共查询到20条相似文献,搜索用时 0 毫秒
1.
Metals in Alzheimer's and Parkinson's diseases 总被引:1,自引:0,他引:1
2.
LeVine H 《Analytical biochemistry》2004,335(1):81-90
When diluted from dimethyl sulfoxide or 1,1,1,3,3,3-hexafluoro-2-propanol, synthetic human Abeta(1-42) readily forms oligomeric structures at near physiologic concentrations (1-20 nM). Oligomers 40 kDa are detected in a sandwich enzyme-linked immunosorbant assay where the capture and detection antibodies recognize the same primary sequence epitope. Monomeric peptide with a single epitope does not react in this format. Abeta(1-40) peptide does not oligomerize readily under these conditions. The rate of oligomer formation has a steep linear temperature dependence but is weakly affected by ionic strength up to 0.5M NaCl or KCl. Oligomer formation is inhibited by concentrations of Tween 20 and several other detergents well below their critical micelle concentrations. Once formed, high-molecular-weight oligomers are stabilized by Tween 20. Gel permeation chromatography of an oligomer preparation formed at nanomolar concentrations indicates that the majority of the Abeta(1-42) peptide chromatographs as monomers/dimers of apparent mw approximately 10 kDa. The most abundant oligomers have apparent mobilities corresponding to 220 kDa (48-mer) and higher multiples of this without detectable concentrations of intermediate low-molecular-weight species. Very little immunoreactive peptide appears in the void volume (>1.5 MDa) of a Superose 12 column. The oligomers are stable, rechromatographing at their original position. Abeta(1-42) oligomer formation at physiologic concentrations is a reproducible process that is amenable to kinetic analysis and inhibition. 相似文献
3.
Neurological mechanisms of green tea polyphenols in Alzheimer's and Parkinson's diseases 总被引:1,自引:0,他引:1
Tea consumption is varying its status from a mere ancient beverage and a lifestyle habit, to a nutrient endowed with possible prospective neurobiological-pharmacological actions beneficial to human health. Accumulating evidence suggest that oxidative stress resulting in reactive oxygen species generation and inflammation play a pivotal role in neurodegenerative diseases, supporting the implementation of radical scavengers, transition metal (e.g., iron and copper) chelators, and nonvitamin natural antioxidant polyphenols in the clinic. These observations are in line with the current view that polyphenolic dietary supplementation may have an impact on cognitive deficits in individuals of advanced age. As a consequence, green tea polyphenols are now being considered as therapeutic agents in well controlled epidemiological studies, aimed to alter brain aging processes and to serve as possible neuroprotective agents in progressive neurodegenerative disorders such as Parkinson's and Alzheimer's diseases. In particular, literature on the putative novel neuroprotective mechanism of the major green tea polyphenol, (-)-epigallocatechin-3-gallate, are examined and discussed in this review. 相似文献
4.
Syrian hamster female protein (SFP), a serum oligomer composed of five identical subunits, was reassociated in vitro from monomer subunits. The reconstituted pentamer was genuine by morphologic, antigenic, and structural criteria. Another female protein (FP), a homologue from Armenian hamsters (AFP), also reassociated into a pentamer after dissociation with 5 M guanidine hydrochloride. These two FP's hybridized when a mixture of them was dissociated and then reassociated. Differences between the parent FP's were used to show that the recombinant pentamer contained monomer subunits from both SFP and AFP. Reassociation of both FP's was enhanced by increasing FP concentration and also by adding Ca2+ during reassembly. The two FP's differed in their reassociation profile in that SFP was especially efficient in reassembly, whereas AFP was more dependent upon Ca2+. Female protein is a homologue of C-reactive protein and amyloid P component, and all of these proteins (pentraxins) share a similar structure. The in vitro dissociation-reassociation of female protein described herein may reflect an in vivo dissociation-reassociation which is functionally important and a common metabolic feature within this family of proteins. 相似文献
5.
Irvine GB El-Agnaf OM Shankar GM Walsh DM 《Molecular medicine (Cambridge, Mass.)》2008,14(7-8):451-464
Developing effective treatments for neurodegenerative diseases is one of the greatest medical challenges of the 21st century. Although many of these clinical entities have been recognized for more than a hundred years, it is only during the past twenty years that the molecular events that precipitate disease have begun to be understood. Protein aggregation is a common feature of many neurodegenerative diseases, and it is assumed that the aggregation process plays a central role in pathogenesis. In this process, one molecule (monomer) of a soluble protein interacts with other monomers of the same protein to form dimers, oligomers, and polymers. Conformation changes in three-dimensional structure of the protein, especially the formation of beta-strands, often accompany the process. Eventually, as the size of the aggregates increases, they may precipitate as insoluble amyloid fibrils, in which the structure is stabilized by the beta-strands interacting within a beta-sheet. In this review, we discuss this theme as it relates to the two most common neurodegenerative conditions-Alzheimer's and Parkinson's diseases. 相似文献
6.
Selkoe DJ 《Nature cell biology》2004,6(11):1054-1061
The salutary intersection of fundamental cell biology with the study of disease is well illustrated by the emerging elucidation of neurodegenerative disorders. Novel mechanisms in cell biology have been uncovered through disease-orientated research; for example, the discovery of presenilin as an intramembrane aspartyl protease that processes many diverse proteins within the lipid bilayer. A common theme has arisen in this field: normally-soluble proteins accumulate, misfold and oligomerize, inducing cytotoxic effects that are particularly devastating in the post-mitotic milieu of the neuron. 相似文献
7.
8.
The relationship between oxidative/nitrative stress and pathological inclusions in Alzheimer's and Parkinson's diseases 总被引:11,自引:0,他引:11
Giasson BI Ischiropoulos H Lee VM Trojanowski JQ 《Free radical biology & medicine》2002,32(12):1264-1275
Alzheimer's (AD) and Parkinson's diseases (PD) are late-onset neurodegenerative diseases that have tremendous impact on the lives of affected individuals, their families, and society as a whole. Remarkable efforts are being made to elucidate the dominant factors that result in the pathogenesis of these disorders. Extensive postmortem studies suggest that oxidative/nitrative stresses are prominent features of these diseases, and several animal models support this notion. Furthermore, it is likely that protein modifications resulting from oxidative/nitrative damage contribute to the formation of intracytoplasmic inclusions characteristic of each disease. The frequent presentation of both AD and PD in individuals and the co-occurrence of inclusions characteristic of AD and PD in several other neurodegenerative diseases suggests the involvement of a common underlying aberrant process. It can be surmised that oxidative/nitrative stress, which is cooperatively influenced by environmental factors, genetic predisposition, and senescence, may be a link between these disorders. 相似文献
9.
Alpha-synuclein and the pathogenesis of Parkinson's disease 总被引:2,自引:0,他引:2
Martin FL Williamson SJ Paleologou KE Allsop D El-Agnaf OM 《Protein and peptide letters》2004,11(3):229-237
Lesions known as Lewy bodies (LBs) and Lewy neurites (LNs) characterise brains of Parkinson's disease (PD) patients. Intracellular aggregation of alpha-synuclein (alpha-syn) appears to play a key role in the generation of LBs and LNs. Such aggregation in the presence of redox metals may initiate Fenton reaction-mediated generation of reactive oxygen species (ROS). ROS thus generated may result in cytotoxic mechanisms such as the induction of DNA single-strand breaks. 相似文献
10.
11.
Progress in the pathogenesis and genetics of Parkinson's disease 总被引:3,自引:0,他引:3
Mizuno Y Hattori N Kubo S Sato S Nishioka K Hatano T Tomiyama H Funayama M Machida Y Mochizuki H 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2008,363(1500):2215-2227
Recent progresses in the pathogenesis of sporadic Parkinson's disease (PD) and genetics of familial PD are reviewed. There are common molecular events between sporadic and familial PD, particularly between sporadic PD and PARK1-linked PD due to alpha-synuclein (SNCA) mutations. In sporadic form, interaction of genetic predisposition and environmental factors is probably a primary event inducing mitochondrial dysfunction and oxidative damage resulting in oligomer and aggregate formations of alpha-synuclein. In PARK1-linked PD, mutant alpha-synuclein proteins initiate the disease process as they have increased tendency for self-aggregation. As highly phosphorylated aggregated proteins are deposited in nigral neurons in PD, dysfunctions of proteolytic systems, i.e. the ubiquitin-proteasome system and autophagy-lysosomal pathway, seem to be contributing to the final neurodegenerative process. Studies on the molecular mechanisms of nigral neuronal death in familial forms of PD will contribute further on the understanding of the pathogenesis of sporadic PD. 相似文献
12.
13.
Mitochondrial dysfunction is an important intracellular lesion associated with a wide variety of diseases including neurodegenerative disorders. In addition to aging, oxidative stress and mitochondrial DNA mutations, recent studies have implicated a role for the mitochondrial accumulation of proteins such as plasma membrane associated amyloid precursor protein (APP) and cytosolic alpha synuclein in the pathogenesis of mitochondrial dysfunction in Alzheimer's disease (AD) and Parkinson's disease (PD), respectively. Both of these proteins contain cryptic mitochondrial targeting signals, which drive their transport across mitochondria. In general, mitochondrial entry of nuclear coded proteins is assisted by import receptors situated in both outer and inner mitochondrial membranes. A growing number of evidence suggests that APP and alpha synclein interact with import receptors to gain entry into mitochondrial compartment. Additionally, carboxy terminal cleaved product of APP, ~ 4 kDa Abeta, is also transported into mitochondria with the help of mitochondrial outer membrane import receptors. This review focuses on the mitochondrial targeting and accumulation of these two structurally different proteins and the mode of mechanism by which they affect the physiological functions of mitochondria. 相似文献
14.
Liu G Huang W Moir RD Vanderburg CR Lai B Peng Z Tanzi RE Rogers JT Huang X 《Journal of structural biology》2006,155(1):45-51
With the growing aging population in Western countries, Alzheimer's disease (AD) has become a major public health concern. No preventive measure and effective treatment for this burdensome disease is currently available. Genetic, biochemical, and neuropathological data strongly suggest that Abeta amyloidosis, which originates from the amyloidogenic processing of a metalloprotein-amyloid precursor protein (APP), is the key event in AD pathology. However, neurochemical factors that impact upon the age-dependent cerebral Abeta amyloidogenesis are not well recognized. Growing data indicate that cerebral dysregulation of biometals, environmental metal exposure, and oxidative stress contribute to AD pathology. Herein we provided further evidence that both metals (such as Cu) and H(2)O(2) promote formation of neurotoxic Abeta oligomers. Moreover, we first demonstrated that laser capture microdissection coupled with X-ray fluorescence microscopy can be applied to determine elemental profiles (S, Fe, Cu, and Zn) in Abeta amyloid plaques. Clearly the fundamental biochemical mechanisms linking brain biometal metabolism, environmental metal exposure, and AD pathophysiology warrant further investigation. Nevertheless, the study of APP and Abeta metallobiology may identify potential targets for therapeutic intervention and/or provide diagnostic methods for AD. 相似文献
15.
16.
Several neurodegenerative disorders, including Parkinson's and Alzheimer's diseases, are characterized neuropathologically by accumulation of misfolded proteins such as alpha-synuclein that disrupts scaffold molecules in the caveolae. A new study by Ihara et al. in this issue of Neuron shows that a novel scaffold protein, Sept4, may be an important player in modulating the pathological alterations of alpha-synuclein in models of Parkinson's disease, suggesting that gene therapies targeting scaffold proteins might be effective in the treatment of neurodegenerative disorders. 相似文献
17.
Copper is a redox-active metal with many important biological roles. Consequently, its distribution and oxidation state are subject to stringent regulation. A large body of clinicopathological, circumstantial, and epidemiological evidence suggests that the dysregulation of copper is intimately involved in the pathogenesis of Alzheimer's disease. Other light transition metals such as iron and zinc may affect copper regulation by competing for copper binding sites and transporters. Therapeutic interventions targeting the regulation of copper are promising, but large gaps in our understanding of copper biochemistry, amyloidogenesis, and the nature of oxidative stress in the brain must be addressed. 相似文献
18.
19.
Lehrner J.P.; Brucke T.; Dal-Bianco P.; Gatterer G.; Kryspin-Exner I. 《Chemical senses》1997,22(1):105-110
The aim of this investigation was to compare olfactory functionsof patients suffering from Parkinson's disease (PD) and Alzheimer'sdisease (AD). Olfactory threshold, odor identification abilityand odor memory performance were assessed in 21 non-dementedPD patients and in 22 AD patients. Both patient groups wereimpaired in relation to an age-matched control group for themeasure of odor identification. AD patients showed a higherolfactory threshold and poorer odor memory performance. ChemSenses 22: 105110, 1997. 相似文献
20.
Lashuel HA Hartley DM Balakhaneh D Aggarwal A Teichberg S Callaway DJ 《The Journal of biological chemistry》2002,277(45):42881-42890
The amyloid hypothesis suggests that the process of amyloid-beta protein (Abeta) fibrillogenesis is responsible for triggering a cascade of physiological events that contribute directly to the initiation and progression of Alzheimer's disease. Consequently, preventing this process might provide a viable therapeutic strategy for slowing and/or preventing the progression of this devastating disease. A promising strategy to achieve prevention of this disease is to discover compounds that inhibit Abeta polymerization and deposition. Herein, we describe a new class of small molecules that inhibit Abeta aggregation, which is based on the chemical structure of apomorphine. These molecules were found to interfere with Abeta1-40 fibrillization as determined by transmission electron microscopy, Thioflavin T fluorescence and velocity sedimentation analytical ultracentrifugation studies. Using electron microscopy, time-dependent studies demonstrate that apomorphine and its derivatives promote the oligomerization of Abeta but inhibit its fibrillization. Preliminary structural activity studies demonstrate that the 10,11-dihydroxy substitutions of the D-ring of apomorphine are required for the inhibitory effectiveness of these aporphines, and methylation of these hydroxyl groups reduces their inhibitory potency. The ability of these small molecules to inhibit Abeta amyloid fibril formation appears to be linked to their tendency to undergo rapid autoxidation, suggesting that autoxidation product(s) acts directly or indirectly on Abeta and inhibits its fibrillization. The inhibitory properties of the compounds presented suggest a new class of small molecules that could serve as a scaffold for the design of more efficient inhibitors of Abeta amyloidogenesis in vivo. 相似文献