首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chloroplast translation is mediated by nucleus-encoded factors that interact with distinct cis-acting RNA elements. A U-rich sequence within the 5' untranslated region of the psbD mRNA has previously been shown to be required for its translation in Chlamydomonas reinhardtii. By using UV cross-linking assays, we have identified a 40-kDa RNA binding protein, which binds to the wild-type psbD leader, but is unable to recognize a nonfunctional leader mutant lacking the U-rich motif. RNA binding is restored in a chloroplast cis-acting suppressor. The functions of several site-directed psbD leader mutants were analyzed with transgenic C. reinhardtii chloroplasts and the in vitro RNA binding assay. A clear correlation between photosynthetic activity and the capability to bind RNA by the 40-kDa protein was observed. Furthermore, the data obtained suggest that the poly(U) region serves as a molecular spacer between two previously characterized cis-acting elements, which are involved in RNA stabilization and translation. RNA-protein complex formation depends on the nuclear Nac2 gene product that is part of a protein complex required for the stabilization of the psbD mRNA. The sedimentation properties of the 40-kDa RNA binding protein suggest that it interacts directly with this Nac2 complex and, as a result, links processes of chloroplast RNA metabolism and translation.  相似文献   

2.
Phosphoglycerate kinase 2 (PGK2) is a germ cell-specific protein whose mRNA is translationally regulated in the mammalian testis. Using RNA affinity chromatography with the 3′-untranslated region (UTR) of Pgk2 mRNA and adult testis extracts, several associated proteins including a novel isoform of the AU-rich element RNA-binding protein and KH-type splicing regulatory protein (KSRP) were identified. KSRP, a protein of ~75 kDa, is widely expressed in somatic and germ cells where it is primarily nuclear. In addition to the ~75-kDa KSRP, a ~52-kD KSRP, t-KSRP, is present in the cytoplasm of a subpopulation of germ cells. t-KSRP binds directly to a 93-nt sequence (designated the F1 region) of the 3′-UTR of the Pgk2 mRNA and destabilizes Pgk2 mRNA constructs in testis extracts and in transfected cells. We conclude that this testicular variant of the multifunctional nucleic acid–binding protein, KSRP, serves as a decay-promoting factor for Pgk2 mRNA in male germ cells.  相似文献   

3.
The editing of apolipoprotein B (apo-B) mRNA involves the site-specific deamination of cytidine to uracil. The specificity of editing is conferred by an 11-nucleotide mooring sequence located downstream from the editing site. Apobec-1, the catalytic subunit of the editing enzyme, requires additional proteins to edit apo-B mRNA in vitro, but the function of these additional factors, known as complementing activity, is not known. Using RNA affinity chromatography, we show that the complementing activity binds to a 280-nucleotide apo-B RNA in the absence of apobec-1. The activity did not bind to the antisense strand or to an RNA with three mutations in the mooring sequence. The eluate from the wild-type RNA column contained a 65-kDa protein that UV cross-linked to apo-B mRNA but not to the triple-mutant RNA. This protein was not detected in the eluates from the mutant or the antisense RNA columns. Introduction of the mooring sequence into luciferase RNA induced cross-linking of the 65-kDa protein. A 65-kDa protein that interacted with apobec-1 was also detected by far-Western analysis in the eluate from the wild-type RNA column but not from the mutant RNA column. For purification, proteins were precleared on the mutant RNA column prior to chromatography on the wild-type RNA column. Silver staining of the affinity-purified fraction detected a single prominent protein of 65 kDa. Our results suggest that the complementing activity may function as the RNA-binding subunit of the holoenzyme.  相似文献   

4.
The C-to-U editing of apolipoprotein B (apo-B) mRNA is catalyzed by a multiprotein complex that recognizes an 11-nucleotide mooring sequence downstream of the editing site. The catalytic subunit of the editing enzyme, apobec-1, has cytidine deaminase activity but requires additional unidentified proteins to edit apo-B mRNA. We purified a 65-kDa protein that functionally complements apobec-1 and obtained peptide sequence information which was used in molecular cloning experiments. The apobec-1 complementation factor (ACF) cDNA encodes a novel 64.3-kDa protein that contains three nonidentical RNA recognition motifs. ACF and apobec-1 comprise the minimal protein requirements for apo-B mRNA editing in vitro. By UV cross-linking and immunoprecipitation, we show that ACF binds to apo-B mRNA in vitro and in vivo. Cross-linking of ACF is not competed by RNAs with mutations in the mooring sequence. Coimmunoprecipitation experiments identified an ACF-apobec-1 complex in transfected cells. Immunodepletion of ACF from rat liver extracts abolished editing activity. The immunoprecipitated complexes contained a functional holoenzyme. Our results support a model of the editing enzyme in which ACF binds to the mooring sequence in apo-B mRNA and docks apobec-1 to deaminate its target cytidine. The fact that ACF is widely expressed in human tissues that lack apobec-1 and apo-B mRNA suggests that ACF may be involved in other RNA editing or RNA processing events.  相似文献   

5.
The control of subcellular mRNA localization and translation is often mediated by protein factors that are directly or indirectly associated with the cytoskeleton. We report the identification and characterization of a rice seed protein that possesses both RNA and microtubule binding activities. In vitro UV cross-linking assays indicated that this protein binds to all mRNA sequences tested, although there was evidence for preferential binding to RNAs that contained A-C nucleotide sequence motifs. The protein was purified to homogeneity using a two-step procedure, and amino acid sequencing identified it as the multifunctional protein (MFP), a peroxisomal enzyme known to possess a number of activities involved in the beta-oxidation of fatty acids. The recombinant version of this rice MFP binds to RNA in UV cross-linking and gel mobility shift experiments, co-sediments specifically with microtubules, and possesses at least two enzymatic activities involved in peroxisomal fatty acid beta-oxidation. Taken together these data suggest that MFP has an important role in mRNA physiology in the cytoplasm, perhaps in regulating the localization or translation of mRNAs through an interaction with microtubules, in addition to its peroxisomal function.  相似文献   

6.
RNA editing in Trypanosoma brucei mitochondria produces mature mRNAs by a series of enzyme-catalyzed reactions that specifically insert or delete uridylates in association with a macromolecular complex. Using a mitochondrial fraction enriched for in vitro RNA editing activity, we produced several monoclonal antibodies that are specific for a 21-kDa guide RNA (gRNA) binding protein initially identified by UV cross-linking. Immunofluorescence studies localize the protein to the mitochondrion, with a preference for the kinetoplast. The antibodies cause a supershift of previously identified gRNA-specific ribonucleoprotein complexes and immunoprecipitate in vitro RNA editing activities that insert and delete uridylates. The immunoprecipitated material also contains gRNA-specific endoribonuclease, terminal uridylyltransferase, and RNA ligase activities as well as gRNA and both edited and unedited mRNA. The immunoprecipitate contains numerous proteins, of which the 21-kDa protein, a 90-kDa protein, and novel 55- and 16-kDa proteins can be UV cross-linked to gRNA. These studies indicate that the 21-kDa protein associates with the ribonucleoprotein complex (or complexes) that catalyze RNA editing.  相似文献   

7.
8.
Ezrin is a key regulator of cancer metastasis that links the extracellular matrix to the actin cytoskeleton and regulates cell morphology and motility. We discovered a small-molecule inhibitor, NSC305787, that directly binds to ezrin and inhibits its function. In this study, we used a nano-liquid chromatography-tandem mass spectrometry (nano-LC–MS-MS)-based proteomic approach to identify ezrin-interacting proteins that are competed away by NSC305787. A large number of the proteins that interact with ezrin were implicated in protein translation and stress granule dynamics. We validated direct interaction between ezrin and the RNA helicase DDX3, and NSC305787 blocked this interaction. Downregulation or long-term pharmacological inhibition of ezrin led to reduced DDX3 protein levels without changes in DDX3 mRNA. Ectopic overexpression of ezrin in low-ezrin-expressing osteosarcoma cells caused a notable increase in DDX3 protein levels. Ezrin inhibited the RNA helicase activity of DDX3 but increased its ATPase activity. Our data suggest that ezrin controls the translation of mRNAs preferentially with a structured 5′ untranslated region, at least in part, by sustaining the protein level of DDX3 and/or regulating its function. Therefore, our findings suggest a novel function for ezrin in regulation of gene translation that is distinct from its canonical role as a cytoskeletal scaffold at the cell membrane.  相似文献   

9.
U8 snoRNA plays a unique role in ribosome biogenesis: it is the only snoRNA essential for maturation of the large ribosomal subunit RNAs, 5.8S and 28S. To learn the mechanisms behind the in vivo role of U8 snoRNA, we have purified to near homogeneity and characterized a set of proteins responsible for the formation of a specific U8 RNA-binding complex. This 75-kDa complex is stable in the absence of added RNA and binds U8 with high specificity, requiring the conserved octamer sequence present in all U8 homologues. At least two proteins in this complex can be cross-linked directly to U8 RNA. We have identified the proteins as Xenopus homologues of the LSm (like Sm) proteins, which were previously reported to be involved in cytoplasmic degradation of mRNA and nuclear stabilization of U6 snRNA. We have identified LSm2, -3, -4, -6, -7, and -8 in our purified complex and found that this complex associates with U8 RNA in vivo. This purified complex can bind U6 snRNA in vitro but does not bind U3 or U14 snoRNA in vitro, demonstrating that the LSm complex specifically recognizes U8 RNA.  相似文献   

10.
Autophosphorylated growth factor receptors provide binding sites for the src homology 2 domains of intracellular signaling molecules. In response to epidermal growth factor (EGF), the activated EGF receptor binds to a complex containing the signaling protein GRB2 and the Ras guanine nucleotide-releasing factor Sos, leading to activation of the Ras signaling pathway. We have investigated whether the platelet-derived growth factor (PDGF) receptor binds GRB2-Sos. In contrast with the EGF receptor, the GRB2 does not bind to the PDGF receptor directly. Instead, PDGF stimulation induces the formation of a complex containing GRB2; 70-, 80-, and 110-kDa tyrosine-phosphorylated proteins; and the PDGF receptor. Moreover, GRB2 binds directly to the 70-kDa protein but not to the PDGF receptor. Using a panel of PDGF beta-receptor mutants with altered tyrosine phosphorylation sites, we identified Tyr-1009 in the PDGF receptor as required for GRB2 binding. Binding is inhibited by a phosphopeptide containing a YXNX motif. The protein tyrosine phosphatase Syp/PTP1D/SHPTP2/PTP2C is approximately 70 kDa, binds to the PDGF receptor via Tyr-1009, and contains several YXNX sequences. We found that the 70-kDa protein that binds to the PDGF receptor and to GRB2 comigrates with Syp and is recognized by anti-Syp antibodies. Furthermore, both GRB2 and Sos coimmunoprecipitate with Syp from lysates of PDGF-stimulated cells, and GRB2 binds directly to tyrosine-phosphorylated Syp in vitro. These results indicate that GRB2 interacts with different growth factor receptors by different mechanisms and the cytoplasmic phosphotyrosine phosphatase Syp acts as an adapter between the PDGF receptor and the GRB2-Sos complex.  相似文献   

11.
trans activation of human immunodeficiency virus type 1 (HIV-1) involves the viral trans-activator protein (Tat) and a cellular factor(s) encoded on human chromosome 12 (HuChr12) that targets the trans-activation response element (TAR) in the viral long terminal repeat. Because nascent TAR RNA is predicted to form a secondary structure that specifically binds cellular proteins, we investigated the composition of the TAR RNA-protein complex for HuChr12-specific proteins. UV cross-linking of TAR RNA-nuclear protein complexes formed in vitro identified an 83-kDa protein in human cells and in a human-hamster hybrid cell containing only HuChr12. The 83-kDa TAR RNA-binding protein was absent in the parental hamster cells. TAR RNA mutations that inhibited binding of the 83-kDa protein in vitro also inhibited HuChr12-dependent Tat trans activation. These TAR mutations changed the native sequence or secondary structure of the TAR loop. The TAR RNA binding activity of the 83-kDa protein also correlated with a HuChr12-dependent increase in steady-state HIV-1 RNA expression during Tat trans activation. Our results suggest that either a species-specific 83-kDa TAR RNA loop-binding protein is directly encoded on HuChr12 or a HuChr12 protein(s) induces the expression of an 83-kDa TAR-binding protein in nonprimate cells.  相似文献   

12.
Actinis a 42-kDa protein which, due to its ability to polymerize into filaments (F-actin), is one of the major constituents of the cytoskeleton. It has been proposed that MARCKS (an acronym for myristoylated alanine-rich C kinase substrate) proteins play an important role in regulating the structure and mechanical properties of the actin cytoskeleton by cross-linking actin filaments. We have recently reported that peptides corresponding to the effector domain of MARCKS proteins promote actin polymerization and cause massive bundling of actin filaments. We now investigate the effect of MARCKS-related protein, a 20-kDa member of the MARCKS family, on both filament structure and the kinetics of actin polymerization in vitro. Our experiments document that MRP binds to F-actin with micromolar affinity and that the myristoyl chain at the N-terminus of MRP is not required for this interaction. In marked contrast to the effector peptide, binding of MRP is not accompanied by an acceleration of actin polymerization kinetics, and we also could not reliably observe an actin cross-linking activity of MRP.  相似文献   

13.
TARRNA结合蛋白是细胞中双链RNA结合蛋白家族成员之一.它可以结合HIV-1TARRNA,并与Tat协同作用激活LTR表达,进而促进病毒的转录与翻译.TRBP也是将干扰素抗病毒通路与RNA干扰免疫通路相连的一种细胞蛋白.在干扰素诱生的PKR反应中,TRBP通过直接抑制PKR的自磷酸化、与PKR竞争通用的RNA底物或与PACT形成异源二聚体等机制抑制细胞内的PKR反应,从而降低了PKR介导的对病毒表达的抑制作用.TRBP与Dicer和Ago2等组成的RNA诱导沉默复合体,在RNA干扰中发挥着关键作用并调控随后的序列特异性降解.在HIV-1感染中,TRBP更倾向于促进病毒的表达与复制,因此TRBP也成为控制HIV-1感染的新靶点.  相似文献   

14.
Three fibrillar collagen mRNAs, alpha1(I), alpha2(I), and alpha1(III), are coordinately upregulated in the activated hepatic stellate cell (hsc) in liver fibrosis. These three mRNAs contain sequences surrounding the start codon that can be folded into a stem-loop structure. We investigated the role of this stem-loop structure in expression of collagen alpha1(I) reporter mRNAs in hsc's and fibroblasts. The stem-loop dramatically decreases accumulation of mRNAs in quiescent hsc's and to a lesser extent in activated hsc's and fibroblasts. The stem-loop decreases mRNA stability in fibroblasts. In activated hsc's and fibroblasts, a protein complex binds to the stem-loop, and this binding requires the presence of a 7mG cap on the RNA. Placing the 3' untranslated region (UTR) of collagen alpha1(I) mRNA in a reporter mRNA containing this stem-loop further increases the steady-state level in activated hsc's. This 3' UTR binds alphaCP, a protein implicated in increasing stability of collagen alpha1(I) mRNA in activated hsc's (B. Stefanovic, C. Hellerbrand, M. Holcik, M. Briendl, S. A. Liebhaber, and D. A. Brenner, Mol. Cell. Biol. 17:5201-5209, 1997). A set of protein complexes assembles on the 7mG capped stem-loop RNA, and a 120-kDa protein is specifically cross-linked to this structure. Thus, collagen alpha1(I) mRNA is regulated by a complex interaction between the 5' stem-loop and the 3' UTR, which may optimize collagen production in activated hsc's.  相似文献   

15.
16.
Zhang S  Mehdy MC 《The Plant cell》1994,6(1):135-145
The mRNA encoding the bean proline-rich protein PvPRP1 has been shown previously to be destabilized in elicitor-treated cells. In this study, we identified a 50-kD protein in cellular extracts that binds specifically to the PvPRP1 mRNA by UV cross-linking assays. Using 32P-labeled RNAs transcribed in vitro from a series of 5[prime] deleted PvPRP1 cDNA clones, we demonstrated that the PvPRP1 mRNA binding protein (PRP-BP) binds to a 27-nucleotide U-rich (~60%) domain in the 3[prime] untranslated region. Poly(U) and, to a lesser extent, poly(A-U) competed for the PRP-BP binding activity. PRP-BP activity is redox regulated in vitro, as shown by the effects of sulfhydryl-modifying reagents on the RNA binding activity. Treatment of cellular extracts with the reducing agents DTT and [beta]-mercaptoethanol increased binding activity, whereas treatment with the oxidizing agent diamide and the alkylating agent N-ethylmaleimide inhibited binding. In extracts from elicitor-treated cells, PRP-BP activity increased approximately fivefold prior to rapid PvPRP1 mRNA degradation. The increase in PRP-BP activity was apparently due to post-translational regulation because control and elicitor-treated cell extracts supplemented with DTT showed high comparable levels of RNA binding activity. The kinetics of PRP-BP activation after elicitor treatment and its capacity for redox regulation in vitro suggested that PRP-BP may function in the elicitor-induced destabilization of PvPRP1 mRNA.  相似文献   

17.
The 60-kDa Ro autoantigen is normally complexed with small cytoplasmic RNAs known as Y RNAs. In Xenopus oocytes, the Ro protein is also complexed with a large class of variant 5S rRNA precursors that are folded incorrectly. Using purified baculovirus-expressed protein, we show that the 60-kDa Ro protein binds directly to both Y RNAs and misfolded 5S rRNA precursors. To understand how the protein recognizes these two distinct classes of RNAs, we investigated the features of Y RNA sequence and structure that are necessary for protein recognition. We identified a truncated Y RNA that is stably bound by the 60-kDa Ro protein. Within this 39-nt RNA is a conserved helix that is proposed to be the binding site for the Ro protein. Mutagenesis of this minimal Y RNA revealed that binding by the 60-kDa Ro protein requires specific base pairs within the conserved helix, a singly bulged nucleotide that disrupts the helix, and a three-nucleotide bulge on the opposing strand. Chemical probing experiments using diethyl pyrocarbonate demonstrated that, in the presence of the two bulges, the major groove of the conserved helix is accessible to protein side chains. These data are consistent with a model in which the Ro protein recognizes specific base pairs in the conserved helix by binding in the major groove of the RNA. Furthermore, experiments in which dimethyl sulfate was used to probe a naked and protein-bound Y RNA revealed that a structural alteration occurs in the RNA upon Ro protein binding.  相似文献   

18.
Mir MA  Panganiban AT 《The EMBO journal》2008,27(23):3129-3139
The eIF4F cap-binding complex mediates the initiation of cellular mRNA translation. eIF4F is composed of eIF4E, which binds to the mRNA cap, eIF4G, which indirectly links the mRNA cap with the 43S pre-initiation complex, and eIF4A, which is a helicase necessary for initiation. Viral nucleocapsid proteins (N) function in both genome replication and RNA encapsidation. Surprisingly, we find that hantavirus N has multiple intrinsic activities that mimic and substitute for each of the three peptides of the cap-binding complex thereby enhancing the translation of viral mRNA. N binds with high affinity to the mRNA cap replacing eIF4E. N binds directly to the 43S pre-initiation complex facilitating loading of ribosomes onto capped mRNA functionally replacing eIF4G. Finally, N obviates the requirement for the helicase, eIF4A. The expression of a multifaceted viral protein that functionally supplants the cellular cap-binding complex is a unique strategy for viral mRNA translation initiation. The ability of N to directly mediate translation initiation would ensure the efficient translation of viral mRNA.  相似文献   

19.
The Rev protein of human immunodeficiency virus type 1 (HIV-1) differentially transactivates the expression of viral structural proteins by allowing the accumulation of unspliced and singly spliced viral mRNA in the cytoplasm. The cis-acting RNA target sequence for the Rev protein, termed the Rev response element (RRE), is present in the env gene and is predicted to form a highly ordered RNA secondary structure. Recent data indicate that Rev directly binds to RRE and, further, that this binding can be mapped to a 90-nucleotide subfragment at the 5' end of RRE. We now report that RRE also binds specifically and predominantly to a nuclear factor of approximately 56 kD. Mapping of the binding site reveals that the same subfragment that binds Rev also binds this nuclear factor. We designate this protein as NFRRE for nuclear factor, RRE binding. Rev and NFRRE appear to bind simultaneously to RRE. NFRRE is widely distributed in various mammalian cells. We speculate that this factor plays an important role in Rev-mediated transactivation and is likely to be involved in the processing or transport of cellular mRNA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号