首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The emerald moth Nemoria arizonaria (Geometridae) is bivoltine, with distinct broods of caterpillars hatching in the spring and summer. Caterpillars of the spring brood develop into mimics of oak catkins, while caterpillars of the summer brood develop into mimics of oak twigs. Previous rearing experiments showed that all caterpillars reared on oak catkins developed into catkin morphs, while all caterpillars reared on oak leaves developed into twig morphs, regardless of temperature or photoperiod. However, those previous rearing experiments did not control the colour of light perceived by the caterpillars independently of their dict. Since wavelengths of light perceived by some species of polymorphic caterpillars can influence their colour, it is possible that morph induction in Nemoria arizonaria is due to the characteristics of light reflected from yellow catkins or green leaves, rather than larval diet itself. The experiments reported here independently varied larval diet and light characteristics to determine if light quality is involved in morph induction. Only larval diet influenced morph induction, since all caterpillars reared on catkins developed into the catkin morph, and all caterpillars reared on oak leaves developed into the twig morph, regardless of whether they perceived yellow light, green light, or were raised in the dark.  相似文献   

2.
Seasonal polyphenism, in which different forms of a species are produced at different times of the year, is a common form of phenotypic plasticity among insects. Here I show that the production of dark fifth-instar caterpillars of the eastern black swallowtail butterfly, Papilio polyxenes, is a seasonal polyphenism, with larvae reared on autumnal conditions being significantly darker than larvae reared on midsummer conditions. Both rearing photoperiod and temperature were found to have individual and synergistic effects on larval darkness. Genetic analysis of variation among full-sibling families reared on combinations of two different temperatures and photoperiods is consistent with the hypothesis that variation in darkness is heritable. In addition, the genetic correlation in larval darkness across midsummer and autumnal environments is not different from zero, suggesting that differential gene expression is responsible for the increase in larval darkness in the autumn. The relatively dark autumnal form was found to have a higher body temperature in sunlight than did the lighter midsummer form, and small differences in temperature were found to increase larval growth rate. These results suggest that this genetically based seasonal polyphenism in larval color has evolved in part to increase larval growth rates in the autumn.  相似文献   

3.
Intraspecific body colour variation is common in many animal species. Predation could be a key selective agent giving rise to variation in body colour, and such variation could be due to genetics (polymorphisms) or phenotypic plasticity (polyphenisms). In this study we examined the degree of colour polymorphism and polyphenism in background colour matching in larvae of the damselfly Coenagrion armatum. In addition, we tested if predation risk is reduced when larvae are exposed to a matching compared to a non-matching background. By raising families of larvae at three different background colours we showed that polymorphism explained about 20 % of the total variation and polyphenism about 35 %. In a predation experiment with fish, we showed that larvae with a body colour matching the background had a higher survival success compared to larvae with a non-matching background colour. We suggest that the background matching is adaptive in terms of survival from predation and that colour diversity is maintained because of spatial and temporal variation in the background experienced by damselfly larvae under field conditions.  相似文献   

4.
This study re-examines the effects of environmental factors including substrate color, humidity, food quality, light intensity and temperature on the green-brown polyphenism, black patterning and background body color of solitarious (isolated-reared) nymphs of Schistocerca gregaria. All individuals reared in yellow-green or yellow containers became green morphs, whereas those reared in white, ivory-colored, blue, grey, brown, zinc-colored and black containers produced brown morphs in similar proportions. The intensity of black patterns was negatively correlated with the brightness of the substrate color of the containers. Humidity, which previous studies claimed controls green-brown polyphenism in this species, exerted no significant influence on either the green-brown polyphenism or the black patterning. Food quality also had little effect on body color. High temperature tended to inhibit darkening. The background body color on the thorax was greatly influenced by the substrate color of rearing containers and a close correlation was found between these two variables, indicating that, in contrast to what has been suggested by others, this species exhibits homochromy to match the body color to the substrate color of its habitat. Similar responses were observed in another strain, although some quantitative differences occurred between the two strains examined. Based on these results, a new model explaining the control of body-color polyphenism in this locust is proposed and the ecological significance of black patterns in solitarious nymphs is discussed.  相似文献   

5.
We tested the hypothesis that soft-bodied octopuses, which spend most of their lives in dens, remain highly cryptic as their primary defence against predation while they forage. We videotaped foraging octopuses on two widely dispersed Pacific coral reefs and developed a rigorous method to analyse the degree of crypsis from videotapes. Five ranks were assigned (two of‘ highly cryptic’, one of ‘moderately cryptic’, and two of ‘conspicuous’) to assess each octopus's body pattern match to its background, using the criteria of brightness, colour, shape and skin patterning. The data do not support the hypothesis. In Tahiti, octopuses were highly cryptic only 54%, moderately cryptic 24% and conspicuous 22% of the time. In Palau, the respective calculations were 31 %, 19% and 50%. A major feature of their behaviour was their remarkable ability to instantly change their body pattern, or phenotype, by direct neural control of the skin. Six chronic and nine acute categories of body patterns were observed. On average, octopuses changed their phenotype 2.95 times/minute, or 177 times per hour, based upon 7.5 hours of videotaped foraging. This rapid neurally controlled polyphenism was used most often to adjust their appearance as they foraged slowly across highly diverse substrates, thus implementing appropriate mechanisms of crypsis over each (e.g. general background resemblance, deceptive resemblance, disruptive coloration). However, when crawling rapidly, or swimming for short distances, octopuses often engaged a second antipredator lactic that was conspicuous: mimicking fishes or showing bold disruptive patterns that rendered them visibly different from an octopus. Nevertheless, sometimes they were simply conspicuous even when moving slowly, particularly in Palau, where the octopuses were larger, there was a high degree of mating“, and fewer signs of predation were evident. The results suggest that, while foraging, the overall strategy is to use polyphenism to produce ‘apparent rarity’ of any single phenotype (or search image) through mechanisms of crypsis, conspicuousness and mimicry, all of which are guided by keen vision in this marine invertebrate.  相似文献   

6.
Seasonal polyphenisms are widespread in nature, yet the selective pressures responsible for their evolution remain poorly understood. Previous work has largely focussed either on the developmental regulation of seasonal polyphenisms or putative ‘top‐down’ selective pressures such as predation that may have acted to drive phenotypic divergence. Much less is known about the influence of seasonal variation in resource availability or seasonal selection on optimal resource allocation. We studied seasonal variation in resource availability, uptake and allocation in Araschnia levana L., a butterfly species that exhibits a striking seasonal colour polyphenism consisting of predominantly orange ‘spring form’ adults and black‐and‐white ‘summer form’ adults. ‘Spring form’ individuals develop as larvae in the late summer, enter a pupal diapause in the fall and emerge in the spring, whereas ‘summer form’ individuals develop directly during the summer months. We find evidence for seasonal declines in host plant quality, and we identify similar reductions in resource uptake in late summer, ‘spring form’ larvae. Further, we report shifts in the body composition of diapausing ‘spring form’ pupae consistent with a physiological cost to overwintering. However, these differences do not translate into detectable differences in adult body composition. Instead, we find minor seasonal differences in adult body composition consistent with augmented flight capacity in ‘summer form’ adults. In comparison, we find much stronger signatures of sex‐specific selection on patterns of resource uptake and allocation. Our results indicate that resource dynamics in A. levana are shaped by seasonal fluctuations in host plant nutrition, climatic conditions and intraspecific interactions.  相似文献   

7.
Abstract. 1. Estimates of the relative crypsis of the melanic and typical morphs of B.betularia have been made at fifty-two sites in southern England and south Wales and these estimates were compared with melanic frequencies in samples from these sites.
2. The decrease from east to west in the frequency of the melanic form, carbonaria , and increase in the frequency of a second melanic form, insularia , across the southern part of England and Wales is largely independent of changes in smoke concentration, sulphur dioxide concentration or relative crypsis.
3. When all the available information on the distribution of the melanics of B.betularia is considered, sulphur dioxide concentration is correlated with the geographic variation in carbonaria frequency. This, together with evidence of the close relationship between carbonaria crypsis and sulphur dioxide levels, indicates that outside southern England and south Wales, either selective predation, or some direct selective effect of pollutants, is of major importance in determining the variation in carbonaria frequency.
4. Some features of the pattern of the spread of carbonaria in England and Wales during the last century give reasons for expecting non-industrial selective factors to be of greater importance in determining the distribution of melanics of B.betularia in southern England and south Wales than in the rest of Britain.  相似文献   

8.
Abstract Many animal species display striking color differences with respect to geographic location, sex, and body region. Traditional adaptive explanations for such complex patterns invoke an interaction between selection for conspicuous signals and natural selection for crypsis. Although there is now a substantial body of evidence supporting the role of sexual selection for signaling functions, quantitative studies of crypsis remain comparatively rare. Here, we combine objective measures of coloration with information on predator visual sensitivities to study the role of crypsis in the evolution of color variation in an Australian lizard species complex (Ctenophorus decresii). We apply a model that allows us to quantify crypsis in terms of the visual contrast of the lizards against their natural backgrounds, as perceived by potential avian predators. We then use these quantitative estimates of crypsis to answer the following questions. Are there significant differences in crypsis conspicuousness among populations? Are there significant differences in crypsis conspicuousness between the sexes? Are body regions “exposed” to visual predators more cryptic than “hidden” body regions? Is there evidence for local adaptation with respect to crypsis against different substrates? In general, our results confirmed that there are real differences in crypsis conspicuousness both between populations and between sexes; that exposed body regions were significantly more cryptic than hidden ones, particularly in females; and that females, but not males, are more cryptic against their own local background than against the background of other populations. Body regions that varied most in contrast between the sexes and between populations were also most conspicuous and are emphasized by males during social and sexual signaling. However, results varied with respect to the aspect of coloration studied. Results based on chromatic contrast (“hue’ of color) provided better support for the crypsis hypothesis than did results based on achromatic contrast (“brightness’ of color). Taken together, these results support the view that crypsis plays a substantial role in the evolution of color variation and that color patterns represent a balance between the need for conspicuousness for signaling and the need for crypsis to avoid predation.  相似文献   

9.
Dimorphisms occur when alternative developmental pathways produce discrete phenotypes within a species, and may promote evolutionary novelty in morphology, life history, and behavior. Among marine invertebrates, intra-specific dimorphism in larval type (poecilogony) is notably rare, but should provide insight into the selective forces acting on larval strategies. Most established cases of poecilogony appear to be allelic polymorphisms, with local expression regulated by population-genetic processes. Here, we present evidence that dimorphic larval development in the sea slug Alderia willowi is a seasonal polyphenism; the type of larvae produced by an adult slug depends on the rearing environment in which that slug matured. In field surveys of 1996-1999 and 2007-2009, the population in Mission Bay, San Diego (California, USA) produced only short-lived lecithotrophic larvae in summer and early fall, but a varying proportion of slugs expressed planktotrophy in winter and spring. In laboratory experiments, slugs reared under summer conditions (high temperature, high salinity) produced the highest proportion of lecithotrophic offspring, whereas winter conditions (low temperature, low salinity) induced the lowest proportion of lecithotrophy. The shift to a nondispersive morph under summer conditions may be an adaptive response to historical closure of coastal wetlands during the dry season in southern California, which would inhibit dispersal by larvae of back-bay taxa. In most animal polyphenisms, a single larval type is produced and the rearing environment determines which adult phenotype develops. In contrast, alternative larval morphs are produced by A. willowi in response to seasonal cues experienced by the adult stage, varying the phenotype and dispersal potential of offspring. As the only known case of polyphenism in mode of larval development, A. willowi should become a model organism for mechanistic studies of dimorphism and the evolution of alternative life histories.  相似文献   

10.
Animals can evade predators in multiple ways, one of the most effective of which is to avoid detection in the first place. We know much about the evolution of color patterns that match the visual background to avoid detection (i.e., crypsis), yet we know surprisingly less about the specific behaviors that have co‐evolved with these morphological traits to enhance or maintain crypsis. We here explore whether the match between body color and background in a seemingly well‐camouflaged tropical shore crab is a result of active background choice. Taking advantage of a coastal area in the Solomon Islands with variable sand color and a population of the pallid ghost crab Ocypode pallidula with varying carapace color, we experimentally tested whether individuals actively choose specific substrate that best matches their color patterns. We found that individuals taken from extreme sand colors chose substrate that maintained crypsis, with relatively darker crabs typically choosing dark sand and lighter crabs choosing light sand. Crabs of intermediate color pattern, in contrast, showed no clear preference for dark or light sand. Our results suggest that potential prey can actively choose specific backgrounds to enhance and maintain crypsis, providing insights into how behavior interacts with morphological traits to avoid predator detection.  相似文献   

11.
Predation can be one of the key factors that determine abundance in insect herbivore communities, and drive evolution of body size, and anti‐predator traits, including crypsis. Population dynamics and selection pressures will depend on the identity of dominant predators in the system, and these may vary substantially among habitats. Arthropods emerge as chief predators on caterpillars in the understorey of non‐montane tropical forest, whereas birds dominate elsewhere. In a tropical forest in Uganda, Africa, we evaluated marks on dummy caterpillars that differed in size, material (clay vs. dough), colourant, and plant species on which dummy caterpillars were exposed. We included live caterpillars to estimate the extent to which studies using artificial caterpillars reflect actual levels of predation. Ants and wasps were the most important damagers of dummy caterpillars, whereas bug and beetle damage was very rare, and no bird or small mammal damage was observed. Daily attack rates did not differ significantly from apparent mortality of live caterpillars (daily mortality = 12.1%), but dummy caterpillars made from dough were attacked more frequently (daily attack rate = 18.4%) than those from clay (daily attack rate = 6.9%). Caterpillars of different colour and size, and caterpillars exposed on different plant species had the same chances to be predated. This is in contrast to results from temperate area studies where birds dominate and are not affected by dummy caterpillar material, but prefer larger caterpillars. Our results are consistent with dominant predators on tropical forest caterpillars being invertebrates that are more chemically than visually oriented, so that: (1) material used for dummy caterpillars is important, (2) background matching is relatively unimportant, and (3) being large may have less of a cost. These patterns in predation might facilitate polyphagy and evolution of large body size in tropical Lepidoptera.  相似文献   

12.
Protective forms of animal color, such as crypsis, are thought to reduce the probability of detection by visual predators. However, because crypsis is ostensibly intuitive, the working hypothesis of cryptic coloration is seldom tested. Additionally because crypsis is a background-specific adaptation, events which alter habitat structure and substrate composition are likely to affect rates of predation on cryptic animals; animal colors that are cryptic against one visual background may be conspicuous against different visual backgrounds. Populations of Sceloporus woodi, a cryptic diurnal lizard, occupy clear-cut stands of sand pine scrub and prescribe-burned longleaf pine habitat within the Ocala National Forest. Here, we used a combination of clay models resembling S. woodi, and spectral analysis, to examine the effects of spatial heterogeneity and model-substrate contrast on rates of predation. The rate of attack on clay models differed between substrate types and habitats, and was highest when clay models were conspicuous against the local visual background. The dorsal color of models greatly contrasted open sand and dead wood, but had similar reflectance values to leaf litter, suggesting that models were most cryptic on leaf litter. We conclude that crypsis is adaptive in this species, and that variation in rates of attack between sampling locations is related to changes in substrate composition due to management history. For instance, the data suggest that the rate of attack on clay models would decrease in response to succession in sand pine scrub, because aging in sand pine scrub results in increased amounts of leaf litter and decreased amounts of open sand. Overall, the results of this study support the theory of protective coloration.  相似文献   

13.
Natural selection shapes the evolution of anti-predator defences, such as camouflage. It is currently contentious whether crypsis and disruptive coloration are alternative mechanisms of camouflage or whether they are interrelated anti-predator defences. Disruptively coloured prey is characterized by highly contrasting patterns to conceal the body shape, whereas cryptic prey minimizes the contrasts to background. Determining bird predation of artificial moths, we found that moths which were dissimilar from the background but sported disruptive patterns on the edge of their wings survived better in heterogeneous habitats than did moths with the same patterns inside of the wings and better than cryptic moths. Despite lower contrasts to background, crypsis did not provide fitness benefits over disruptive coloration on the body outline. We conclude that disruptive coloration on the edge camouflages its bearer independent of background matching. We suggest that this result is explainable because disruptive coloration is effective by exploiting predators' cognitive mechanisms of prey recognition and not their sensory mechanisms of signal detection. Relative to disruptive patterns on the body outline, disruptive markings on the body interior are less effective. Camouflage owing to disruptive coloration on the body interior is background-specific and is as effective as crypsis in heterogeneous habitats. Hence, we hypothesize that two proximate mechanisms explain the diversity of visual anti-predator defences. First, disruptive coloration on the body outline provides camouflage independent of the background. Second, background matching and disruptive coloration on the body interior provide camouflage, but their protection is background-specific.  相似文献   

14.
Many herbivorous insects induce preferences for host plants. Recent work in Manduca sexta indicates that induced preferences are mediated by a “tuning” of the peripheral taste system to chemicals within host plant foliage. We tested this hypothesis by rearing caterpillars on artificial diet or potato foliage, and then examining olfactory- and taste-mediated responses to potato foliage extract. First, we confirmed earlier reports that consumption of potato foliage tunes the peripheral taste system by reducing responsiveness to glucose and increasing responsiveness to foliage extract. Second, we offered caterpillars a choice between disks treated with foliage extract (experimental) or solvent alone (control). The foliage-reared caterpillars approached and consumed the experimental disks disproportionately, whereas the diet-reared caterpillars approached and consumed both disks indiscriminately. This indicated that induced preferences involve olfaction and taste. Third, we ran choice tests with foliage-reared caterpillars deprived of either olfactory or gustatory input. Caterpillars lacking olfactory input approached both disks indiscriminately, but fed selectively on experimental disks. In contrast, caterpillars lacking gustatory input approached experimental disks selectively, but fed indiscriminately on both types of disk. We conclude that even though olfaction helps caterpillars locate potato foliage, it is the “tuned” gustatory response that ultimately mediates the induced preference.  相似文献   

15.
We investigated whether insulin signaling, known to mediate physiological plasticity in response to changes in nutrition, also facilitates discrete phenotypic responses such as polyphenisms. We test the hypothesis that the gene FOXO--which regulates growth arrest under nutrient stress--mediates a nutritional polyphenism in the horned beetle, Onthophagus nigriventris. Male beetles in the genus Onthophagus vary their mating strategy with body size: large males express horns and fight for access to females while small males invest heavily in genitalia and sneak copulations with females. Given that body size and larval nutrition are linked, we predicted that 1) FOXO expression would differentially scale with body size (nutritional status) between males and females, and 2) manipulation of FOXO expression would affect the nutritional polyphenism in horns and genitalia. First, we found that FOXO expression varied with body size in a tissue- and sex-specific manner, being more highly expressed in the abdominal tissue of large (horned) males, in particular in regions associated with genitalia development. Second, we found that knockdown of FOXO through RNA-interference resulted in the growth of relatively larger copulatory organs compared to control-injected individuals and significant, albeit modest, increases in relative horn length. Our results support the hypothesis that FOXO expression in the abdominal tissue limits genitalia growth, and provides limited support for the hypothesis that FOXO regulates relative horn length through direct suppression of horn growth. Both results support the idea that tissue-specific FOXO expression may play a general role in regulating scaling relationships in nutritional polyphenisms by signaling traits to be relatively smaller.  相似文献   

16.
1. Aposematism is a widely used antipredator strategy in which an organism possesses both warning coloration and unprofitable characters. Theoretical evidence suggests that aposematic colour should develop when high opportunity costs imposed by crypsis force an organism to engage in conspicuous behaviours. Hence, it is expected that ontogenetic colour change (OCC) in larval insects should include aposematism when foraging needs compel behavioural modifications that preclude a continued state of crypsis. 2. To test this idea, I first investigated whether OCC in caterpillars of the panic moth Saucrobotys futilalis was indicative of a switch from cryptic to aposematic coloration. I then examined the context of panic moth OCC as it related to foraging patterns and behavioural conspicuousness. 3. Early Saucrobotys instars are a cryptic green, but later instars become progressively more orange and develop black spots. Early instar larvae forage cryptically on the inner parenchyma of silked-together host plant leaves to avoid predation, but are rapidly forced to engage in conspicuous foraging behaviours as they outgrow the resources afforded by their shelters. Both coloration and behaviour reach maximal conspicuousness in final instar larvae. 4. As predicted, OCC encompassed a change from crypsis to aposematism in Saucrobotys. Aposematic function was demonstrated by changes in both antipredator behaviour patterns and effectiveness of predator deterrence in early and late instars. Moreover, increased opportunity costs of crypsis and behavioural conspicuousness coincided with the onset of aposematic coloration. 5. This pattern of OCC suggests that aposematic coloration in Saucrobotys develops as a response to constraints imposed by crypsis. Moreover, my study illustrates the importance of the study of ontogenetic patterns in determining how behaviour, morphology, and predator responses interact to influence the initial evolution of phenomena such as aposematism.  相似文献   

17.
Countershading is a gradient of colouration in which the illuminated dorsal surfaces are darker than the unilluminated ventral surface. It is widespread in the animal kingdom and endows the body with a more uniform colour to decrease the chance of detection by predators. Although recent empirical studies support the theory of survival advantage conferred by countershading, this camouflage strategy has evolved only in some of the cryptic animals, and our understanding of the factors that affect the evolution of countershading is limited. This study examined the association between body size and countershading using lepidopteran larvae (caterpillars) as a model system. Specifically, we predicted that countershading may have selectively evolved in large-sized species among cryptic caterpillars if (1) large size constrains camouflage which facilitates the evolution of a trait reinforcing their crypsis and (2) the survival advantage of countershading is size-dependent. Phylogenetic analyses of four different lepidopteran families (Saturniidae, Sphingidae, Erebidae, and Geometridae) suggest equivocal results: countershading was more likely to be found in larger species in Saturniidae but not in the other families. The field predation experiment assuming avian predators did not support size-dependent predation in countershaded prey. Collectively, we found only weak evidence that body size is associated with countershading in caterpillars. Our results suggest that body size is not a universal factor that has shaped the interspecific variation in countershading observed in caterpillars.  相似文献   

18.
Locusts represent an impressive example of migratory polyphenism, with high densities triggering a switch from a solitarious, shorter dispersal range, and sometimes greenish phenotype to a gregarious and sometimes darker form exhibiting behavioral, morphological and physiological traits associated with long-distance migratory swarms. While such polyphenism has been well documented in Locusta migratoria and Schistocerca gregaria, the extent to which other grasshoppers exhibit this type of migratory polyphenism is unclear. Anecdotally, the Chinese grasshopper, Oedaleus asiaticus, forms migratory swarms comprised mostly of a darker, brown-colored morph, but also exhibits a non-migratory green-colored morph that predominates at low densities. In a population in Inner Mongolia not currently exhibiting migratory swarms, we found that while green and brown O. asiaticus are found concurrently across our sampled range, only brown grasshoppers were found in high densities. Differences between field-collected brown and green forms matched some but not key predictions associated with the hypothesis that the brown form is morphologically and physiologically specialized for gregarious migration. Controlling for body mass, brown forms had more massive thoraxes, abdomens and legs, and higher metabolic rates, but not more flight muscle or lipid stores. Further, the brown and green grasshoppers did not differ in gregarious behavior, and neither would fly in multiple lab and field trials. Lab or field-rearing at high densities for one-to-multiple juvenile instars caused grasshoppers to exhibit some morphological traits predicted to benefit migration (larger wings and a shift in relative mass from abdomen to thorax), but did not change color or induce flight behavior. One hypothesis to explain these data is that a migratory form of O. asiaticus is partially triggered by high field densities, but that existing ecological conditions blocked full expression of such traits (and outbreak swarms). Alternatively, color variation in this species may more tightly linked to other functions in this species such as crypsis or disease resistance, and mechanisms other than late-juvenile rearing density (e.g. genetic variation, maternal effects) may be more critical for promoting variation in color and/or migratory polyphenism.  相似文献   

19.
Predation is an important selective force that influences animal color patterns. Some larval populations of the streamside salamander, Ambystoma barbouri, inhabit streams with fish predators. Other larval salamanders are found in shallow, ephemeral streams that are predator-free. Quantitative melanophore cell counts and estimates of percent body area pigmented indicated that larval coloration is strongly correlated with stream type. Larvae that coexist with fish tend to be lighter than larvae from streams that are Ashless and ephemeral. Two approaches demonstrated that lightly pigmented salamander larvae better match the common background in relatively permanent streams and are less conspicuous to fish than dark larvae. First, using a model based on the spectral sensitivity of the fish and reflectance properties of salamanders and natural stream backgrounds, we showed that light larvae are three times more cryptic than dark larvae on rocks. Second, lighter larvae had higher survival than darker salamanders on rocks in a predator- choice experiment. It is not clear why larvae in ephemeral streams are darker. Larvae in ephemeral streams should be active to feed and develop rapidly and reach sufficient size to metamorphose before seasonal drying. Several hypotheses may explain why larvae tend to be darker in ephemeral streams, such as increased thermoregulatory ability, better screening of ultraviolet radiation (in these shallower streams), or better background matching to terrestrial predators. Among populations where salamander larvae coexist with fish, there are differences in relative crypsis. Larvae from populations with fish and relatively high gene flow from ephemeral populations (where larvae are dark) tend to be darker (with more melanophores) and more conspicuous to predators than those from more genetically isolated populations, where larvae are lighter and more cryptic. These differences illustrate the role of gene flow as a constraint to adaptive evolution.  相似文献   

20.
Oemona hirta (F.) is a New Zealand native longicorn beetle, whose larvae bore into the wood of branches and stems of living trees and vines, causing serious damage. To explore effective methods for maintaining laboratory colonies and biology of immature stages of this species we evaluated four laboratory rearing methods with both natural and artificial diets and compared biological parameters of laboratory colonies with those of field-collected insects. On an artificial diet, approximately 40% of neonate and 70% of autumn- and 11% of winter-collected larvae reached adulthood. Neonate larvae could not complete their development in cut poplar (Populus nigra variety italica Koehne) twigs; however, when twigs were standing in water >46% of neonate larvae survived to adulthood. Mean larval development time ranged from approximately150 to almost 300 d, depending on rearing methods. Mean pupal stage ranged from 15 to 19 d. Adult females were significantly heavier than males. Although adult females from field-collected twigs and reared on the artificial diet had similar mean body weight, which was significantly greater than that of other rearing colonies, the potential fecundity was the highest in the former (83.1 +/- 29.4 eggs) and the lowest in the latter (33.5 +/- 9.1 eggs). In all laboratory-reared and field-collected insects, the total number of eggs produced (eggs laid + eggs that remained in dead female body) by females was positively correlated with their body weight. When larvae fed on the artificial diet, there was no positive correlation between the number of eggs successfully laid and female body weight. However, when larvae lived on natural food, a positive correlation was found. In laboratory colonies, mean longevity of females (36 to 52 d) was slightly greater than that of males (30 to 50 d) without significant difference between sexes but in the adults from field-collected twigs, males (52 d) lived significantly longer than females (33 d). In terms of time, labor, and the number of resulting adults, collecting larvae in the field in autumn and then transferring them onto artificial diet is the most effective method for maintaining a laboratory colony.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号