首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 752 毫秒
1.
The FAD-dependent choline oxidase catalyzes the four-electron oxidation of choline to glycine-betaine, with betaine-aldehyde as intermediate. The enzyme is capable of accepting either choline or betaine-aldehyde as a substrate, allowing the investigation of the reaction mechanism for both the conversion of choline to betaine-aldehyde and of betaine-aldehyde to glycine-betaine. In the present study, pH and deuterium kinetic isotope effects with [1,2-2H(4)]-choline were used to study the mechanism of oxidation of choline to betaine-aldehyde. The V/K and V(max) pH-profiles increased to limiting values with increasing pH, suggesting the presence of a catalytic base essential for catalysis at the enzyme active site. From the V/K pH-profile with [1,2-2H(4)]-choline, a pK(a) of 8.0 was determined for the catalytic base. This pK(a) was shifted to 7.5 in the V/K pH-profile with choline, indicating a significant commitment to catalysis with this substrate. In agreement with this conclusion, the D(V/K) values decreased from a limiting value of 12.4 below pH 6.5 to a limiting value of 4.1 above pH 9.5. The large D(V/K) values at low pH are consistent with carbon-hydrogen bond cleavage of choline being nearly irreversible and fully rate-limiting at low pH. Based on comparison of amino acid sequences and previous structural and mechanistic studies on other members of the GMC oxidoreductase superfamily, the identity of the catalytic base of choline oxidase is proposed.  相似文献   

2.
The effect of trehalose (0.5 M) on the thermal stability of cutinase in the alkaline pH range was studied. The thermal unfolding induced by increasing temperature was analyzed in the absence and in the presence of trehalose according to a two-state model (which assumes that only the folded and unfolded states of cutinase were present). Trehalose delays the reversible unfolding. The midpoint temperature of the unfolding transition (Tm) increases by 4.0 degrees C and 2. 6 degrees C at pH 9.2 and 10.5, respectively, in the presence of trehalose. At pH 9.2 the thermal unfolding occurs at higher temperatures (Tm is 52.6 degrees C compared to 42.0 degrees C at pH 10.5) and a refolding yield of around 80% was obtained upon cooling. This pH value was chosen to study the irreversible inactivation (long-term stability) of cutinase. Temperatures in the transition range from folded to unfolded state were selected and the rate constants of irreversible inactivation determined. Inactivation followed first-order kinetics and trehalose reduced the observed rate constants of inactivation, pointing to a stabilizing effect on the irreversible inactivation step of thermal denaturation. However, if the contribution of reversible unfolding on the irreversible inactivation of cutinase was taken into account, i.e., considering the fraction of cutinase molecules in the reversible unfolded conformation, the intrinsic rate constants can be calculated. Based on the intrinsic rate constants it was concluded that trehalose does not delay the irreversible inactivation. This conclusion was further supported by comparing the activation energy of the irreversible inactivation in the absence and in the presence of trehalose. The apparent activation energy in the absence and in the presence of trehalose were 67 and 99 Kcal/mol, respectively. The activation energy calculated from intrinsic rate constants was higher in the absence (30 Kcal/mol) than in the presence of trehalose (16 Kcal/mol), showing that kinetics of the irreversible inactivation step increased in the presence of trehalose. In fact, trehalose stabilized only the reversible step of thermal denaturation of cutinase.  相似文献   

3.
The kinetics of thermal inactivation of copper-containing amine oxidase from lentil seedlings were studied in a 100 mM potassium phosphate buffer, pH 7, using putrescine as the substrate. The temperature range was between 47-60 degrees C. The thermal inactivation curves were not linear at 52 and 57 degrees C; three linear phases were shown. The first phase gave some information about the number of dimeric forms of the enzyme that were induced by the higher temperatures using the "conformational lock" pertaining theory to oligomeric enzyme. The "conformational lock" caused two additional dimeric forms of the enzyme when the temperature increased to 57 degrees C. The second and third phases were interpreted according to a dissociative thermal inactivation model. These phases showed that lentil amine oxidase was reversibly-dissociated before the irreversible thermal inactivation. Although lentil amine oxidase is not a thermostable enzyme, its dimeric structure can form "conformational lock," conferring a structural tolerance to the enzyme against heat stress.  相似文献   

4.
Hoang JV  Gadda G 《Proteins》2007,66(3):611-620
Choline oxidase is a flavin-dependent enzyme that catalyzes the oxidation of choline to glycine-betaine, with oxygen as electron acceptor. Storage at pH 6 and -20 degrees C resulted in a change in the conformation of choline oxidase, which was associated with complete loss of catalytic activity when the enzyme was assayed at pH 6. Incubation of the inactive enzyme at pH values > or = 6.5 and 25 degrees C resulted in a fast and partial reactivation of the enzyme, which occurred with slow onset of steady state during enzymatic turnover. The rate of approaching steady state was independent of the concentrations of choline and enzyme, but increased to a limiting value with increasing pH, defining a pKa value of approximately 7.3 for an unprotonated group required for enzyme activation. Prolonged incubation of the inactive enzyme at pH 6 and temperatures > or = 20 degrees C, at which no hysteretic behavior was observed, resulted in the slow and full recovery of activity over 3 h, associated with a conformational change that reverted the enzyme to the native form. Activation of the enzyme at pH 6 was enthalpy-driven with deltaH(double dagger) and TdeltaS(double dagger) values of approximately 112 kJ mol(-1) and approximately 20 kJ mol(-1) determined at 25 degrees C. These data suggest that freezing the enzyme at low pH induces a localized and reversible conformational change that is associated with the complete and reversible loss of catalytic activity.  相似文献   

5.
The effects of high-pressure treatment on the reaction rates of horseradish peroxidase (HRP) with guaethol or guaiacol as a hydrogen donor were evaluated from direct transmission measurements in a high-pressure optical cell at 435 nm. Peroxidases are known to be very barostable and insensitive to heat. With guaethol the reaction velocity was independent of pressure up to 500 MPa, but with guaiacol the cytochrome c oxidase underwent a mechanism-based irreversible inhibition of catalytic activity when subjected to pressure; in the resting states (fully oxidized or reduced), it was insensitive to pressure. The enzyme inactivation took place with an inactivation rate constant of 5.15 x 10(-1) min(-1) at 500 MPa, 25 degrees C and pH 7. The degree of inactivation was correlated to the concentration of guaiacol. This is the first report on a mechanism-based pressure inactivation of HRP triggered at moderate pressure and temperature and mediated by the hydrogen donor.  相似文献   

6.
The thermal stability of glucose oxidase was studied at temperatures between 50 and 70 degrees C by kinetic and spectroscopic (circular dichroism) methods. The stability of glucose oxidase was shown to depend on the medium pH, protein concentration, and the presence of protectors in the solution. At low protein concentrations (< 15 micrograms/ml) and pH > 5.5, the rate constants kin (s-1) for thermal inactivation of glucose oxidase were high. Circular dichroic spectra suggested an essential role of beta structures in stabilizing the protein globule. At a concentration of 15 micrograms protein/ml, the activation energy Ea of thermal inactivation of glucose oxidase in aqueous solution was estimated at 79.1 kcal/mol. Other thermodynamic activation parameters estimated at 60 degrees C had the following values: delta H = 78.4 kcal/mol, delta G = 25.5 kcal/mol, and delta S = 161.9 entropy units. The thermal inactivation of glucose oxidase was inhibited by KCl, polyethylene glycols, and polyols. Among polyols, the best was sorbitol, which stabilized glucose oxidase without affecting its activity. Ethanol, phenol, and citrate exerted destabilizing effects.  相似文献   

7.
The photosensitive inactivation of trypsin and chymotrypsin by 4-fluoro-3-nitrophenyl azide (FNPA) is described. A dark inhibition was observed at elevated probe concentrations, and was reversible. The enzymes were stable to photolysis in the absence of probe. Photolytic inactivation of trypsin and chymotrypsin with FNPA was found to be irreversible, and occurs in minutes at concentrations of FNPA where dark inhibition is negligible. The photoprobe was equally effective at pH 3 or pH 8. Nonspecific inactivation appears to be low, as evidenced by the stability of glucose oxidase and peroxidase to photolysis with FNPA.  相似文献   

8.
Fan F  Gadda G 《Biochemistry》2007,46(21):6402-6408
The hydride transfer reaction catalyzed by choline oxidase under irreversible regime, i.e., at saturating oxygen, was shown in a recent study to occur quantum mechanically within a highly preorganized active site, with the reactive configuration for hydride tunneling being minimally affected by environmental vibrations of the reaction coordinate other than those affecting the distance between the alpha-carbon of the choline alkoxide substrate and the N(5) atom of the enzyme-bound flavin cofactor [Fan, F., and Gadda, G. (2005) J. Am. Chem. Soc. 127, 17954-17961]. In this study, we have determined the effects of pH and temperature on the substrate kinetic isotope effects with 1,2-[2H4]choline as substrate for choline oxidase at 0.2 mM oxygen to gain insights on the mechanism of hydride transfer under reversible catalytic regime. The data presented indicated that the kinetic complexity arising from the net flux through the reverse of the hydride transfer step changed with temperature, with the hydride transfer reaction becoming more reversible with increasing temperatures. After this kinetic complexity was accounted for, analyses of the kcat/Km and D(kcat/Km) values determined at 0.2 mM according to the Eyring and Arrhenius formalisms suggested that the quantum mechanical nature of the hydride transfer reaction is, not surprisingly, maintained during enzymatic catalysis under reversible regime. A comparison of the thermodynamic and kinetic parameters of the hydride transfer reaction under reversible and irreversible catalytic regimes showed that the enthalpies of activation (DeltaH++) were significantly larger in the reversible catalytic regime. This reflects the presence of an enthalpically unfavorable internal equilibrium of the enzyme-substrate Michaelis complex occurring prior to, and independently from, CH bond cleavage. Such an internal equilibrium is required to preorganize the enzyme-substrate complex for efficient quantum mechanical tunneling of the hydride ion from the substrate alpha-carbon to the flavin N(5) atom.  相似文献   

9.
The Stokes' radius of grape catechol oxidase was determined at pH 7·0 and during its reversible and irreversible activation at pH 5·0. The results are consistent with the view that the activation is due to a conformational change in the enzyme.  相似文献   

10.
The stability of highly purified L-amino acid oxidase from the sand viper venom remains practically unaffected by the pH-value at 4degreesC between pH 5 and 8, whereas a sharp activity fall was observed on both sides of this range. At temperatures above 30 degreesC the enzyme is stable only at pH 5.0--5.5. The inactivation pH values above 5.5 follows a first-order rate equation with characteristic changes in the absorption and emission spectra of the enzyme. The stability of the enzyme is dependent on the temperature of storage. At pH 7.5 there is a stability minimum at --10 degrees and -- 30 degreesC. At -- 72 degreesC the enzyme is stable practically for an unlimited period of time; temperatures exceeding 50 degrees C rapidly lead to complete inactivation. Also in the cold, the L-amino acid oxidase is most stable at pH 5.5. There are characteristic changes in absorption and emission spectra in the temperature-stability minimum (--15 degreesC) and at temperatures above 30degreesC. The inactivations follow a first-order rate equation. The cold inactivation is reversible. The stability of the enzyme is diminished by some anions and cations at 37 degreesC. The cold inactivation is promoted by several inorganic anions; organic anions and ammonium sulfate prevent cold inactivation.  相似文献   

11.
Enzymatic determination of phospholipase D activity with choline oxidase   总被引:5,自引:0,他引:5  
A new enzymatic method was developed for the assay of phospholipase D [phosphatidylcholine phosphatidohydrolase EC 3.1.4.4] from cabbage leaves using choline oxidase from Arthrobacter globiformis cells. The method was based on the estimation of choline by the following series of enzymatic reactions after ending the phospholipase D reaction: Choline + 202 + h2o Choline oxidase Betaine + 2H2O2 2H2O2 + Phenol + 4-Aminoantipyrine Peroxidase Quinoneimine dye + 4H2O The amount of choline was proportional to the amount of resulting quinoneimine dye with an absorbance maximum at 500 nm. The phospholipase D reaction (choline liberation) was carried out at pH 5.5 in the presence of Ca2+ ions and ended by adding EDTA in conc. Tris-HCl buffer, pH 8, to give a final pH of around 8. The initial rate of the phospholipase D reaction was proportional to the enzyme concentration over the absorbance change range of 0 to 0.25 (equivalent to 0-21 micron of choline) under the optimal reaction conditions.  相似文献   

12.
The flavoprotein nitroalkane oxidase from Fusarium oxysporum catalyzes the oxidation of nitroalkanes to the respective aldehydes or ketones with production of nitrite and hydrogen peroxide. The enzyme is irreversibly inactivated by incubation with tetranitromethane, a tyrosine-directed reagent, at pH 7.3. The inactivation is time-dependent and shows first-order kinetics for two half-lives of inactivation. Further inactivation can be achieved upon a second addition of tetranitromethane. A saturation kinetic pattern is observed when the rate of inactivation is determined versus the concentration of tetranitromethane, indicating that a reversible enzyme-inhibitor complex is formed before irreversible inactivation occurs. Values of 0.096 +/- 0.013 min(-1) and 12.9 +/- 3.8 mM were determined for the first-order rate constant for inactivation and the dissociation constant for the reversibly formed complex, respectively. The competitive inhibitor valerate protects the enzyme from inactivation by tetranitromethane, suggesting an active-site-directed inactivation. The UV-visible absorbance spectrum of the inactivated enzyme is perturbed with respect to that of the native enzyme, suggesting that treatment with tetranitromethane resulted in nitration of the enzyme. Comparison of tryptic maps of nitroalkane oxidase treated with tetranitromethane in the presence and absence of valerate shows a single peptide differentially labeled in the inactivated enzyme. The spectral properties of the modified peptide are consistent with nitration of a tyrosine residue. The amino acid sequence of the nitrated peptide is L-L-N-E-V-M-C-(NO(2)-Y)-P-L-F-D-G-G-N-I-G-L-R. The possible role of this tyrosine in substrate binding is discussed.  相似文献   

13.
Sodium dodecyl sulfate (SDS) is able to activate the respiratory burst oxidase in a system containing cytosol and solubilized membranes from human neutrophils. When SDS was used to treat cytosol in an otherwise identical system in which the solubilized membrane solution was omitted, the ability of the SDS-treated cytosol to support O2- production was lost in a first-order reaction whose rate constant was virtually identical to the rate constant for the first-order activation of the oxidase in the complete system. Studies with chronic granulomatous disease cytosols showed that the component whose activity was lost was the oxidase-related 67-kDa cytosolic protein. The similarity in the rates of oxidase activation and p67 inactivation suggested that the activation of the respiratory burst oxidase in the cell-free system could involve an SDS-mediated alteration in p67. Further support for this idea was provided by kinetic experiments demonstrating that, although the yield of oxidase showed a 2.5-order dependence on cytosol concentration, oxidase activation was nevertheless kinetically irreversible. These two findings, incompatible in general, can be reconciled by a mechanism in which SDS acts specifically on a single oxidase component (i.e. p67), but with an effect that depends on circumstances: oxidase activation, if the SDS-sensitive component is part of a completely assembled oxidase precursor; loss of p67 activity, if not.  相似文献   

14.
Effect of pH, urea, and guanidine hydrochloride on the activity and structure of buffalo spleen cathepsin B was investigated. At alkaline pH, there was an irreversible loss of the structure as well as the activity of the buffalo enzyme. At acidic pH, however, the inactivation of the enzyme was reversible. The enzyme reversibly lost most of its activity at denaturant concentrations which did not cause a significant change in its secondary structure. The inactivation could be attributed to minor perturbations in the environment of the amino acid residue(s) at and/or around the active site of the enzyme. High urea/guanidine hydrochloride concentrations leading to the structural changes in cathepsin B made the inactivation process irreversible.  相似文献   

15.
Conformational transitions and functional stability of the bile salt hydrolase (BSH; cholylglycine EC: 3.5.1.24) from Bifidobacterium longum (BlBSH) cloned and expressed in E. coli were studied under thermal, chemical and pH-mediated denaturation conditions using fluorescence and CD spectroscopy. Thermal and Gdn-HCl-mediated denaturation of BlBSH is a multistep process of inactivation and unfolding. The inactivation and unfolding of the enzyme was found to be irreversible. Enzyme activity seems sensitive to even minor conformational changes at the active site. Thermal denaturation as such did not result in any insoluble protein aggregates. However, on treating with 0.25 - 1 M Gdn-HCl the enzyme showed increasing aggregation at temperatures of 40 - 55 degrees C indicating more complex structural changes taking place in the presence of chemical denaturants. The enzyme secondary structure was still intact at acidic pH (pH 1 - 3). The perturbation in the tertiary structure at the acidic pH was detected through freshly formed solvent exposed hydrophobic patches on the enzyme. These changes could be due to the formation of an acid-induced molten globule-like state.  相似文献   

16.
1-Phenylcyclopropylamine (1-PCPA) is shown to be an inactivator of the fungal flavoenzyme monoamine oxidase (MAO) N. Inactivation results in an increase in absorbance at 410 nm and is accompanied by the concomitant loss of the flavin absorption band at 458 nm. The spectral properties of the covalent adduct formed between the flavin cofactor of MAO N and 1-PCPA are similar to those reported for the irreversible inactivation product formed with 1-PCPA and mammalian mitochondrial monoamine oxidase B [Silverman, R. B., and Zieske, P. A. (1985) Biochemistry 24, 2128-2138]. There is a hypsochromic shift of the 410 nm band upon lowering the pH to 2, indicating that an N(5)-flavin adduct formed upon inactivation. Use of the fungal enzyme, MAO N, which lacks the covalent attachment to the flavin adenine dinucleotide (FAD) cofactor present in the mammalian forms MAO A and MAO B, has allowed for the isolation and further structural identification of the flavin-inactivator adduct. The incorporation of two (13)C labels into the inactivator, [2,3-(13)C(2)]-1-PCPA, followed by analysis using on-line liquid chromatography/electrospray ionization mass spectrometry and nuclear magnetic resonance spectroscopy, provided a means to explore the structure of the flavin-inactivator adduct of MAO N. The spectral evidence supports covalent attachment of the 1-PCPA inactivator to the cofactor as N(5)-3-oxo-3-phenylpropyl-FAD.  相似文献   

17.
Hydrogenases catalyze the reversible activation of dihydrogen. The hydrogenases from the aerobic, N2-fixing microorganisms Azotobacter vinelandii and Rhizobium japonicum are nickel- and iron-containing dimers that belong to the group of O2-labile enzymes. Exposure of these hydrogenases to O2 results in an irreversible inactivation; therefore, these enzymes are purified anaerobically in a fully active state. We describe in this paper an electron acceptor-requiring and pH-dependent, reversible inactivation of these hydrogenases. These results are the first example of an anaerobic, reversible inactivation of the O2-labile hydrogenases. The reversible inactivation required the presence of an electron acceptor. The rate of inactivation was first-order, with similar rates observed for methylene blue, benzyl viologen, and phenazine-methosulfate. The rate of inactivation was also dependent on the pH. However, increasing the pH of the enzyme in the absence of an electron acceptor did not result in inactivation. Thus, the reversible inactivation was not a result of high pH alone. The inactive enzyme could not be reactivated by H2 or other reductants at high pH. Titration of enzyme inactivated at high pH back to low pH was also ineffective at reactivating the enzyme. However, if reductants were present during this titration, the enzyme could be fully reactivated. The temperature dependence of inactivation yielded an activation energy of 44 kJ X mol-1. Gel filtration chromatography of active and inactive hydrogenase indicated that neither dissociation nor aggregation of the dimer hydrogenase was responsible for this reversible inactivation. We propose a four-state model to describe this reversible inactivation.  相似文献   

18.
Anion exchange in human red blood cell membranes was inactivated using the impermeant carbodiimide 1-ethyl-3-(4-azonia-4,4-dimethylpentyl)-carbodiimide (EAC). The inactivation time course was biphasic: at 30 mM EAC, approximately 50% of the exchange capacity was inactivated within approximately 15 min; this was followed by a phase in which irreversible exchange inactivation was approximately 100-fold slower. The rate and extent of inactivation was enhanced in the presence of the nucleophile tyrosine ethyl ester (TEE), suggesting that the inactivation is the result of carboxyl group modification. Inactivation (to a maximum of 10% residual exchange activity) was also enhanced by the reversible inhibitor of anion exchange 4,4'-dinitrostilbene-2,2'-disulfonate (DNDS) at concentrations that were 10(3)-10(4) times higher than those necessary for inhibition of anion exchange. The extracellular binding site for stilbenedisulfonates is essentially intact after carbodiimide modification: the irreversible inhibitor of anion exchange 4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS) eliminated (most of) the residual exchange activity: DNDS inhibited the residual (DIDS-sensitive) Cl- at concentrations similar to those that inhibit Cl- exchange of unmodified membranes: and Cl- efflux is activated by extracellular Cl-, with half-maximal activation at approximately 3 mM Cl-, which is similar to the value for unmodified membranes. But the residual anion exchange function after maximum inactivation is insensitive to changes of extra- and intracellular pH between pH 5 and 7. The titratable group with a pKa of approximately 5.4, which must be deprotonated for normal function of the native anion exchanger, thus appears to be lost after EAC modification.  相似文献   

19.
The thermal stability of a highly purified preparation of D-amino acid oxidase from Trigonopsis variabilis (TvDAO), which does not show microheterogeneity due to the partial oxidation of Cys-108, was studied based on dependence of temperature (20-60°C) and protein concentration (5-100 µmol L-1). The time courses of loss of enzyme activity in 100 mmol L-1 potassium phosphate buffer, pH 8.0, are well described by a formal kinetic mechanism in which two parallel denaturation processes, partial thermal unfolding and dissociation of the FAD cofactor, combine to yield the overall inactivation rate. Estimates from global fitting of the data revealed that the first-order rate constant of the unfolding reaction (k a) increased 104-fold in response to an increase in temperature from 20 to 60°C. The rate constants of FAD release (k b) and binding (k -b) as well as the irreversible aggregation of the apo-enzyme (k agg) were less sensitive to changes in temperature, their activation energy (E a) being about 52 kJ mol-1 in comparison with an E a value of 185 kJ mol-1 for k a. The rate-determining step of TvDAO inactivation switched from FAD dissociation to unfolding at high temperatures. The model adequately described the effect of protein concentration on inactivation kinetics. Its predictions regarding the extent of FAD release and aggregation during thermal denaturation were confirmed by experiments. TvDAO is shown to contain two highly reactive cysteines per protein subunit whose modification with 5,5'-dithio-bis (2-nitrobenzoic acid) was accompanied by inactivation. Dithiothreitol (1 mmol L-1) enhanced up to 10-fold the recovery of enzyme activity during ion exchange chromatography of technical-grade TvDAO. However, it did not stabilize TvDAO at all temperatures and protein concentrations, suggesting that deactivation of cysteines was not responsible for thermal denaturation.  相似文献   

20.
An attempt has been made to determine the location of the site at which the metabolism of ethanol interacts with that of choline to produce an increase in the oxidation of choline. The first enzyme in the oxidation pathway for choline, choline dehydrogenase, was assayed using a newly developed spectrophotometric assay and freshly isolated intact rat liver mitochondria. No changes were observed in either 'apparent' V or the 'apparent' Km values of choline dehydrogenase for choline after ethanol ingestion. However, when the choline oxidase system was assayed, a 28% decrease in 'apparent' Km for choline and a 53% increase in 'apparent' V was observed. The effects of ATP on choline oxidase were studied further, and a 29.4% decrease was observed in mitochondrial ATP levels from freshly isolated mitochondria from the ethanol-treated rats. In vitro aging of mitochondria further decreased the level of ATP, and the rate of decrease was considerably faster during the first hour in the mitochondria from the ethanol-treated animals. The decreases in ATP from both control and experimental mitochondria were accompanied by increases in choline oxidase activity. The initial decrease in ATP was correlated with an increase in mitochondrial ATPase activity which may be related to an increase in mitochondria Mg2+. Because chronic ethanol ingestion has resulted in decreased oxidation rates of succinate and beta-hydroxybutyrate while at the same time increasing the oxidation rates of choline, the studies reported here suggest that the effect of chronic ethanol ingestion is primarily on a step that is unique to choline and which probably exists prior to the electron transport chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号