首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure of a mannose-rich glycopeptide from a human pathological IgM has been investigated. It belongs to the group I (simple) glycopeptides and contains only mannose and N-acetylglucosamine residues in a molar ratio of 10:2. The structures of its oligosaccharide moiety and peptide chain have been determined: its molecular localization is specified and the relation between its biosynthesis and the oligosaccharide structure determine is discussed. Based on the alpha- and beta-mannosidase digestions and permethylation studies for the oligosaccharide moiety, and on the results obtained after sequential analysis of the peptide chain, the following structure is proposed for the mannose-rich IgM Du glycopeptide: (Formula: see text). The recovery of one molecule of this glycopeptide per molecule of heavy chain and the determination of the amino acid sequence have led us to locate this glycopeptide on asparagine 402 of the Fc portion of the heavy chain mu of IgM Du.  相似文献   

2.
The primary structure of the oligosaccharide moiety of a glycosphingolipid can be elucidated by employing high-field proton nuclear magnetic resonance (NMR) spectroscopy. Information with respect to the composition and configuration of its sugar residues, and the sequence and linkage sites of the oligosaccharide chain can be obtained by employing a variety of one- and two-dimensional techniques. The latter include both scalar and dipolar correlated two-dimensional NMR spectroscopy. These techniques are also useful in establishing the solution conformation (secondary structure) of the oligosaccharide moiety. Examples in utilizing these techniques in elucidating the primary and secondary structures of glycolipids are presented.  相似文献   

3.
Total lipids extracted from J-positive cattle serum, erythrocytes or spleen exhibit J blood-group activity. The J subsance is concentrated in a lipid fraction obtained by column chromatography. Following mild alkaline hydrolysis or reduction with complex hydrides (LiAlH4, LiBH4), the J activity remains detectable in this lipid fraction even though all acyl ester groups have been destroyed as revealed by ester group determination. This disagrees with the suggestion that fatty acyl esters are essential for J activity. This was confirmed by experiments with a water-soluble J-active product prepared by ozone treatment of glycosphingolipids from bovine spleen. The results of these experiments are in favour of a glycosphingolipid containing anunusually lang oligosaccharide chain. Furthermore, it appears that the terminal moiety of the J determinant is not necessarily an N-acetyl galactosamine unit as suggested previously.  相似文献   

4.
The synthesis of the complex-type oligosaccharide unit of the vesicular stomatitis virus G protein is initiated by the en bloc transfer of a high molecular weight oligosaccharide from a lipid carrier to the nascent polypeptide. Following transfer the oligosaccharide is "processed" by removal of glucose and mannose residues and the sugars that constitute the outer branches of the complex-type oligosaccharide are added. The structure of the oligosaccharide moiety of the lipid-linked precursor has been elucidated in order to further define the steps involved in processing. Since it was not feasible to obtain adequate amounts of material for standard structural studies, most of the structural studies were performed on radiolabeled material, with radioactivity incorporated differentially into glucose, mannose, and N-acetylglucosamine. Based on endo-beta-N-acetylglucosaminidase CII digestion, alpha-mannosidase digestion, acetolysis, Smith periodate degradation, methylation analysis, and periodate oxidation, we propose the following structure for the oligosaccharide moiety of the lipid-linked oligosaccharide.  相似文献   

5.
A glycopeptide from human pathological IgM has been prepared and characterized. It contains an unusual oligosaccharide core with only one N-acetylglucosamine carrying six mannosyl residues, and linked to the asparagine. The involvement of sugar has been determined by use of α and β mannosidases and endoglycosidase digestions. The amino acid sequence has been elucidated and from the obtained data it could be located on the C terminal portion of the IgM Du heavy chain at the Asn 563.This glycopeptide is characterized by the absence of a N-N-diacetylchitobiose unit in the oligosaccharide moiety and its condensed structure is proposed:
  相似文献   

6.
Total lipids extracted from J-positive cattle serum, erythrocytes or spleen exhibit J blood-group activity. The J subsance is concentrated in a lipid fraction obtained by column chromatography. Following mild alkaline hydrolysis or reduction with complex hydrides (LiAlH4, LiBH4), the J activity remains detectable in this lipid fraction even though all acyl ester groups have been destroyed as revealed by ester group determination. This disagrees with the suggestion that fatty acyl esters are essential for J activity. This was confirmed by experiments with a water-soluble J-active product prepared by ozone treatment of glycosphingolipids from bovine spleen. The results of these experiments are in favour of a glycosphingolipid containing an unusually lang oligosaccharide chain. Furthermore, it appears that the terminal moiety of the J determinant is not necessarily an N-acetyl galactos-amine unit as suggested previously.  相似文献   

7.
Identification of three oligosaccharide binding sites in ricin.   总被引:6,自引:0,他引:6  
The galactoside-binding sites of ricin B chain can be blocked by affinity-directed chemical modification using a reactive ligand derived from asialoglycopeptides containing triantennary N-linked oligosaccharides. The terminal galactosyl residue of one branch of the triantennary oligosaccharide is modified to contain a reactive dichlorotriazine moiety. Two separate galactoside-binding sites have been clearly established in the ricin B chain by X-ray crystallography [Rutenber, E., and Robertus, J. D. (1991) Proteins 10, 260-269], and it is necessary to covalently attach two such reactive ligands to the B chain to block its binding to galactoside affinity matrixes. A method was developed using thiol-specific labeling of the ligand combined with subsequent immunoaffinity chromatography which allowed the isolation of ricin B chain peptides covalently linked to the ligand from proteolytic digests of purified blocked ricin. The sites of covalent attachment of the two ligands in blocked ricin were inferred from sequence analysis to be Lys 62 in domain 1 of the B chain and Tyr 148 in domain 2. A minor species of blocked ricin contains a third covalently attached ligand. From the analysis of peptides derived from blocked ricin enriched in this species, it is inferred that Tyr 67 in domain 1 is the specific site on the ricin B chain where a third reactive ligand becomes covalently linked to the protein. These results are interpreted as providing support for the notion that the ricin B chain has three oligosaccharide binding sites.  相似文献   

8.
Alpha-L-rhamnopyranosyl-(1-->4)-[alpha-L-rhamnopyranosyl-(1-->2)]-beta-D-glucopyranose (chacotriose) is the oligosaccharide moiety of dioscin. Chacotriosyl trichloroacetimidate was synthesized from d-glucose and l-rhamnose, and glycosylated to mevalonate (diosgenin, cholesterol, and glycyrrhetic acid) to yield dioscin and neosaponins. In order to simplify the structure of the aglycone part, the mevalonate moiety was replaced with double-chain neoglycolipids that mimicked glycosyl ceramides. A cytotoxicity test revealed the importance of the glycosidic linkage of the naturally occurring beta-form and that dioscin and the neoglycolipid with the longest chain showed a moderate activity.  相似文献   

9.
Two types of linkages between the carbohydrate and the peptide moiety in the glycopeptide from Ascobolus furfuraceus are described. Treatment with mild alkali produced beta-elimination of a small oligosaccharide. Evidence for the O-glycosidic linkage was provided by increase in absorbance at 240 nm, decrease in threonine and serine content after the alkaline treatment and detection of tritiated oligosaccharide following alkaline NaB3H4 reduction. Mannose is the sugar involved in the O-glycosidic linkage. The remaining glycopeptide was branched by galactofuranose units, which were selectivity released by mild acid hydrolysis. The N-glycosidic linkage of the sugar chain was conclusively proved by cleavage with endo-beta-N-acetyl-glucosaminidase. Sequential NaB3H4 reduction and acid hydrolysis gave [3H]glucosaminitol. The structure of the sugar chain was studied by 13C NMR spectroscopy and by methylation analysis.  相似文献   

10.
J E Mole  A S Bhown  J C Bennett 《Biochemistry》1977,16(16):3507-3513
The primary structure of the J chain from a human Waldenstr?ms IgM protein has been determined using a combination of automated and conventional Edman degradative procedures. Eighty-five percent of the sequence was established with peptides isolated from tryptic digests of carboxyamidomethylated and citraconylated J chain, many of which were sequenced completely. Alignment of the tryptic fragments was achieved with peptides generated by chymotrypsin and limited acid hydrolyses. The j chain consits of 129 amino acids and a single oligosaccharide structure linked to asparagine at positon 43 of the sequence. The molecular weight, including 7.5% carbohydrate by weight, is 16 422. The location and arrangement of three half-cystines could be deduced from previous studies, whereas the pairing of the remaining five disulfide bonds still needs to be clarified.  相似文献   

11.
Structural studies were carried out on a rhamnose-rich polysaccharide isolated from the O-polysaccharide fraction of lipopolysaccharide in Pseudomonas aeruginosa IID 1008 (ATCC 27584) after destruction of the major O-specific chain by alkaline treatment. The isolated polysaccharide contained rhamnose, 3-O-methyl-6-deoxyhexose, glucose, xylose, alanine, galactosamine and phosphorus in a molar ratio of 67:6.9:4.3:2.1:1.1:1.0:4.1. Data from analysis involving Smith degradation, methylation, 1H-NMR spectroscopy and optical rotation measurement showed that the polysaccharide was built up of three moieties, a rhamnan chain composed of about 70 D-rhamnose residues, the core chain and an oligosaccharide chain comprising 3-O-methyl-6-deoxyhexose, xylose, rhamnose and probably glucose. The repeating unit of the rhamnan chain was indicated to have the following structure:----3)D-Rha(alpha 1----3)D-Rha(alpha 1----2)D-Rha(alpha 1----. This structure is identical with that proposed previously for the repeating unit of the side chain of lipopolysaccharide from plant pathogenic bacteria Pseudomonas syringae pv. morsprunorum C28 [Smith, A.R.W., Zamze, S.E., Munro, S.M., Carter, K. J. and Hignett, R.C. (1985) Eur. J. Biochem. 149, 73-78].  相似文献   

12.
V J Chen  F Wold 《Biochemistry》1984,23(14):3306-3311
This work was undertaken as part of a search for well-characterized glycoprotein models in which both the oligosaccharide structure, the number of oligosaccharide chains, and the precise location of these chains in the protein are known. On the basis of the fact that high-affinity ligand binding sites have been defined precisely for several proteins in terms of both number and relative location, the hypothesis to be tested was that if oligosaccharide chains were covalently attached to such high-affinity ligands, they would be specifically bound in the ligand sites of the appropriate protein, thus permitting the preparation of neoglycoproteins of precise predetermined oligosaccharide valency and topography. To test this hypothesis, pyridoxal 5'-phosphate was reductively (NaB3H4) aminated with the alpha-amino group of the asparagine oligosaccharide Man6-GlcNAc2-Asn from ovalbumin. When the resulting phosphopyridoxylated oligosaccharide (PG) was added to the apo form of aspartate aminotransferase (AAT; EC 2.6.1.1, the cytosolic enzyme from pig heart, consisting of two subunits and containing two coenzyme binding sites), a 2:1 (PG-AAT) complex was formed which could be characterized on the basis of tritium content, the absorbance and fluorescence of the pyridoxamine phosphate moiety of PG, and the concanavalin A binding properties acquired by AAT through the incorporation of the oligosaccharide. As expected from the established properties of the holoenzyme, the AAT-PG complex is stable in the absence of phosphate or vitamin B6 derivatives and can be dialyzed for 24 h without any significant loss of PG. According to the three-dimensional model of AAT, the oligosaccharide chain of PG should be partially masked in the coenzyme binding pocket.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The structure of the oligosaccharide chain of the lipid-linked oligosaccharide that serves as a donor of oligosaccharide chain to proteins of hen oviduct membranes has been investigated. A [Man-14C]glycopeptide fraction was prepared from membrane glycoproteins labeled with GDP-[14C]mannose. Reductive alkaline cleavage of this glycopeptide yielded a reduced oligosaccharide that, by four criteria, was identical with reduced [Man-14C]oligosaccharide prepared from [Man-14C]oligosaccharide-lipid. The structure of the oligosaccharide chain of the [Man-14C]glycopeptide was investigated by cleavage with a specific endo-beta-N-acetylglucosaminidase, followed by treatment of the released oligosaccharide with purified al alpha-and beta-mannosidases. By this procedure it was possible to establish the structure of the cleavage product as (alpha-Man)n-beta-Man-(1 leads to 4)-GlcNAc. Similar studies were performed on the [GlcNAc-14C]oligosaccharide prepared by hydrolysis of [GlcNAc-14C]oligosaccharide-lipid. The results indicate that the structure of the intact oligosaccharide is (alpha-Man)n-beta-Man-(1 leads 4)-beta-GlcNAc-(1 leads to 4)-GlcNAc. These experiments, coupled with earlier enzymatic studies on synthesis of the glycoproteins from the lipid-linked oligosaccharide, provide strong evidence that the structure of the oligosaccharide intermediate and the oligosaccharide chain of the glycoprotein product contain the same core structure found in many secretory glycoproteins.  相似文献   

14.
The introduction of acellular pertussis vaccines has greatly enhanced the safety profile of vaccines to prevent whooping cough. Pertussis toxin (Ptx) is one component produced by Bordetella pertussis that is contained in all of these vaccines, either in combination with other known pertussis virulence factors or as the sole pertussis component, combined with tetanus and diphtheria toxoids. A hydrogen peroxide toxoid of Ptx has been shown to be efficacious in preventing pertussis infections in a mass vaccination trial and is presently licensed in the United States and Europe (B. Trollfors, J. Taranger, T. Lagergard, L. Lind, V. Sundh, G. Zackrisson, C. U. Lowe, W. Blackwelder, and J. B. Robbins, N. Engl. J. Med. 333:1045-1050, 1995). The industrial production of Ptx can be performed through the cultivation of B. pertussis in well-defined growth media, in which the components can be well characterized and their origins can be documented. Once the bacteria are removed from the culture, Ptx can be isolated from the supernatant and purified by using the technique described by Sekura et al. (R. D. Sekura, F. Fish, C. R. Manclark, B. Meade, and Y. L. Zhang, J. Biol. Chem. 258:14647-14651, 1983). The only drawback of this procedure, which combines two affinity chromatography steps, one with Blue Sepharose and a second with matrix-bound bovine fetuin (BF), is the source and purity of the BF. Concern about vaccine preparations that may possibly risk contamination by material associated with bovine spongioform encephalopathy has continued to increase. We thus sought a replacement for the BF affinity chromatography and, more specifically, for the glycosidic moiety on BF. We describe here the identification of a seven-amino-acid peptide that mimics the glycosidic moiety on BF to which Ptx binds. Furthermore, we have constructed an affinity column containing this peptide that can be used to replace BF in Ptx purification. Finally, we used the X-ray crystallographic structure of Ptx bound to the oligosaccharide moiety of BF as a scaffold and replaced the oligosaccharide with the peptide.  相似文献   

15.
The introduction of acellular pertussis vaccines has greatly enhanced the safety profile of vaccines to prevent whooping cough. Pertussis toxin (Ptx) is one component produced by Bordetella pertussis that is contained in all of these vaccines, either in combination with other known pertussis virulence factors or as the sole pertussis component, combined with tetanus and diphtheria toxoids. A hydrogen peroxide toxoid of Ptx has been shown to be efficacious in preventing pertussis infections in a mass vaccination trial and is presently licensed in the United States and Europe (B. Trollfors, J. Taranger, T. Lagergard, L. Lind, V. Sundh, G. Zackrisson, C. U. Lowe, W. Blackwelder, and J. B. Robbins, N. Engl. J. Med. 333:1045-1050, 1995). The industrial production of Ptx can be performed through the cultivation of B. pertussis in well-defined growth media, in which the components can be well characterized and their origins can be documented. Once the bacteria are removed from the culture, Ptx can be isolated from the supernatant and purified by using the technique described by Sekura et al. (R. D. Sekura, F. Fish, C. R. Manclark, B. Meade, and Y. L. Zhang, J. Biol. Chem. 258:14647-14651, 1983). The only drawback of this procedure, which combines two affinity chromatography steps, one with Blue Sepharose and a second with matrix-bound bovine fetuin (BF), is the source and purity of the BF. Concern about vaccine preparations that may possibly risk contamination by material associated with bovine spongioform encephalopathy has continued to increase. We thus sought a replacement for the BF affinity chromatography and, more specifically, for the glycosidic moiety on BF. We describe here the identification of a seven-amino-acid peptide that mimics the glycosidic moiety on BF to which Ptx binds. Furthermore, we have constructed an affinity column containing this peptide that can be used to replace BF in Ptx purification. Finally, we used the X-ray crystallographic structure of Ptx bound to the oligosaccharide moiety of BF as a scaffold and replaced the oligosaccharide with the peptide.  相似文献   

16.
A powerful method for detailed structural analysis based on electrospray ionization high-capacity ion-trap multiple-stage mass spectrometry (MS) is for the first time introduced in glycolipidomics. The method was optimized for accurate structural elucidation of human brain gangliosides and specifically applied to normal adult human hippocampus-associated structures. The multiple-stage MS experiments reported here allowed for a complete structural characterization of the oligosaccharide moiety of a GM1 ganglioside species. This was achieved by elucidating the sequence and identification of the GM1a structural isomer from the sialic acid attachment site at the neutral oligosaccharide chain. Moreover, the determination of the d18:1/18:0 sphingoid base/fatty acid composition of the ceramide moiety could be confirmed by this method. The novel protocol developed here proves high potential for rapid, reliable, and reproducible investigation of complex lipid-linked carbohydrates such as polysialylated gangliosides or species carrying some other groups that easily cleave off.  相似文献   

17.
We have previously identified a 130-kD cell surface protein that is involved in calcium uptake and skeleton formation by gastrula stage embryos of the sea urchin Strongylocentrotus purpuratus (Carson et al., 1985. Cell. 41:639-648). A monoclonal antibody designated mAb 1223 specifically recognizes the 130-kD protein and inhibits Ca+2 uptake and growth of the CaCO3 spicules produced by embryonic primary mesenchyme cells cultured in vitro. In this report, we demonstrate that the epitope recognized by mAb 1223 is located on an anionic, asparagine-linked oligosaccharide chain on the 130-kD protein. Combined enzymatic and chemical treatments indicate that the 1223 oligosaccharide contains fucose and sialic acid that is likely to be O-acetylated. Moreover, we show that the oligosaccharide chain containing the 1223 epitope specifically binds divalent cations, including Ca+2. We propose that one function of this negatively charged oligosaccharide moiety on the surfaces of primary mesenchyme cells is to facilitate binding and sequestration of Ca+2 ions from the blastocoelic fluid before internalization and subsequent deposition into the growing CaCO3 skeleton.  相似文献   

18.
The structures of the major sialylated oligosaccharide chains in swine tracheal mucin glycoprotein were established. The oligosaccharide chains were released by treatment with alkaline borohydride and isolated by gel filtration on Bio-Gel P6 columns and chromatography on DEAE-cellulose. The neutral oligosaccharide chains in this glycoprotein have been characterized in previous studies (Rana, S.S., Chandrasekaran, E.V., Kennedy, J., and Mendicino, J. (1984) J. Biol. Chem. 259, 12899-12907; Chandrasekaran, E.V., Rana, S.S., Davila, M., and Mendicino, J. (1984) J. Biol. Chem. 259, 12908-12914). The present study reports the isolation of four monosialylated chains ranging in length from 6 to 14 sugar units, two disialylated chains containing 6 and 12 sugar units, and one trisialylated chain containing 9 sugar units. The structure of the sialylated oligosaccharides was determined by permethylation analysis and sequential hydrolysis with specific exoglycosidases. The following structures (where GalNAcol is N-acetylgalactosaminitol) were assigned to these oligosaccharides.  相似文献   

19.
The single oligosaccharide moiety of the major myelin glycoprotein, P0, resides in an immunoglobulin-like domain that appears to participate in homophilic binding. The studies presented here indicate that the structure of the P0 oligosaccharide from rat nerve changes as a function of Schwann cell age. Examination of 5-day-old nerve revealed that P0 contained predominantly endo-beta-N-acetylglucosaminidase H (endo H)-resistant, complex-type oligosaccharide. In contrast, P0 from adult rats had mostly endo H-sensitive carbohydrate, indicating the presence of appreciable high-mannose and/or hybrid-type oligosaccharide on the glycoprotein. The endo H-sensitive and -resistant P0 of adult nerve could be readily phosphorylated by protein kinase C, as could the complex-type P0 from 5-day-old nerve. This suggests that the glycoprotein progresses to the plasma membrane and myelin regardless of the type of oligosaccharide chain. Analysis of 35SO4(2-)-labeled P0 showed that the sulfate group was found on both endo H-sensitive and -resistant oligosaccharide. The endo H-sensitive P0 carbohydrate from adult nerve appears to be primarily of the hybrid type, as evidenced by (a) the elution profile of [3H]mannose-labeled P0 glycopeptides from adult nerve during concanavalin A chromatography and (b) the inability of P0 from adult nerve to interact with Galanthus nivalis agglutinin. The observed age-dependent changes of P0 oligosaccharide may modify the binding properties of this myelin glycoprotein.  相似文献   

20.
New chemical trends in ganglioside research   总被引:3,自引:0,他引:3  
A report is given of recent progress in the methodology for isolation of gangliosides from natural sources, for the preparation of molecular species of gangliosides homogeneous in both the oligosaccharide and ceramide portions of the molecule, for chemical manipulation and derivatization of gangliosides, and for the preparation of gangliosides radiolabelled in different parts of the molecule. Particular emphasis has been given to: high performance liquid chromatographic procedures capable to separate gangliosides on the basis of their oligosaccharide or ceramide moieties and yielding completely homogeneous compounds, that is gangliosides with a single oligosaccharide, a single long chain base and a single fatty acid; two-dimensional thin-layer chromatographic procedures, provided with a fully computerized quantification system, particularly suitable to identifying gangliosides containing alkali-labile linkages, including ganglioside lactones; chemical procedures of high yield for reducing gangliosides at the double bond of long chain base, for selective removal of the fatty acyl moiety and replacement with a novel fatty acid, and for the synthesis of ganglioside lactones; chemical procedures for inserting fluorescent, paramagnetic or photoreactive probes at the fatty acyl part of the ganglioside molecule; procedures for chemical isotopic radiolabelling of gangliosides at the level of sialic acid acetyl group and at the fatty acid moiety. Examples are provided evidencing the significance and potential use of a variety of ganglioside derivatives in the study of ganglioside metabolism and functional implications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号