首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although elevated atmospheric CO2 has been shown to increase growth of tree seedlings and saplings, the response of intact forest ecosystems and established trees is unclear. We report results from the first large-scale experimental system designed to study the effects of elevated CO2 on an intact forest with the full complement of species interactions and environmental stresses. During the first year of exposure to ^ 1.5 Ë ambient CO2, canopy loblolly pine (Pinus taeda, L.) trees increased basal area growth rate by 24% but understorey trees of loblolly pine, sweetgum (Liquidambar styraciflua L.), and red maple (Acer rubrum L.) did not respond. Winged elm (Ulmus alata Michx.) had a marginally significant increase in growth rate (P = 0.069). These data suggest that this ecosystem has the capacity to respond immediately to a step increase in atmospheric CO2; however, as exposure time increases, nutrient limitations may reduce this initial growth stimulation.  相似文献   

2.
The Antarctic biota has evolved over the last 100 million years in increasingly isolated and cold conditions. As a result, Antarctic species, from micro-organisms to vertebrates, have adapted to life at extremely low temperatures, including changes in the genome, physiology and ecological traits such as life history. Coupled with cycles of glaciation that have promoted speciation in the Antarctic, this has led to a unique biota in terms of biogeography, patterns of species distribution and endemism. Specialization in the Antarctic biota has led to trade-offs in many ecologically important functions and Antarctic species may have a limited capacity to adapt to present climate change. These include the direct effects of changes in environmental parameters and indirect effects of increased competition and predation resulting from altered life histories of Antarctic species and the impacts of invasive species. Ultimately, climate change may alter the responses of Antarctic ecosystems to harvesting from humans. The unique adaptations of Antarctic species mean that they provide unique models of molecular evolution in natural populations. The simplicity of Antarctic communities, especially from terrestrial systems, makes them ideal to investigate the ecological implications of climate change, which are difficult to identify in more complex systems.  相似文献   

3.
Phase change in loblolly pine:Shoot development as a function of age   总被引:2,自引:0,他引:2  
The growth behavior of grafted scions from 1-, 4-, 8- and 12-year-old ortets representing five half-sib loblolly pine families was observed over a two-year period (three for strobilus production) following grafting. Significant, persistent decreases in total number of cycles produced, height and diameter increment, number of branches produced, foliar surface area and total scion biomass were observed with increasing age. Needle length, diameter, and ability to form male and female strobili increased with increasing scion age. The persistence of these differences is not a function of size since the scions were the same length at grafting. The significance of these results to the establishment of breeding orchards, early genetic evaluation, and the nature of phase change is discussed.  相似文献   

4.
5.
We developed eight polymorphic nuclear microsatellite markers for the Swiss stone pine (Pinus cembra L.), of which seven may be amplified in a multiplex polymerase chain reaction. Allelic polymorphism across all loci and 40 individuals representing two populations in the Swiss Alps was high (mean = 7.6 alleles). No significant linkage disequlibrium was displayed between pairs of loci. Significant deviation from Hardy–Weinberg equilibrium was revealed at three loci in one population. Cross–amplification was achieved in two related species within the genus (P. sibirica and P. pumila). Thus, the markers may be useful for population genetic studies in these three pine species. They will be applied in ongoing projects on genetic diversity and patterns of gene flow in P. cembra.  相似文献   

6.
Long‐term population effects of changes in atmospheric CO2 will be largely determined by reproductive effort. Our research objectives were to quantify variability in seed production and rate of maturation among individual Pinus taeda L. (Pinaceae) trees growing in elevated CO2 (ambient plus 200 μL L?1) since 1996. Estimating tree fecundity in nature is frustrated by the difficulty of counting seeds from individual trees and the need for long‐term data. We have used a hierarchical Bayes approach to model individual tree fecundity, accounting for the complexity of experimentation in a natural setting over multiple years. The study presented here demonstrates large variability in natural fecundity rates and contributes to our understanding of how both interannual variation and population heterogeneity influence elevated CO2 effects. We found that trees growing under elevated CO2 matured earlier and produced more seeds and cones per unit basal area than ambient grown trees. By 2004, trees grown in high CO2 had produced an average 300 more seeds per tree than ambient grown trees. Although there was a trend toward decreasing mean CO2 effect (difference in fecundity between elevated and ambient treatments) over time, the hierarchical analysis indicates that this decrease comes from the emergence of a few highly fecund ambient grown trees by 2002, rather than acclimation or downregulation among the fumigated trees. The most important effect of increased CO2 in forest ecosystems may be the increase in fecundity reported here. Although biomass responses can sometimes be large, the increase in fecundity can have long‐term impacts on forest dynamics that transcend the current generation.  相似文献   

7.
外生菌根菌在火炬松人工林应用的研究   总被引:1,自引:2,他引:1  
连续6年研究了外生菌根菌在火炬松人工林的应用.结果表明,12个供试菌株均能不同程度地在火炬松根系上形成外生菌根.在12个供试菌株中,以松林小牛肝菌效果最佳,无论是在苗期还是上山造林,对促进寄主生长的效果均最好,且促进寄主生长的效果在立地条件较差的情况下表现得更为明显.  相似文献   

8.
9.
Within most terrestrial groups of animals, including mammals, species richness varies along two axes of environmental variation, representing energy availability and plant productivity. This relationship has led to a search for mechanistic links between climate and diversity. Explanations have traditionally focused on single mechanisms, such as variation in environmental carrying capacity or evolutionary rates. Consensus, though, has proved difficult to achieve and there is growing appreciation that geographical patterns of species richness are a product of many interacting factors including biogeographic history and biological traits. Here, we review some current hypotheses on the causes of gradients in mammal richness and range sizes since the two quantities are intimately linked. We then present novel analyses using recent datasets to explore the structure of the environment-richness relationship for mammals. Specifically, we consider the impact of glaciation on present day mammalian diversity gradients. We conclude that not only are multiple processes important in structuring diversity gradients, but also that different processes predominate in different places.  相似文献   

10.
King  J.S.  Allen  H. Lee  Dougherty  Phillip  Strain  Boyd R. 《Plant and Soil》1997,195(1):171-184
The decomposition of plant-derived organic matter exerts strong control over the cycling of carbon and nutrients in terrestrial ecosystems and may be significantly altered by increased precipitation and nitrogen deposition associated with global change. It was the goal of this study to quantify the rate of belowground decomposition in an intact loblolly pine forest, and determine how this was affected by increased availability of water and nitrogen. A randomized complete-block factorial of irrigation and fertilization treatments was installed in an 8 yr old loblolly pine plantation in Scotland county, North Carolina. Fresh root samples of three size classes were buried in fiberglass mesh bags in January, 1994 and recovered at two-month intervals for two years. Samples were analyzed for percent mass remaining and contents of macro-nutrients. Roots decomposed in a two stage process: early in the incubation mass loss was correlated to size class and nutrient concentrations, but this correlation disappeared later in the incubation when rates of mass loss converged for all size classes. Decomposition was seldom affected by the irrigation and fertilization treatments, due to the buffering capacity of soil moisture and complex ecosystem-level responses to fertilization. Net mineralization of N, P, K, Ca, and Mg occurred in the smaller size classes of roots providing a source of these nutrients to the aggrading plantation for an estimated 2 to 15 years. The largest size class of roots was a sink for N, Ca, and Mg for the duration of this study, and was a source of P and K for an estimated 20 and 4 years, respectively. It is concluded that in moist temperate ecosystems belowground decomposition will be less affected by the projected increases in moisture and nutrient availability than will decomposition of the forest floor due to the buffering capacity of the soil. Further, small roots provide important sources of macro-nutrients for several decades to aggrading forests after large-scale disturbances such as harvesting of aboveground biomass.  相似文献   

11.
火炬松原生质体的体细胞胚胎发生   总被引:4,自引:0,他引:4  
研究了基本培养基、原生质体密度和ABA浓度对火炬松(PinustaedaL.)悬浮细胞原生质体体细胞胚胎发生的影响。结果表明,DCR基本培养基最有利于原生质体的体细胞胚胎发生。体细胞胚胎发生所需的最适原生质体密度和ABA浓度分别是7×104个/mL和4mg/L。显微观察表明,来自原生质体的胚性胚柄细胞团(ESM:embryogenicsusPensormass),经早期原胚(ESP:earlystageProembryos)阶段形成了后期原胚(LSP:latestageProembryos)。这一结果为火炬松的原生质体培养再生植株奠定了基础。  相似文献   

12.
W. Tang  F. Ouyang  Z. Guo 《Plant cell reports》1998,17(6-7):557-560
Mature zygotic embryos from three seed sources of loblolly pine were cultured on callus induction medium containing 10 mg l–1 α-naphthaleneacetic acid, 4 mg l–1 benzyladenine (BA), 400 mg l–1 casein hydrolysate, and 400 mg l–1 glutamine for 6 weeks. Light-yellow, loose, glossy, globular callus was formed, and the highest frequency was 35.7%. The highest differentiation frequency of callus on adventitious bud induction medium was 62.1%. After culture of calli with adventitious buds on elongation medium for 6 weeks, adventitious shoots more than 1.0 cm in height were selected for rooting. On rooting medium supplemented with 0.1 mg l–1 indole-3-butyric acid, 1 mg l–1 BA, and 0.5 mg l–1 gibberellic acid, the highest rooting frequency of adventitious shoots was 46% in a culture period of 6 weeks. Established plants survived following transfer to soil at a frequency of 71%. Received: 14 May 1997 / Revision received: 25 September 1997 / Accepted: 11 October 1997  相似文献   

13.
Tissue culture plantlets of loblolly pine ( Pinus taeda L.) were compared to seedlings to quantify growth and developmental differences. The two plant types were grown in containers in a greenhouse and sampled periodically for twenty weeks. Dry weights and nitrogen and phosphorus concentrations of the shoots and roots were determined every two weeks.
During the twenty weeks in the greenhouse, seedlings grew to a greater size than the plantlets, but the relative rates of growth were approximately equal. Plantlets had significantly lower concentrations of nitrogen and phosphorus per g of shoot dry weight. Seedlings were much more efficient at nutrient uptake per g of dry weight of root. Plantlets had thick, unbranched roots, which were inefficient at nitrogen and phosphorus uptake. Nutrient uptake based on an index of root surface area was equal in the plantlets and seedlings.
The main differences between plantlets and seedlings apparently were related to root system morphology rather than physiological processes. The uptake of nutrients showed the greatest difference between the plant types.  相似文献   

14.
Growth in elevated pCO2 generally leads to a stimulation of net CO2 uptake rate. However, with long‐term growth the magnitude of this stimulation is often reduced. This phenomenon, termed acclimation, has been largely attributed to a loss of Rubisco (ribulose 1,5 bisphosphate carboxylase). The mechanism by which Rubisco content declines with long‐term growth is not certain. There is evidence for a sugar‐mediated, selective down‐regulation of Rubisco protein and also for a non‐selective loss of total leaf nitrogen, which impacts Rubisco levels indirectly. Over a season, and including needles at different developmental stages, we investigated these two potential mechanisms in well‐developed Pinus taeda grown for approximately 2·5 years in elevated (56 Pa) pCO2 using free air CO2 enrichment technology. Photosynthetic acclimation, as manifested by a decrease in the activity of Rubisco measured both in vivo (? 25%, via gas exchange) and in vitro (? 35%, via enzyme assays), was observed with growth in elevated pCO2. This acclimation was observed in one‐year‐old needles but not in current‐year needles. Needles exhibiting acclimation had reduced levels of Lsu Rubisco (? 25%) and an increased foliar carbohydrate content (+ 30%) but showed no evidence of a decrease in needle nitrogen or total protein content. These data support the concept that photosynthetic acclimation in elevated pCO2 is caused by a selective down‐regulation of Rubisco.  相似文献   

15.
火炬松成熟合子胚培养直接器官发生和植株再生   总被引:11,自引:0,他引:11  
基因型Hb,Ma和Mc的火炬松成熟合子胚在附加1.0mg/LNAA,4.0mg/LBA,500mg/LLH和500mg/L谷氨酰胺的TE培养基上培养12周后,在子叶和胚轴部位形成不定芽原基。然后将合子胚转移到附加0.5mg//LNAA,0.05mg/LIBA,2mg/LBA,500mg/LLH和500mg/L谷氨酰胺的TE不定芽分化培养基上,6周后分化产生大量不定芽,3种基因型中,Hb的直接不定芽  相似文献   

16.
Two naturally occurring, sympatric, northern Georgia populations of Pinus taeda L. (loblolly pine) and P. echinata Mill. (shortleaf pine) were examined with respect to genetic diversity within populations and the frequency, spatial distribution, and morphology of putative hybrids. Shortleaf pine predominated at the "road" site while loblolly pine predominated at the "granite outcrop" site. Hybrid individuals were identified by their IDH allozyme genotype, the only such locus known to be fixed for different alleles in the two species. All allozymatically detectable hybrids (34 at the road site and two at the granite outcrop site) were juveniles that were distributed in open, sunny patches. A similar pattern of recruitment was seen for juveniles of the parental species. Hybrids were spatially distant from mature shortleaf pine, suggesting that shortleaf pine was not the seed parent. Discriminant analysis on needle characteristics indicated that loblolly pine was easily distinguished from shortleaf pine and the hybrids, but that shortleaf pine and the hybrids were barely distinguishable from each other. A diagnostic cpDNA restriction site marker indicated that shortleaf pine sired all the hybrids at both sites. No evidence of later generation hybridization was found.  相似文献   

17.
利用花粉气候响应面模型进行古气候重建是通过将化石花粉数据与花粉气候响应面模型进行相似性对比分析来实现的,研究结果表明,在内蒙古中部地区1万年来经历了凉湿期→冷暖干湿剧烈波动期,且有凉湿、温干的气候组合→全新世温暖期→气候波动期的气候变化。经与传统、常规直观分析方法对比,利用响应面模型恢复的古气候数据基本上与采用常规方法得到的结论相符,但它能够提供更多的气候变迁细节,且能提供定量的古气候数据,便于据此检验全球变化模型的可靠性及可信度。据此可以认为,利用响应面恢复古气候是很有前途的一种新方法,对于两种方法所得结论的矛盾之处,还需要在增加用于建模的表土花粉数据的基础上继续进行研究  相似文献   

18.
唐巍  郭仲琛 《植物研究》1997,17(3):320-324
以火炬松成熟合子胚的胚性悬浮细胞为材料分离原生质体,研究了酶液组成,渗透压稳定剂和悬浮细胞生长对原生质体产量和原生质体活力的影响。  相似文献   

19.
    
Species can respond to environmental pressures through genetic and epigenetic changes and through phenotypic plasticity, but few studies have evaluated the relationships between genetic differentiation and phenotypic plasticity of plant species along changing environmental conditions throughout wide latitudinal ranges. We studied inter‐ and intrapopulation genetic diversity (using simple sequence repeats and chloroplast DNA sequencing) and inter‐ and intrapopulation phenotypic variability of 33 plant traits (using field and common‐garden measurements) for five populations of the invasive cordgrass Spartina densiflora Brongn. along the Pacific coast of North America from San Francisco Bay to Vancouver Island. Studied populations showed very low genetic diversity, high levels of phenotypic variability when growing in contrasted environments and high intrapopulation phenotypic variability for many plant traits. This intrapopulation phenotypic variability was especially high, irrespective of environmental conditions, for those traits showing also high phenotypic plasticity. Within‐population variation represented 84% of the total genetic variation coinciding with certain individual plants keeping consistent responses for three plant traits (chlorophyll b and carotenoid contents, and dead shoot biomass) in the field and in common‐garden conditions. These populations have most likely undergone genetic bottleneck since their introduction from South America; multiple introductions are unknown but possible as the population from Vancouver Island was the most recent and one of the most genetically diverse. S. densiflora appears as a species that would not be very affected itself by climate change and sea‐level rise as it can disperse, establish, and acclimate to contrasted environments along wide latitudinal ranges.  相似文献   

20.
Seedlings of pond pine ( Pinus serotina Michx.), sand pine [ P. clausa (Engelm.) Sarg.], and loblolly pine ( P. taeda L., wet-site and drought-hardy seed sources) were grown in hydroponic solution culture using a non-circulating, continuously flowing design under anaerobic or aerobic conditions to determine whether flooding tolerance was correlated with enhanced internal root aeration. Transport of atmospheric O2 from the shoot to the root of anaerobically grown loblolly and pond pine seedlings was demonstrated via rhizosphere oxidation, using both reduced indigo-carmine solution and a polarographic, ensheathing Pt-electrode. Stem and root collar lenticels were the major sites of atmospheric O2 entry for submerged roots in these seedlings. No O2 leakage was detected from roots of aerobically grown pine seedlings. Longitudinal and radial pathways for gaseous diffusion via intercellular air spaces in the pericycle and between ray parenchyma cells, respectively, were demonstrated histo-logically in anaerobically grown loblolly and pond pines. Rhizosphere oxidation, and lenticel and aerenchyma development in roots of flood-intolerant sand pine seedlings grown in anaerobic solutions were minimal. Only 15 days of anaerobic growth conditions were necessary to increase internal root porosities of loblolly and pond pine seedlings – although not to the extent found in seedlings treated for 30 or 75 days. Histological results indicated that root tissue in the secondary stage of growth was capable of forming intercellular air spaces, demonstrating a degree of internal plasticity – at least in the more flood-tolerant loblolly and pond pine seedlings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号