首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We examined the effects of pinealectomy and blinding (bilateral ocular enucleation) on the circadian locomotor activity rhythm in the Japanese newt, Cynops pyrrhogaster. The pinealectomized newts were entrained to a light-dark cycle of 12 h light and 12 h darkness. After transfer to constant darkness they showed residual rhythmicity for at least several days which was gradually disrupted in prolonged constant darkness. Blinded newts were also entrained to a 12 h light/12 h dark cycle. In subsequent constant darkness they showed free-running rhythms of locomotor activity. However, the freerunning periods noticeably increased compared with those observed in the previous period of constant darkness before blinding. In blinded newts entrained to the light/dark cycle the activity rhythms were gradually disrupted after pinealectomy even in the presence of the light/dark cycle. These results suggest that both the pineal and the eyes are involved in the newt's circadian system, and also suggest that the pineal of the newt acts as an extraretinal photoreceptor which mediates the entrainment of the locomotor activity rhythm.Abbreviations circadian period - DD constant darkness - LD cycle, light-dark cycle - LD 12:12 light-dark cycle of 12 h light and 12 h darkness  相似文献   

2.
Dark-phase light contamination can significantly disrupt chronobiologic rhythms, thereby potentially altering the endocrine physiology and metabolism of experimental animals and influencing the outcome of scientific investigations. We sought to determine whether exposure to low-level light contamination during the dark phase influenced the normally entrained circadian rhythms of various substances in plasma. Male Sprague-Dawley rats (n = 6 per group) were housed in photobiologic light-exposure chambers configured to create 1) a 12:12-h light:dark cycle without dark-phase light contamination (control condition; 123 μW/cm(2), lights on at 0600), 2) experimental exposure to a low level of light during the 12-h dark phase (with 0.02, 0.05, 0.06, or 0.08 μW/cm(2) light at night), or 3) constant bright light (123 μW/cm(2)). Dietary and water intakes were recorded daily. After 2 wk, rats underwent 6 low-volume blood draws at 4-h intervals (beginning at 0400) during both the light and dark phases. Circadian rhythms in dietary and water intake and levels of plasma total fatty acids and lipid fractions remained entrained during exposure to either control conditions or low-intensity light during the dark phase. However, these patterns were disrupted in rats exposed to constant bright light. Circadian patterns of plasma melatonin, glucose, lactic acid, and corticosterone were maintained in all rats except those exposed to constant bright light or the highest level of light during the dark phase. Therefore even minimal light contamination during the dark phase can disrupt normal circadian rhythms of endocrine metabolism and physiology and may alter the outcome of scientific investigations.  相似文献   

3.
The split circadian activity rhythm that emerges in hamsters after prolonged exposure to constant light has been a theoretical cornerstone of a multioscillator view of the mammalian circadian pacemaker. The present study demonstrates a novel method for splitting hamster circadian rhythms and entraining them to exotic light:dark cycles. Male Syrian hamsters previously maintained on a 14-h day and 10-h night were exposed to a second 5-h dark phase in the afternoon. The 10-h night was progressively shortened until animals experienced two 5-h dark phases beginning 10 h apart. Most hamsters responded by splitting their activity rhythms into two components associated with the afternoon and nighttime dark phases, respectively. Each activity component was entrained to this light:dark:light:dark cycle. Transfer of split hamsters to constant darkness resulted in rapid joining of the two activity components with the afternoon component associated with onset of the fused rhythm. In constant light, the nighttime component corresponded to activity onset of the fused rhythm, but splitting emerged again at an interval characteristic for this species. The results place constraints on multi-oscillator models of circadian rhythms and offer opportunities to characterize the properties of constituent circadian oscillators and their interactions.  相似文献   

4.
5.
Organisms are believed to have evolved circadian clocks as adaptations to deal with cyclic environmental changes, and therefore it has been hypothesized that evolution in constant environments would lead to regression of such clocks. However, previous studies have yielded mixed results, and evolution of circadian clocks under constant conditions has remained an unsettled topic of debate in circadian biology. In continuation of our previous studies, which reported persistence of circadian rhythms in Drosophila melanogaster populations evolving under constant light, here we intended to examine whether circadian clocks and the associated properties evolve differently under constant light and constant darkness. In this regard, we assayed activity-rest, adult emergence and oviposition rhythms of D. melanogaster populations which have been maintained for over 19 years (~330 generations) under three different light regimes – constant light (LL), light–dark cycles of 12:12 h (LD) and constant darkness (DD). We observed that while circadian rhythms in all the three behaviors persist in both LL and DD stocks with no differences in circadian period, they differed in certain aspects of the entrained rhythms when compared to controls reared in rhythmic environment (LD). Interestingly, we also observed that DD stocks have evolved significantly higher robustness or power of free-running activity-rest and adult emergence rhythms compared to LL stocks. Thus, our study, in addition to corroborating previous results of circadian clock evolution in constant light, also highlights that, contrary to the expected regression of circadian clocks, rearing in constant darkness leads to the evolution of more robust circadian clocks which may be attributed to an intrinsic adaptive advantage of circadian clocks and/or pleiotropic functions of clock genes in other traits.  相似文献   

6.
Running wheels are widely used in studies on biological rhythms. In mice wheel diameters have ranged from 11 cm to 23 cm. We provided mice with running wheels of two different sizes: 15 cm diameter and 11 cm diameter. The amount of running in the 12-h light:12-h dark condition and the endogenous period of wheel running in constant darkness was determined over 40 days. On the 1st day in constant darkness all animals were exposed to a 15-min light pulse at circadian time 13. The animals in the small wheel ran significantly less both in 12 h light: 12 h dark and constant darkness, and showed a longer endogenous period in constant darkness compared to animals in the large wheel. Moreover, after the light pulse at circadian time 13, mice in the small wheel showed a significantly smaller phase delay in running wheel activity than mice in the larger wheels. The data suggest that the magnitude of a photic phase shift depends on the amount and timing of activity the animals display in relation to this stimulus. It can be concluded that technical features of the running wheel can influence the circadian period of wheel running.  相似文献   

7.
Neurons of the brain's biological clock located in the hypothalamic suprachiasmatic nucleus (SCN) generate circadian rhythms of physiology (core body temperature, hormone secretion, locomotor activity, sleep/wake, and heart rate) with distinct temporal phasing when entrained by the light/dark (LD) cycle. The neuropeptide vasoactive intestinal polypetide (VIP) and its receptor (VPAC2) are highly expressed in the SCN. Recent studies indicate that VIPergic signaling plays an essential role in the maintenance of ongoing circadian rhythmicity by synchronizing SCN cells and by maintaining rhythmicity within individual neurons. To further increase the understanding of the role of VPAC2 signaling in circadian regulation, we implanted telemetric devices and simultaneously measured core body temperature, spontaneous activity, and heart rate in a strain of VPAC2-deficient mice and compared these observations with observations made from mice examined by wheel-running activity. The study demonstrates that VPAC2 signaling is necessary for a functional circadian clock driving locomotor activity, core body temperature, and heart rate rhythmicity, since VPAC2-deficient mice lose the rhythms in all three parameters when placed under constant conditions (of either light or darkness). Furthermore, although 24-h rhythms for three parameters are retained in VPAC2-deficient mice during the LD cycle, the temperature rhythm displays markedly altered time course and profile, rising earlier and peaking ~4-6 h prior to that of wild-type mice. The use of telemetric devices to measure circadian locomotor activity, temperature, and heart rate, together with the classical determination of circadian rhythms of wheel-running activity, raises questions about how representative wheel-running activity may be of other behavioral parameters, especially when animals have altered circadian phenotype.  相似文献   

8.
Murad A  Emery-Le M  Emery P 《Neuron》2007,53(5):689-701
A fundamental property of circadian rhythms is their ability to persist under constant conditions. In Drosophila, the ventral Lateral Neurons (LNvs) are the pacemaker neurons driving circadian behavior under constant darkness. Wild-type flies are arrhythmic under constant illumination, but flies defective for the circadian photoreceptor CRY remain rhythmic. We found that flies overexpressing the pacemaker gene per or the morgue gene are also behaviorally rhythmic under constant light. Unexpectedly, the LNvs do not drive these rhythms: they are molecularly arrhythmic, and PDF--the neuropeptide they secrete to synchronize behavioral rhythms under constant darkness--is dispensable for rhythmicity in constant light. Molecular circadian rhythms are only found in a group of Dorsal Neurons: the DN1s. Thus, a subset of Dorsal Neurons shares with the LNvs the ability to function as pacemakers for circadian behavior, and its importance is promoted by light.  相似文献   

9.
Entrainment experiments have been carried out with geographically widely separated populations of the sand beach isopod Eurydice pulchra Leach subjected to periods of simulated tidal agitation imposed concurrently with a 24-h light: dark (L: D) cycle. Circatidal swimming rhythms of greatest amplitude were induced when agitation was applied with the subjective timing, within the L: D cycle, of local spring high tides. This occurred in a normal L: D regime and also when the L: D regime was phase shifted through 90°. Animals previously maintained in constant darkness (D: D) and subsequently exposed to simulated tidal disturbance at various times in constant darkness were unable to modulate the amplitude of circatidal swimming activity. Isopods previously maintained in a normal L: D cycle and subsequently subjected to artificial tidal agitation in constant darkness were, however, able to modulate circatidal activity. This indicates that E. pulchra is capable of detecting tidal agitation and daily light cues and using them in conjunction with its circadian “clock” to modulate its endogenous circatidal rhythmicity. The free-running semilunar rhythm of swimming activity entrained only when the timing of agitation within the day/night cycle mimicked the pattern of local spring high tides. Agitation with the timing of neap high tides entrained no free-running circa-semilunar activity pattern.  相似文献   

10.
Sleep is regulated by independent yet interacting circadian and homeostatic processes. The present study used a novel approach to study sleep homeostasis in the absence of circadian influences by exposing Siberian hamsters to a simple phase delay of the photocycle to make them arrhythmic. Because these hamsters lacked any circadian organization, their sleep homeostasis could be studied in the absence of circadian interactions. Control animals retained circadian rhythmicity after the phase shift and re-entrained to the phase-shifted photocycle. These animals displayed robust daily sleep-wake rhythms with consolidated sleep during the light phase beginning about 1 h after light onset. This marked sleep-wake pattern was circadian in that it persisted in constant darkness. The distribution of sleep in the arrhythmic hamsters over 24 h was similar to that in the light phase of rhythmic animals. Therefore, daily sleep amounts were higher in arrhythmic animals compared with rhythmic ones. During 2- and 6-h sleep deprivations (SD), it was more difficult to keep arrhythmic hamsters awake than it was for rhythmic hamsters. Because the arrhythmic animals obtained more non-rapid eye movement sleep (NREMS) during the SD, they showed a diminished compensatory response in NREMS EEG slow-wave activity during recovery sleep. When amounts of sleep during the SD were taken into account, there were no differences in sleep homeostasis between experimental and control hamsters. Thus loss of circadian control did not alter the homeostatic response to SD. This supports the view that circadian and homeostatic influences on sleep regulation are independent processes.  相似文献   

11.
The present study was undertaken to investigate the existence of intraocular pressure (IOP) rhythms in athletic thoroughbred horses maintained under a 24 h cycle of light and darkness (LD) or under constant light (LL) or constant dark (DD) conditions. We identified an IOP circadian rhythm that is entrained to the 24 h LD cycle. IOP was low during the dark phase and high during the light phase, with a peak at the end of the light phase (ZT10). The circadian rhythm of IOP persisted in DD (with a peak at CT9.5), demonstrating an endogenous component in IOP rhythm. As previously shown in other mammalian species, horse IOP circadian rhythmicity was abolished in LL. Because tonometry is performed in horses for the diagnosis of ophthalmologic diseases, such as glaucoma or anterior uveitis, the daily variation in IOP must be taken into account in clinical practice to properly time tests and to interpret clinical findings.  相似文献   

12.
Exposure to constant light abolishes circadian behavioral rhythms of locomotion and feeding as well as circulating melatonin rhythms in pigeons (Columba livia). To determine if feeding rhythmicity could be maintained in pigeons exposed to constant light, periodic infusions (10h/day) of melatonin were administered to pinealectomized and bilaterally retinectomized/pinealectomized pigeons under conditions of both constant darkness and constant light. The infusions were sufficient to entrain rhythmicity in pinealectomized pigeons in constant darkness and to restore and maintain rhythmicity in bilaterally retinectomized/pinealectomized pigeons in constant darkness. On subsequent exposure to constant light, rhythmicity remained phase locked to the melatonin infusions in bilaterally retinectomized/pinealectomized pigeons but was abolished in sighted pinealectomized birds. These results suggest that while endogenous melatonin rhythms are both necessary and sufficient to maintain behavioral rhythms in DD, their effect can be overridden by constant light but only if perceived by the eyes. Thus, constant light may abolish behavioral rhythmicity in intact pigeons (and perhaps in other species) by a mechanism other than suppression of endogenous melatonin rhythmicity. Such a mechanism might involve direct stimulation of locomotor or feeding activity by retinally perceived (but not by extra-retinally perceived) light, or alternatively by suppression of a hypothalamic oscillator that receives its major light input from the retinae.Abbreviations PX pinealectomized - EX bilaterally enucleated - LD light:dark cycle - LL constant light - DD constant darkness - DDb constant darkness before exposure to constant light - DDa constant darkness after exposure to constant light  相似文献   

13.
Summary

Suprachiasmatic nucleus (SCN)‐lesioned rats which had received a fetal SCN graft were kept in constant red light for three months. After this period it was examined whether those rats that showed a recovered free‐running circadian rhythm could be entrained to light/dark cycles. To this end, they were subjected to a 12 h light/12 h dark schedule, followed by a 12 h light shift and again to dark conditions. In addition, the same regime was imposed on SCN‐grafted rats without recovered circadian rhythms and on sham‐grafted animals with a lesion, which were studied as controls. The presence of an SCN graft was identified immunocytochemically by the presence of vasopressin, vasoactive intestinal polypeptide and somatostatin cells.

Drinking, eating and wheel‐running rhythms were found to synchronize to the light/dark cycles in all rats, not with standing the presence of an SCN graft was. A 12 h light shift was immediately followed by a shift in the three rhythms. Under final dark conditions, free‐running patterns reappeared in rhythm‐recovered animals, without any convincing evidence for entrainment of the rhythms in the pattern of transition.

Behavioral rhythms in SCN‐lesioned rats are apparently masked by 12 h light/dark schedules via other visual pathways than the direct projection from the retina to the SCN.  相似文献   

14.
Ninety male Sprague-Dawley rats were exposed to 1:1-h light-dark (LD1:1) cycles for 50-90 days, and then they were released into constant darkness (DD). During LD1:1 cycles, behavioral rhythms were gradually disintegrated, and circadian rhythms of locomotor activity, drinking, and urine 6-sulfatoxymelatonin excretion were eventually abolished. After release into DD, 44 (49%) rats showed arrhythmic behavior for >10 days. Seven (8%) animals that remained arrhythmic for >50 days in DD were exposed to brief light pulses or 12:12-h light-dark cycles, and then they restored their circadian rhythms. These results indicate that the circadian clock was stopped, at least functionally, by LD1:1 cycles and was restarted by subsequent light stimulation.  相似文献   

15.
The term masking refers to immediate responses to stimuli that override the influence of the circadian timekeeping system on behavior and physiology. Masking by light and darkness plays an important role in shaping an organism's daily pattern of activity. Nocturnal animals generally become more active in response to darkness (positive masking) and less active in response to light (negative masking), and diurnal animals generally have opposite patterns of response. These responses can vary as a function of light intensity as well as time of day. Few studies have directly compared masking in diurnal and nocturnal species, and none have compared rhythms in masking behavior of diurnal and nocturnal species. Here, we assessed masking in nocturnal mice (Mus musculus) and diurnal grass rats (Arvicanthis niloticus). In the first experiment, animals were housed in a 12:12 light-dark (LD) cycle, with dark or light pulses presented at 6 Zeitgeber times (ZTs; with ZT0 = lights on). Light pulses during the dark phase produced negative masking in nocturnal mice but only at ZT14, whereas light pulses resulted in positive masking in diurnal grass rats across the dark phase. In both species, dark pulses had no effect on behavior. In the 2nd experiment, animals were kept in constant darkness or constant light and were presented with light or dark pulses, respectively, at 6 circadian times (CTs). CT0 corresponded to ZT0 of the preceding LD cycle. Rhythms in masking responses to light differed between species; responses were evident at all CTs in grass rats but only at CT14 in mice. Responses to darkness were observed only in mice, in which there was a significant increase in activity at CT 22. In the 3rd experiment, animals were kept on a 3.5:3.5-h LD cycle. Surprisingly, masking was evident only in grass rats. In mice, levels of activity during the light and dark phases of the 7-h cycle did not differ, even though the same animals had responded to discrete photic stimuli in the first 2 experiments. The results of the 3 experiments are discussed in terms of their methodological implications and for the insight they offer into the mechanisms and evolution of diurnality.  相似文献   

16.
This study examines the relationship between cyclical variations in optic-lobe dopamine levels and the circadian behavioural rhythmicity exhibited by forager bees. Our results show that changing the light–dark regimen to which bees are exposed has a significant impact not only on forager behaviour, but also on the levels of dopamine that can be detected in the optic lobes of the brain. Consistent with earlier reports, we show that foraging behaviour exhibits properties characteristic of a circadian rhythm. Foraging activity is entrained by daily light cycles to periods close to 24 h, it changes predictably in response to phase shifts in light, and it is able to free-run under constant conditions. Dopamine levels in the optic lobes also undergo cyclical variations, and fluctuations in endogenous dopamine levels are influenced significantly by alterations to the light/dark cycle. However, the time course of these changes is markedly different from changes observed at a behavioural level. No direct correlation could be identified between levels of dopamine in the optic lobes and circadian rhythmic activity of the honey bee.  相似文献   

17.
Summary The role of the hormone melatonin in the circadian system of pigeons (Columba livia) was investigated. Using an automatic infusion system, melatoni at physiological levels was delivered for 10 h each day to cannulated, pinealectomized (P-X) pigeons in constant darkness. These cyclic infusions of melatonin entrained feeding rhythms in P-X pigeons while vehicle infusions were ineffective entraining agents. When the retinae of P-X pigeons were removed (E-X), feeding rhythms were abolished in constant darkness. When cyclic melatonin infusions were delivered to these birds (E-X and P-X), feeding rhythmicity was restored whereas vehicle infusions alone did not restore rhythmicity. When melatonin infusions were terminated in E-X/P-X pigeons, feeding rhythms persisted for several days but eventually decayed. Blood melatonin levels were measured in both P-X and E-X/P-X birds infused cyclically with exogenous melatonin and were found to be within the physiological range both in level and pattern. These results strongly suggest that endogenous melatonin, released by the pineal gland and the retinae, regulates the timing of feeding rhythms by entraining other oscillators in the circadian system of the pigeon.Abbreviations P-X pinealectomized - E-X bilaterally enucleated - T period of infusion cycle - LD light: dark cycle - DD constant darkness  相似文献   

18.
H.G. Erkert   《Mammalian Biology》2004,69(6):361-374
Circadian rhythms usually deviate from 24 h and must be synchronized (entrained) to the outer 24 h day by certain environmental periodicities called Zeitgebers. For almost all organisms the most efficient Zeitgeber is the light-dark cycle (LD). In mammals the photic Zeitgeber cues are exclusively received via retinal photoreceptors. It is still in debate whether this circadian photoreception is mediated by rods, cones, and/or other retinal cells. From recent results in mouse mutants a circadian photoreception via non-rod/non-cone retinal receptors was deduced. However, earlier observations in bats indicating a very low threshold for photic entrainment imply that circadian photoreception may be mediated by rod-like receptors. In the present study the threshold for photic entrainment was determined in the neotropical mastiff bat Molossus molossus. Six test animals (3 m, 3 f) were kept isolated in recording cages situated in light-tight and sound-attenuating wooden boxes with a special lighting device on top. Under constant ambient temperature of 25 ± 1°C, relative humidity of 60 ± 5%, and an irregular ad libitum feeding schedule, the bats were exposed intermittantly for longer times to constant physiological darkness (LD-X) or 12:12 h light dark cycles with physiological darkness during the dark time (D) and varying low light-time illuminances (L). Half of the bats had an extremely low threshold for photic entrainment, about 10−5 lux, while the other individuals’ free-running activity rhythm was entrained by LD cycles with 10−4, 10−2 and 10−1 lux in L. The illuminance of only 10−5 lux is the lowest threshold value for photic entrainment found thus far in vertebrates. Plausibility considerations suggest circadian photoreception via rod-like retinal receptors to be most probably involved in this case.  相似文献   

19.
Circadian Rhythms in Stomatal Responsiveness to Red and Blue Light   总被引:4,自引:0,他引:4       下载免费PDF全文
Stomata of many plants have circadian rhythms in responsiveness to environmental cues as well as circadian rhythms in aperture. Stomatal responses to red light and blue light are mediated by photosynthetic photoreceptors; responses to blue light are additionally controlled by a specific blue-light photoreceptor. This paper describes circadian rhythmic aspects of stomatal responsiveness to red and blue light in Vicia faba. Plants were exposed to a repeated light:dark regime of 1.5:2.5 h for a total of 48 h, and because the plants could not entrain to this short light:dark cycle, circadian rhythms were able to "free run" as if in continuous light. The rhythm in the stomatal conductance established during the 1.5-h light periods was caused both by a rhythm in sensitivity to light and by a rhythm in the stomatal conductance established during the preceding 2.5-h dark periods. Both rhythms peaked during the middle of the subjective day. Although the stomatal response to blue light is greater than the response to red light at all times of day, there was no discernible difference in period, phase, or amplitude of the rhythm in sensitivity to the two light qualities. We observed no circadian rhythmicity in net carbon assimilation with the 1.5:2.5 h light regime for either red or blue light. In continuous white light, small rhythmic changes in photosynthetic assimilation were observed, but at relatively high light levels, and these appeared to be attributable largely to changes in internal CO2 availability governed by stomatal conductance.  相似文献   

20.
Circadian rhythms are highly important not only for the synchronization of animals and humans with their periodic environment but also for their fitness. Accordingly, the disruption of the circadian system may have adverse consequences. A certain number of animals in our breeding stock of Djungarian hamsters are episodically active throughout the day. Also body temperature and melatonin lack 24-h rhythms. Obviously in these animals, the suprachiasmatic nuclei (SCN) as the central pacemaker do not generate a circadian signal. Moreover, these so-called arrhythmic (AR) hamsters have cognitive deficits. Since motor activity is believed to stabilize circadian rhythms, we investigated the effect of voluntary wheel running. Hamsters were bred and kept under standardized housing conditions with food and water ad libitum and a 14 L/10 D lighting regimen. AR animals were selected according to their activity pattern obtained by means of passive infrared motion detectors. In a first step, the daily activity behavior was investigated for 3 weeks each without and with running wheels. To estimate putative photic masking effects, hamsters were exposed to light (LPs) and DPs and also released into constant darkness for a minimum of 3 weeks. A novel object recognition (NOR) test was performed to evaluate cognitive abilities both before and after 3 weeks of wheel availability. The activity patterns of hamsters with low wheel activity were still AR. With more intense running, daily patterns with higher values in the dark time were obtained. Obviously, this was due to masking as LPs did suppress and DPs induced motor activity. When transferred to constant darkness, in some animals the daily rhythm disappeared. In other hamsters, namely those which used the wheels most actively, the rhythm was preserved and free-ran, what can be taken as indication of a reconstitution of circadian rhythmicity. Also, animals showing a 24-h activity pattern after 3 weeks of extensive wheel running were able to recognize the novel object in the NOR test but not so before. The results show that voluntary exercise may reestablish circadian rhythmicity and improve cognitive performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号