit. The mature L-18 protein shows extensive sequence homology at its amino-terminus to Escherichia coli ribosomal protein L27, which is located at the interface, between 30 S and 50 S subunits and is involved in the formation of the peptidyl-tRNA binding site.  相似文献   

19.
Eukaryotic ribosomes contain an acidic ribosomal protein of about 38 kDa which shows immunological cross-reactivity with the 13 kDa-type acidic ribosomal proteins that are related to L7/L12 of bacterial ribosomes. By using a cDNA clone for 38 kDa-type acidic ribosomal protein A0 from the yeast Saccharomyces cerevisiae, we have cloned a genomic DNA encoding A0 and determined the sequence of 1,614 nucleotides including about 500 nucleotides in the 5'-flanking region. The gene lacks introns and possesses two boxes homologous to upstream activation sequences (UASrpg) in the 5'-flanking region. The amino acid sequence of A0 deduced from the nucleotide sequence shows that A0 shares a highly similar carboxyl-terminal region of about 40 amino acids in length with 13 kDa-type acidic ribosomal proteins, including an identical carboxyl-terminal, DDDMGFGLFD. In the amino-terminal region A0 contains an arginine-rich segment which shows a low but distinct similarity to that of bacterial ribosomal protein L10 through which L10 is thought to bind to 23S rRNA. On the other hand, the carboxyl-terminal half of A0 is enriched with hydrophobic amino acid residues including four pairs of phenylalanine residues which are all conserved in a human homologue.  相似文献   

20.
R E Bradshaw  T M Pillar 《Gene》1991,108(1):157-162
A genomic clone has been isolated from Aspergillus nidulans which is homologous to the ribosomal (r) protein S16-encoding gene of Saccharomyces cerevisiae (S16A) and the r-protein S19-encoding gene of rat (S19). The amino acid (aa) sequences, deduced from nucleotide (nt) sequence analysis, show that in both cases more than 63% of the aa are conserved. The proposed A. nidulans r-protein S16 gene (rps16) differs from that of S. cerevisiae in that it occurs as a single copy in the haploid genome (rather than two copies as in yeast) and contains two putative introns (rather than one). The mRNA leader is long compared to many Aspergillus genes, commencing 293 nt upstream from the coding region, and contains an open reading frame of 13 codons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号