首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
2.
Complex spliceosomal organization ancestral to extant eukaryotes   总被引:16,自引:0,他引:16  
  相似文献   

3.
4.
Few genes in the divergent eukaryote Trichomonas vaginalis have introns, despite the unusually large gene repertoire of this human-infective parasite. These introns are characterized by extended conserved regulatory motifs at the 5' and 3' boundaries, a feature shared with another divergent eukaryote, Giardia lamblia, but not with metazoan introns. This unusual characteristic of T. vaginalis introns led us to examine spliceosomal small nuclear RNAs (snRNAs) predicted to mediate splicing reactions via interaction with intron motifs. Here we identify T. vaginalis U1, U2, U4, U5, and U6 snRNAs, present predictions of their secondary structures, and provide evidence for interaction between the U2/U6 snRNA complex and a T. vaginalis intron. Structural models predict that T. vaginalis snRNAs contain conserved sequences and motifs similar to those found in other examined eukaryotes. These data indicate that mechanisms of intron recognition as well as coordination of the two catalytic steps of splicing have been conserved throughout eukaryotic evolution. Unexpectedly, we found that T. vaginalis spliceosomal snRNAs lack the 5' trimethylguanosine cap typical of snRNAs and appear to possess unmodified 5' ends. Despite the lack of a cap structure, U1, U2, U4, and U5 genes are transcribed by RNA polymerase II, whereas the U6 gene is transcribed by RNA polymerase III.  相似文献   

5.
The spliceosome: a ribozyme at heart?   总被引:4,自引:0,他引:4  
The spliceosome, the multi-megadalton molecular machine that performs splicing, consists of over 200 different proteins and five small nuclear RNAs (snRNAs). Extensive mechanistic and structural similarities to self-splicing group II introns, large ribozymes found in prokaryotes and lower eukaryotes that catalyze an identical reaction, strongly suggest that the spliceosomal RNAs are in fact the catalytic components of the spliceosome. Of the five spliceosomal RNAs, U2 and U6 are the only ones that are absolutely required for both steps of splicing. These two snRNAs form an elaborate base-paired complex that might in fact constitute the active site of the spliceosome.  相似文献   

6.
U-snRNA genes in higher plants contain two essential promoter elements, the USE with sequence RTCCCACATCG and the TATA-like box, positioned in the -70 and -30 regions, respectively. Using an oligodeoxynucleotide containing the USE motif and oligodeoxynucleotides specific for the intragenic regions conserved in U-snRNAs, several sequences encoding U6 and U3 snRNAs were determined by polymerase chain reaction (PCR) amplification of Arabidopsis thaliana and tobacco genomic DNAs. This method provides a simple and rapid procedure for characterisation of plant U-snRNA genes and their promoters. It could also be used for the characterisation of other genes containing conserved upstream promoter elements. PCR-derived fragments were used as probes for the isolation of the U3 snRNA genes from a genomic library of Arabidopsis. Two isolated U3 genes were shown to be active when transfected into protoplasts of Nicotiana plumbaginifolia. Both U3 genes contain the USE and TATA-like upstream elements located in similar positions to the U6 genes of Arabidopsis. The encoded Arabidopsis U3 snRNAs can be folded into a secondary structure which is more similar to that of U3 RNAs from lower eukaryotes rather than from metazoa.  相似文献   

7.
Processing of pre-mRNAs by RNA splicing is an essential step in the maturation of protein coding RNAs in eukaryotes. Structural studies of the cellular splicing machinery, the spliceosome, are a major challenge in structural biology due to the size and complexity of the splicing ensemble. Specifically, the structural details of splice site recognition and the architecture of the spliceosome active site are poorly understood. X-ray and NMR techniques have been successfully used to address these questions defining the structure of individual domains, isolated splicing proteins, spliceosomal RNA fragments and recently the U1 snRNP multiprotein·RNA complex. These results combined with extant biochemical and genetic data have yielded important insights as well as posing fresh questions with respect to the regulation and mechanism of this critical gene regulatory process.  相似文献   

8.
9.
Distinct isoforms of spliceosomal RNAs may be involved in regulating pre-messenger RNA splicing in eukaryotic cells. During a large-scale effort to identify small noncoding RNAs in Drosophila, we isolated a U5 snRNA-like molecule containing a 5' segment identical to that of the canonical (major) U5 snRNA but with a variant Sm binding site and a distinct 3' hairpin sequence. Based on this finding, another six similar U5 snRNA-like sequences were identified within the Drosophila genome by sequence similarity to the invariant loop in the 5' half of U5. Interestingly, although all of these variants are expressed in vivo, each shows a distinct temporal expression profile during Drosophila development, and one is expressed primarily in fly heads. The presence of these U5 snRNA variants within RNP particles suggests their role in splicing and implies a possible connection to regulation of developmental and tissue-specific gene expression.  相似文献   

10.
11.
12.
The RNA molecules of the spliceosome are critical for specificity and catalysis during splicing of eukaryotic pre-mRNA. In order to examine the evolution and phylogenetic distribution of these RNAs, we analyzed 149 eukaryotic genomes representing a broad range of phylogenetic groups. RNAs were predicted using high-sensitivity local alignment methods and profile HMMs in combination with covariance models. The results provide the most comprehensive view so far of the phylogenetic distribution of spliceosomal RNAs. RNAs were predicted in many phylogenetic groups where these RNA were not previously reported. Examples are RNAs of the major (U2-type) spliceosome in all fungal lineages, in lower metazoa and many protozoa. We also identified the minor (U12-type) spliceosomal U11 and U6atac RNAs in Acanthamoeba castellanii, where U12 spliceosomal RNA as well as minor introns were reported recently. In addition, minor-spliceosome-specific RNAs were identified in a number of phylogenetic groups where previously such RNAs were not observed, including the nematode Trichinella spiralis, the slime mold Physarum polycephalum and the fungal lineages Zygomycota and Chytridiomycota. The detailed map of the distribution of the U12-type RNA genes supports an early origin of the minor spliceosome and points to a number of occasions during evolution where it was lost.  相似文献   

13.
Most eukaryotic mRNAs depend upon precise removal of introns by the spliceosome, a complex of RNAs and proteins. Splicing of pre-mRNA is known to take place in Dictyostelium discoideum, and we previously isolated the U2 spliceosomal RNA experimentally. In this study, we identified the remaining major spliceosomal RNAs in Dictyostelium by a bioinformatical approach. Expression was verified from 17 small nuclear RNA (snRNA) genes. All these genes are preceded by a putative noncoding RNA gene promoter. Immunoprecipitation showed that snRNAs U1, U2, U4, and U5, but not U6, carry the conserved trimethylated 5' cap structure. A number of divergent U2 species are expressed in Dictyostelium. These RNAs carry the U2 RNA hallmark sequence and structure motifs but have an additional predicted stem-loop structure at the 5' end. Surprisingly, and in contrast to the other spliceosomal RNAs in this study, the new U2 variants were enriched in the cytoplasm and were developmentally regulated. Furthermore, all of the snRNAs could also be detected as polyadenylated species, and polyadenylated U1 RNA was demonstrated to be located in the cytoplasm.  相似文献   

14.
The spliceosome, the gigantic molecular machine that performs pre-mRNA splicing in eukaryotes, contains over 200 different proteins and five RNA molecules. The central role played by the spliceosomal RNAs in splicing has led to the hypothesis that, like the ribosome, the spliceosome is an RNA-centric enzyme and a relic from the RNA world. Recent structural studies have provided the first glimpses of the structural features of spliceosomal RNAs, and mutational analyses in vivo and in vitro have uncovered new functional roles for a catalytically essential domain. An emerging model for the active site of group II introns, a closely related class of natural ribozymes, is likely to provide a wealth of insights on structure and function of the active site of the spliceosome.  相似文献   

15.
16.
In this work, we describe the results of a comprehensive structural bioinformatics analysis of the spliceosomal proteome. We used fold recognition analysis to complement prior data on the ordered domains of 252 human splicing proteins. Examples of newly identified domains include a PWI domain in the U5 snRNP protein 200K (hBrr2, residues 258-338), while examples of previously known domains with a newly determined fold include the DUF1115 domain of the U4/U6 di-snRNP protein 90K (hPrp3, residues 540-683). We also established a non-redundant set of experimental models of spliceosomal proteins, as well as constructed in silico models for regions without an experimental structure. The combined set of structural models is available for download. Altogether, over 90% of the ordered regions of the spliceosomal proteome can be represented structurally with a high degree of confidence. We analyzed the reduced spliceosomal proteome of the intron-poor organism Giardia lamblia, and as a result, we proposed a candidate set of ordered structural regions necessary for a functional spliceosome. The results of this work will aid experimental and structural analyses of the spliceosomal proteins and complexes, and can serve as a starting point for multiscale modeling of the structure of the entire spliceosome.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号