首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Insulin-like growth factor I (IGF-I) and its receptor (IGF-IR) are involved in growth of neurons. In the rat olfactory epithelium, we previously showed IGF-IR immunostaining in subsets of olfactory receptor neurons. We now report that IGF-IR staining was heaviest in the olfactory nerve layer of the rat olfactory bulb at embryonic days 18, and 19 and postnatal day 1, with labeling of protoglomeruli. In the adult, only a few glomeruli were IGF-IR-positive, some of which were unusually small and strongly labeled. Some IGF-IR-positive fibers penetrated deeper into the external plexiform layer, even in adults. In developing tissues, IGF-IR staining co-localized with that for olfactory marker protein and growth associated protein GAP-43, but to a lesser extent with synaptophysin. In the adult, IGF-IR-positive fibers were compartmentalized within glomeruli. IGF-I may play a role in glomerular synaptogenesis and/or plasticity, possibly contributing to development of coding patterns for odor detection or identification.  相似文献   

2.
The mimicking of olfaction is considered to be a promising approach for the construction of artificial odour-sensing systems. In the nose, the detection of volatile odorants begins when the odorant ligands interact with specific odorant receptors in the ciliary membrane of the olfactory neurons. A large family of genes encoding putative odorant receptors has been identified recently. Individual receptor types are expressed in subsets of cells distributed in distinct zones of the olfactory epithelium. Ligand-receptor interaction triggers a rapid multistep reaction cascade, resulting in a “pulse” of second messengers that initiates an electrical response from the receptor neuron. Olfactory signalling is terminated by phosphorylation of receptors via a negative feedback reaction, catalyzed by specific kinases.  相似文献   

3.
We evaluated the role of βIII-tubulin in the morphology of olfactory receptor neuron (ORN) and olfactory dysfunction in offspring caused by prenatal and postnatal lanthanum exposure. Pregnant rats were exposed to 0.25% lanthanum chloride in drinking water from gestational day (GD) 7 until postnatal day 21. From postnatal day 23 until postnatal day 28, pups were examined with buried food pellet and olfactory maze test. The ultrastructural features of ORNs in the olfactory epithelium (OE) were observed by transmission electron microscope. The expression of βIII-tubulin and olfactory marker protein (OMP) in the tissue sections and homogenates of OE were, respectively, measured by immunodetection and western blot. Behavioral analysis of olfaction showed that lanthanum chloride exposure induced olfactory dysfunction. Offsprings exposed to lanthanum chloride showed enlarged ORN knobs and a decreased number of cilia. In addition, the levels of OMP and βIII-tubulin expression in lanthanum chloride exposure offsprings significantly decreased. Developmental lanthanum exposure could impair olfaction, and this deficit may be attributed to the downregulation of βIII-tubulin and OMP in the OE.  相似文献   

4.
Glomeruli within the main olfactory bulb (MOB) are known as areas of synapse formation between axon terminals of olfactory neurons in the olfactory epithelium and dendrites of the first relay neurons (mitral and tufted cells) in the MOB, so that they serve as functional units in olfaction. We examined expression patterns of glycoconjugates in the glomeruli of the hamster MOB by lectin histochemistry using 21 biotinylated lectins. Thirteen lectins, WGA, s-WGA, DSL, DBA, SBA, WA, SJA, RCA-I, PNA, ECL, UEA-I, PSA and LCA, showed differential binding patterns among the glomeruli. To evaluate these differential binding patterns of lectins, we analysed staining intensity of each of the 13 lectins on the level of individual glomeruli by image analysis, and classified staining intensity into five grades (negative, 1+, 2+, 3+, 4+) on the basis of results obtained. This classification enables us to make detailed comparison among individual glomeruli. We further analysed the grade of staining intensity of each of the 13 lectins in the same glomerulus in adjacent serial sections by image analysis, and found that individual glomeruli varied in combination of grades of staining intensity and kinds of lectins. These results indicate that glycoconjugates are expressed heterogeneously in individual glomeruli, and that heterogeneous expression may contribute to the topographic organization of the primary olfactory pathway.  相似文献   

5.
Zhao H  Reed RR 《Cell》2001,104(5):651-660
The organization of neuronal systems is often dependent on activity and competition between cells. In olfaction, the X-linked OCNC1 channel subunit is subject to random inactivation and is essential for odorant-evoked activity. Reporter-tagged OCNC1 mutant mice permit the visualization of OCNC1-deficient olfactory neurons and their projections. In heterozygous females, X inactivation creates a mosaic with two populations of genetically distinct neurons. OCNC1-deficient neurons are slowly and specifically depleted from the olfactory epithelium and display unusual patterns of projection to the olfactory bulb. Remarkably, this depletion is dependent on odorant exposure and is reversed by odorant deprivation. This suggests that odorants and the activity they evoke are critical for neuronal survival in a competitive environment and implicate evoked activity in the organization and maintenance of the olfactory system.  相似文献   

6.
哺乳动物主要嗅觉系统和犁鼻系统信息识别的编码模式   总被引:4,自引:0,他引:4  
哺乳动物具有两套嗅觉系统, 即主要嗅觉系统和犁鼻系统。前者对环境中的大多数挥发性化学物质进行识别, 后者对同种个体释放的信息素进行识别。本文从嗅觉感受器、嗅球、嗅球以上脑区三个水平综述了这两种嗅觉系统对化学信息识别的编码模式。犁鼻器用较窄的调谐识别信息素成分, 不同于嗅上皮用分类性合并受体的方式识别气味; 副嗅球以接受相同受体输入的肾丝球所在区域为单位整合信息, 而主嗅球通过对肾丝球模块的特异性合并编码信息; 在犁鼻系统, 信息素的信号更多地作用于下丘脑区域, 引起特定的行为和神经内分泌反应。而在主要嗅觉系统, 嗅皮层可能采用时间模式编码神经元群, 对气味的最终感受与脑的不同区域有关。犁鼻系统较主要嗅觉系统的编码简单, 可能与其执行的功能较少有关。  相似文献   

7.
Olfactory stimuli are detected by over 1,000 odorant receptors in mice, with each receptor being mapped to specific glomeruli in the olfactory bulb. The trace amine-associated receptors (TAARs) are a small family of evolutionarily conserved olfactory receptors whose contribution to olfaction remains enigmatic. Here, we show that a majority of the TAARs are mapped to a discrete subset of glomeruli in the dorsal olfactory bulb of the mouse. This TAAR projection is distinct from the previously described class I and class II domains, and is formed by a sensory neuron population that is restricted to express TAAR genes prior to choice. We also show that the dorsal TAAR glomeruli are selectively activated by amines at low concentrations. Our data uncover a hard-wired, parallel input stream in the main olfactory pathway that is specialized for the detection of volatile amines.  相似文献   

8.
Olfactory sensory neurons (OSNs) in the olfactory epithelium of the nose transduce chemical odorant stimuli into electrical signals. These signals are then sent to the OSNs'' target structure in the brain, the main olfactory bulb (OB), which performs the initial stages of sensory processing in olfaction. The projection of OSNs to the OB is highly organized in a chemospatial map, whereby axon terminals from OSNs expressing the same odorant receptor (OR) coalesce into individual spherical structures known as glomeruli. This nose-to-brain map of odorant identity is built from late embryonic development to early postnatal life, through a complex combination of genetically encoded, OR-dependent and activity-dependent mechanisms. It must then be actively maintained throughout adulthood as OSNs experience turnover due to external insult and ongoing neurogenesis. Our review describes and discusses these two distinct and crucial processes in olfaction, focusing on the known mechanisms that first establish and then maintain chemospatial order in the mammalian OSN-to-OB projection.  相似文献   

9.
The sphinx moth Manduca sexta is a well-studied insect with regard to central olfactory functions. Until now, the innervation patterns of olfactory receptor neurons into the array of olfactory glomeruli in the antennal lobe have, however, been unclear. Using optical imaging to visualize calcium dynamics within the antennal lobe we demonstrate specific patterns elicited by sex pheromone components and plant-derived odours. These patterns mainly reflect receptor neuron activity. Within the male-specific macroglomerular complex the two major pheromone components evoke stereotyped activity in either of two macroglomerular complex glomeruli. Based on previous knowledge of output neuron specificity, our results suggest a matching of information between input and output in the macroglomerular complex. Plant odours evoked activity in the sexually isomorphic glomeruli. Two major results were obtained: (1). terpenes and aromatic compounds activate different clusters of glomeruli with only minor overlapping, and (2). the position of certain key glomeruli is fixed in both males and females, which suggests that host-plant related odorants are processed in a similar way in both sexes.  相似文献   

10.
Various genetic or toxin-induced mouse models are frequently used for investigation of early PD pathology. Although olfactory impairment is known to precede motor symptoms by years, it is not known whether it is caused by impairments in the brain, the olfactory epithelium, or both. In this study, we investigated the olfactory function in three genetic Parkinson’s disease (PD) mouse models and mice treated with MPTP intraperitoneally and intranasally. To investigate olfactory function, we performed electro-olfactogram recordings (EOGs) and an olfactory behavior test (cookie-finding test). We show that neither a parkin knockout mouse strain, nor intraperitoneal MPTP treated animals display any olfactory impairment in EOG recordings and the applied behavior test. We also found no difference in the responses of the olfactory epithelium to odorants in a mouse strain over-expressing doubly mutated α-synuclein, while this mouse strain was not suitable to test olfaction in a cookie-finding test as it displays a mobility impairment. A transgenic mouse expressing mutated α-synuclein in dopaminergic neurons performed equal to control animals in the cookie-finding test. Further we show that intranasal MPTP application can cause functional damage of the olfactory epithelium.  相似文献   

11.
Odours are received by olfactory receptors, which send their axons to the first sensory neuropils, the antennal lobes (in insects) or the olfactory bulb (in vertebrates). From here, processed olfactory information is relayed to higher-order brain centres. A striking similarity in olfactory systems across animal phyla is the presence of glomeruli in this first sensory neuropil. Various experiments have shown that odours elicit a mosaic of activated glomeruli, suggesting that odour quality is coded in an 'across-glomeruli' activity code. In recent years, studies using optical recording techniques have greatly improved our understanding of the resulting 'across-glomeruli pattern', making it possible to simultaneously measure responses in several, often identifiable, glomeruli. For the honeybee Apis mellifera, a functional atlas of odour representation is being created: in this atlas, the glomeruli that are activated by different odorants are named. However, several limitations remain to be investigated. In this paper, we review what optical recording of odour-evoked glomerular activity patterns has revealed so far, and discuss the necessary next steps, with emphasis on the honeybee.  相似文献   

12.
Experiments were performed to test the hypothesis that subsetsof olfactory receptor cells could be recognized based on theirlectin binding and that mapping of their projections onto theolfactory bulb would reveal details of anatomic organizationof the olfactory nerve projection to the olfactory bulb. Theresults from one lectin, Lotus, were examined in detail. Olfactoryreceptor cells in the lateral part of the main epithelium werelabeled, as well as scattered cells in the remainder of theepithelium. Glomeruli labled by Lotus were concentrated primarilyin the region of the olfactory bulb that receives its inputfrom the lateral epithelium, although scattered glomeruli couldbe identified in other regions. Within the terminal field ofthese axons there was a mosaic pattern, with some glomerulidensely labeled, some lightly labeled and others unlabeled.These findings support the notion that there are biochemicallydistinct populations of olfactory receptor cells having localizeddistributions in the epithelium, with axons that coalesce toterminate in specific glomeruli, rather than diffusely overtheir projection field. Chem. Senses 21: 13–18, 1996  相似文献   

13.
In olfactory research,neural oscillations exhibit excellent temporal regularity,which are functional and necessary at the physiological and cognitive levels.In this paper,we employed a bionic tissue biosensor which treats intact epithelium as sensing element to record the olfactory oscillations extracellularly.After being stimulated by odorant of butanedione,the olfactory receptor neurons generated different kinds of oscillations,which can be described as pulse firing oscillation,transient firing oscillation,superposed firing oscillation,and sustained firing oscillation,according to their temporal appearances respectively.With a time-frequency analysis of sonogram,the oscillations also demonstrated different frequency properties,such as δ,θ,α,β and γ oscillations.The results suggest that the bionic biosensor cooperated with sonogram analysis can well improve the investigation of olfactory oscillations,and provide a novel model for artificial olfaction sensor design.  相似文献   

14.
Zonal organization of the mammalian main and accessory olfactory systems   总被引:2,自引:0,他引:2  
Zonal organization is one of the characteristic features observed in both main and accessory olfactory systems. In the main olfactory system, most of the odorant receptors are classified into four groups according to their zonal expression patterns in the olfactory epithelium. Each group of odorant receptors is expressed by sensory neurons distributed within one of four circumscribed zones. Olfactory sensory neurons in a given zone of the epithelium project their axons to the glomeruli in a corresponding zone of the main olfactory bulb. Glomeruli in the same zone tend to represent similar odorant receptors having similar tuning specificity to odorants. Vomeronasal receptors (or pheromone receptors) are classified into two groups in the accessory olfactory system. Each group of receptors is expressed by vomeronasal sensory neurons in either the apical or basal zone of the vomeronasal epithelium. Sensory neurons in the apical zone project their axons to the rostral zone of the accessory olfactory bulb and form synaptic connections with mitral tufted cells belonging to the rostral zone. Signals originated from basal zone sensory neurons are sent to mitral tufted cells in the caudal zone of the accessory olfactory bulb. We discuss functional implications of the zonal organization in both main and accessory olfactory systems.  相似文献   

15.
Odorant sampling behaviors such as sniffing bring odorant molecules into contact with olfactory receptor neurons (ORNs) to initiate the sensory mechanisms of olfaction. In rodents, inspiratory airflow through the nose is structured and laminar; consequently, the spatial distribution of adsorbed odorant molecules during inspiration is predictable. Physicochemical properties such as water solubility and volatility, collectively called sorptiveness, interact with behaviorally regulable variables such as inspiratory flow rate to determine the pattern of odorant deposition along the inspiratory path. Populations of ORNs expressing the same odorant receptor are distributed in strictly delimited regions along this inspiratory path, enabling different deposition patterns of the same odorant to evoke different patterns of neuronal activation across the olfactory epithelium and in the olfactory bulb. We propose that both odorant sorptive properties and the regulation of sniffing behavior may contribute to rodents' olfactory capacities by this mechanism. In particular, we suggest that the motor regulation of sniffing behavior is substantially utilized for purposes of "zonation" or the direction of odorant molecules to defined intranasal regions and hence toward distinct populations of receptor neurons, pursuant to animals' sensory goals.  相似文献   

16.
The hammerhead shark possesses a unique head morphology that is thought to facilitate enhanced olfactory performance. The olfactory chambers, located at the distal ends of the cephalofoil, contain numerous lamellae that increase the surface area for olfaction. Functionally, for the shark to detect chemical stimuli, water-borne odors must reach the olfactory sensory epithelium that lines these lamellae. Thus, odorant transport from the aquatic environment to the sensory epithelium is the first critical step in olfaction. Here we investigate the hydrodynamics of olfaction in Sphyrna tudes based on an anatomically-accurate reconstruction of the head and olfactory chamber from high-resolution micro-CT and MRI scans of a cadaver specimen. Computational fluid dynamics simulations of water flow in the reconstructed model reveal the external and internal hydrodynamics of olfaction during swimming. Computed external flow patterns elucidate the occurrence of flow phenomena that result in high and low pressures at the incurrent and excurrent nostrils, respectively, which induces flow through the olfactory chamber. The major (prenarial) nasal groove along the cephalofoil is shown to facilitate sampling of a large spatial extent (i.e., an extended hydrodynamic “reach”) by directing oncoming flow towards the incurrent nostril. Further, both the major and minor nasal grooves redirect some flow away from the incurrent nostril, thereby limiting the amount of fluid that enters the olfactory chamber. Internal hydrodynamic flow patterns are also revealed, where we show that flow rates within the sensory channels between olfactory lamellae are passively regulated by the apical gap, which functions as a partial bypass for flow in the olfactory chamber. Consequently, the hammerhead shark appears to utilize external (major and minor nasal grooves) and internal (apical gap) flow regulation mechanisms to limit water flow between the olfactory lamellae, thus protecting these delicate structures from otherwise high flow rates incurred by sampling a larger area.  相似文献   

17.
Input from olfactory receptor neurons is first organized and processed in the glomerular layer of the olfactory bulb. Olfactory glomeruli serve as functional units in coding olfactory information and contain a complex network of synaptic connections. Odor information has long been thought to be represented by spatial patterns of glomerular activation; recent work has, additionally, shown that these patterns are temporally dynamic. At the same time, recent advances in our understanding of the glomerular network suggest that glomerular processing serves to temporally sharpen these dynamics and to modulate spatial patterns of glomerular activity. We speculate that odor representations and their postsynaptic processing are tuned to and shaped by the sniffing behavior of the animal.  相似文献   

18.
During development of the primary olfactory projection, olfactory receptor axons must sort by odor specificity and seek particular sites in the brain in which to create odor-specific glomeruli. In the moth Manduca sexta, we showed previously that fasciclin II, a cell adhesion molecule in the immunoglobulin superfamily, is expressed by the axons of a subset of olfactory receptor neurons during development and that, in a specialized glia-rich "sorting zone," these axons segregate from nonfasciclin II-expressing axons before entering the neuropil of the glomerular layer. The segregation into fasciclin II-positive fascicles is dependent on the presence of the glial cells in the sorting zone. Here, we explore the expression patterns for different isoforms of Manduca fasciclin II in the developing olfactory system. We find that olfactory receptor axons express transmembrane fasciclin II during the period of axonal ingrowth and glomerulus development. Fascicles of TM-fasciclin II+ axons target certain glomeruli and avoid others, such as the sexually dimorphic glomeruli. These results suggest that TM-fasciclin II may play a role in the sorting and guidance of the axons. GPI-linked forms of fasciclin II are expressed weakly by glial cells associated with the receptor axons before they reach the sorting zone, but not by sorting-zone glia. GPI-fasciclin II may, therefore, be involved in axon-glia interactions related to stabilization of axons in the nerve, but probably not related to sorting.  相似文献   

19.
The olfactory system of the mouse includes several subsystems that project axons from the olfactory epithelium to the olfactory bulb. Among these is a subset of neurons that do not express the canonical pathway of olfactory signal transduction, but express guanylate cyclase-D (GC-D). These GC-D-positive (GC-D+) neurons are not known to express odorant receptors. Axons of GC-D+ neurons project to the necklace glomeruli, which reside between the main and accessory olfactory bulbs. To label the subset of necklace glomeruli that receive axonal input from GC-D+ neurons, we generated two strains of mice with targeted mutations in the GC-D gene (Gucy2d). These mice co-express GC-D with an axonal marker, tau-beta-galactosidase or tauGFP, by virtue of a bicistronic strategy that leaves the coding region of the Gucy2d gene intact. With these strains, the patterns of axonal projections of GC-D+ neurons to necklace glomeruli can be visualized in whole mounts. We show that deficiency of one of the neuropilin 2 ligands of the class III semaphorin family, Sema3f, but not Sema3b, phenocopies the loss of neuropilin 2 (Nrp2) for axonal wiring of GC-D+ neurons. Some glomeruli homogeneously innervated by axons of GC-D+ neurons form ectopically within the glomerular layer, across wide areas of the main olfactory bulb. Similarly, axonal wiring of some vomeronasal sensory neurons is perturbed by a deficiency of Nrp2 or Sema3f, but not Sema3b or Sema3c. Our findings provide genetic evidence for a Nrp2-Sema3f interaction as a determinant of the wiring of axons of GC-D+ neurons into the unusual configuration of necklace glomeruli.  相似文献   

20.
Olfactory receptors (ORs) are expressed in sensory neurons of the nasal epithelium, where they are supposed to be involved in the recognition of suitable odorous compounds and in the guidance of outgrowing axons towards the appropriate glomeruli in the olfactory bulb. During development, some olfactory receptor subtypes have also been found in non-sensory tissues, including the cribriform mesenchyme between the prospective olfactory epithelium and the developing telencephalon, but it is elusive if this is a typical phenomenon for ORs. Monitoring the onset and time course of expression for several receptor subtypes revealed that 'extraepithelial' expression of ORs occurs very early and transiently, in particular between embryonic stages E10.25 and E14.0. In later stages, a progressive loss of receptor expressing cells was observed. Molecular phenotyping demonstrated that the receptor expressing cells in the cribriform mesenchyme co-express key elements, including Galpha(olf), ACIII and OMP, characteristic for olfactory neurons in the nasal epithelium. Studies on transgenic OMP/GFP-mice showed that 'extraepithelial' OMP/GFP-positive cells are located in close vicinity to axon bundles projecting from the nasal epithelium to the presumptive olfactory bulb. Moreover, these cells are primarily located where axons fasciculate and change direction towards the anterior part of the forebrain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号