首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
阿尔采末病相关基因与细胞凋亡   总被引:5,自引:0,他引:5  
Wang X  Zhang D 《生理科学进展》2001,32(4):307-311
阿尔采末病(Alzheimer‘s disease,AD)是最常见的一种老年期痴呆综合征,痴呆的发生与神经元的凋亡密切相关,AD相关基因编码蛋白APP,PS1及PS2的突变体均对细胞凋亡有调节作用,同时亦有越来越多的凋亡调节因子参与AD神经元退行性病变,该领域的研究对深入探讨AD的发病机制以及研究其防治措施均有重要意义,本综述将着重对这些基因与细胞凋亡之间的相互关系及其相互作用做一简要概述。  相似文献   

2.
A potential role for apoptosis in neurodegeneration and Alzheimer's disease   总被引:23,自引:0,他引:23  
Previous studies have shown that β-amyloid (Aβ) peptides are neurotoxic. Recent data suggest that neurons undergoing Aβ-induced cell death exhibit characteristics that correspond to the classical features of apoptosis, suggesting that these cells may initiate a program of cell death. This chapter explores the criteria and precautions that must be applied to evaluate mechanisms of cell death in vitro and in vivo, discusses the evidence supporting an apoptotic mechanism of cell death in response to Aβ in cultured neurons, and describes potential correlations for these findings in the Alzheimer's disease brain. In addition, cellular signaling pathways that may be associated with apoptosis in response to Aβ are examined, and support for apoptosis as a mechanism of cell death for other neurodegeneration-inducing stimuli (e.g., oxidative injury) is described. The connection of multiple stimuli that induce neuronal cell death to an apoptotic mechanism suggests that apoptosis could play a central role in neurodegeneration in the brain.  相似文献   

3.
Various types of stress, such as disruption of calcium homeostasis, inhibition of protein glycosylation and reduction of disulfide bonds, result in accumulation of misfolded proteins in the endoplasmic reticulum (ER). The initial cellular response involves removal of such proteins by the ER, but excessive and/or long-term stress results in apoptosis. In this study, we used a randomized ribozyme library and ER stress-mediated apoptosis (tunicamycin-induced apoptosis) in SK-N-SH human neuroblastoma cells as a selective phenotype to identify factors involved in this process. We identified a double-stranded RNA-dependent protein kinase (PKR) as one of the participants in this process. The level of nuclear PKR was elevated, but the level of cytoplasmic PKR barely changed in tunicamycin-treated SK-N-SH cells. Furthermore, tunicamycin also raised levels of phosphorylated PKR in the nucleus. We also detected the accumulation of phosphorylated PKR in the nuclei of autopsied brain tissues in Alzheimer's disease. Thus, PKR might play a role in ER stress-induced apoptosis and in Alzheimer's disease.  相似文献   

4.
5.
6.
Early onset familial Alzheimer's disease (FAD) is linked to autosomal dominant mutations in the amyloid precursor protein (APP) and presenilin 1 and 2 (PS1 and PS2) genes. These are critical mediators of total amyloid beta-peptide (Abeta) production, inducing cell death through uncertain mechanisms. Tauroursodeoxycholic acid (TUDCA) modulates exogenous Abeta-induced apoptosis by interfering with E2F-1/p53/Bax. Here, we used mouse neuroblastoma cells that express either wild-type APP, APP with the Swedish mutation (APPswe), or double-mutated human APP and PS1 (APPswe/DeltaE9), all exhibiting increased Abeta production and aggregation. Cell viability was decreased in APPswe and APPswe/DeltaE9 but was partially reversed by z-VAD.fmk. Nuclear fragmentation and caspase 2, 6 and 8 activation were also readily detected. TUDCA reduced nuclear fragmentation as well as caspase 2 and 6, but not caspase 8 activities. p53 activity, and Bcl-2 and Bax changes, were also modulated by TUDCA. Overexpression of p53, but not mutant p53, in wild-type and mutant neuroblastoma cells was sufficient to induce apoptosis, which, in turn, was reduced by TUDCA. In addition, inhibition of the phosphatidylinositide 3'-OH kinase pathway reduced TUDCA protection against p53-induced apoptosis. In conclusion, FAD mutations are associated with the activation of classical apoptotic pathways. TUDCA reduces p53-induced apoptosis and modulates expression of Bcl-2 family.  相似文献   

7.
Xu CQ 《生理科学进展》1999,30(3):224-226
本研究用免疫组织化学、细胞增减和膜片钳技术研究阿尔采未病(AD)脑中的细胞凋亡,以及β-淀粉样肽(β-AP)诱导离体增减海马神经元的凋亡及其离子机制。结果表明AD脑内存在细胞凋亡,β-AP可以通过抑制神经元的电压依赖性K^ 和Na^ 通道促进神经元凋亡,一氧化氮与其有一定的协同作用。同时四氢水檗碱可通过降低细胞内Ca^2 而 减轻β-AP引起的神经元凋亡。  相似文献   

8.
9.
In this commentary, we accent the accumulating evidence for motor impairment as a common feature of early Alzheimer's disease (AD) pathology. In addition, we summarize the state of knowledge on this phenotype in experimental mouse models, expressing AD-associated genes like tau or amyloid precursor protein.  相似文献   

10.
11.
小胶质细胞与阿尔茨海默病   总被引:1,自引:0,他引:1  
蔡志友  晏勇 《生命科学》2008,20(1):95-100
国内外对阿尔茨海默病(Alzheimer’s disease,AD)神经元病理和神经胶质细胞病理机制进行了大量探索,小胶质细胞(microglia,MG)是中枢神经系统的免疫细胞,在致炎因素作用下它被激活成反应性MG,反应性MG既具有保护神经元的作用,也能分泌细胞毒因子、补体蛋白而损害神经元。尽管目前AD发病机理还不清楚,但大多数学者认为β淀粉样蛋白(Aβ)沉积激活MG引起的炎症反应是AD的核心病理机制。  相似文献   

12.
Advances in Alzheimer's disease   总被引:14,自引:0,他引:14  
R Katzman  T Saitoh 《FASEB journal》1991,5(3):278-286
The problem of the etiology of Alzheimer's disease has not been solved. But in the past several years there have been significant extensions of our knowledge of the disease and advances in determining the molecular changes underlying the disorder. There is now convincing evidence that the dementia per se is caused by loss of neurons and synapses, particularly in neocortex and hippocampus. The molecular aspects of amyloid and its precursor protein have been defined. The nature of intracellular changes leading to accumulation of the paired helical filament is beginning to be understood. For the first time, putative risk factors can be described in terms of pathogenetic mechanisms. Thus, it may become possible in the not-too-distant future to discover interventions that will slow the progress of this devastating disease.  相似文献   

13.
2012 has been another year in which multiple large-scale clinical trials for Alzheimer's disease (AD) have failed to meet their clinical endpoints. With the social and financial burden of this disease increasing every year, the onus is now on the field of AD researchers to investigate alternative ideas to deliver outcomes for patients. Although several major clinical trials targeting Aβ have failed, three smaller clinical trials targeting metal interactions with Aβ have all shown benefit for patients. Here we review the genetic, pathological, biochemical, and pharmacological evidence that underlies the metal hypothesis of AD. The AD-affected brain suffers from metallostasis, or fatigue of metal trafficking, resulting in redistribution of metals into inappropriate compartments. The metal hypothesis is built upon a triad of transition elements: iron, copper, and zinc. The hypothesis has matured from early investigations showing amyloidogenic and oxidative stress consequences of these metals; recently, disease-related proteins, APP, tau, and presenilin, have been shown to have major roles in metal regulation, which provides insight into the pathway of neurodegeneration in AD and illuminates potential new therapeutic avenues.  相似文献   

14.
15.
Neuronal cell death, neurofibrillary tangles, and amyloid beta peptide (Abeta) deposition depict Alzheimer's disease (AD) pathology, but neuronal loss correlates best with dementia. We have shown that increased production of Abeta is a consequence of neuronal apoptosis, suggesting that apoptosis activates proteases involved in amyloid precursor protein (APP) processing. Here, we investigate key effectors of cell death, caspases, in human neuronal apoptosis and APP processing. We find that caspase-6 is activated and responsible for neuronal apoptosis by serum deprivation. Caspase-6 activity precedes the time of commitment to neuronal apoptosis by 10 h, indicating possible activity without subsequent apoptosis. Inhibition of caspase-6 activity prevents serum deprivation-mediated increase of Abeta. Caspase-6 directly cleaves APP at the C terminus and generates a C-terminal fragment of 3 kDa (Capp3) and an Abeta-containing 6.5-kDa fragment, Capp6.5, that increases in serum-deprived neurons. A pulse-chase experiment reveals a precursor-product relationship between Capp6.5, intracellular Abeta, and secreted Abeta, indicating a potential alternate amyloidogenic pathway. Caspase-6 proenzyme is present in adult human brain tissue, and the p10 active caspase-6 fragment is detected in AD brain tissue. These results indicate a possible alternate pathway for APP amyloidogenic processing in human neurons and a potential implication for this pathway in the neuronal demise of AD.  相似文献   

16.
APP-BP1, first identified as an amyloid precursor protein (APP) binding protein, is the regulatory subunit of the activating enzyme for the small ubiquitin-like protein NEDD8. We have shown that APP-BP1 drives the S- to M-phase transition in dividing cells, and causes apoptosis in neurons. We now demonstrate that APP-BP1 binds to the COOH-terminal 31 amino acids of APP (C31) and colocalizes with APP in a lipid-enriched fraction called lipid rafts. We show that coexpression of a peptide representing the domain of APP-BP1 that binds to APP, abolishes the ability of overexpressed APP or the V642I mutant of APP to cause neuronal apoptosis and DNA synthesis. A dominant negative mutant of the NEDD8 conjugating enzyme hUbc12, which participates in the ubiquitin-like pathway initiated by APP-BP1, blocks neuronal apoptosis caused by APP, APP(V642I), C31, or overexpression of APP-BP1. Neurons overexpressing APP or APP(V642I) show increased APP-BP1 protein levels in lipid rafts. A similar increase in APP-BP1 in lipid rafts is observed in the Alzheimer's disease brain hippocampus, but not in less-affected areas of Alzheimer's disease brain. This translocation of APP-BP1 to lipid rafts is accompanied by a change in the subcellular localization of the ubiquitin-like protein NEDD8, which is activated by APP-BP1.  相似文献   

17.
Strategies for disease modification in Alzheimer's disease   总被引:6,自引:0,他引:6  
Treating Alzheimer's disease (AD) is the biggest unmet medical need in neurology. Current drugs improve symptoms, but do not have profound disease-modifying effects. Three main classes of disease-modification approaches can be defined: one that is broadly neurotrophic or neuroprotective, one that targets specific aspects of AD pathology, and one that is based on epidemiological observation. This review discusses all three approaches, with particular emphasis on anti-amyloid strategies - currently the most active area of investigation. The approaches that are reviewed include secretase inhibition, amyloid-beta aggregation inhibition, immunotherapy and strategies that might indirectly affect the amyloid pathway.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号