首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
LPS-induced CXC chemokine (LIX) is a murine chemokine similar to two human chemokines, ENA-78 (CXCL5) and GCP-2 (CXCL6). To clarify the relationship of LIX to human ENA-78 and GCP-2, we cloned and mapped the LIX gene. The organization of the LIX gene ( Scyb5) is similar to those of the human ENA-78 ( SCYB5) and GCP-2 ( SCYB6) genes. The intron-exon boundaries of the three genes are exactly conserved, and the introns have similar sizes. The first 100 bp of the 5' flanking regions are highly similar, with conserved NF-kappaB and GATA sites in identical positions in all three genes. Further 5', the Lix flanking region sequence diverges from those of ENA-78 and GCP-2, which remain highly similar for 350 bp preceding the start sites. Using a (C57BL/6 J x Mus spretus) F1 x C57BL/6J backcross panel, Lix was mapped to a locus near D5Ucla5 at 49.0 cM on Chromosome (Chr) 5. Mapping with the T31 radiation hybrid panel placed Lix between D5Mit360 and D5Mit6. Physical maps of the CXC chemokine clusters on murine Chr 5 and human Chr 21 were constructed using the Celera mouse genome database and the public human genome database. The sequence and mapping data suggest that the human ENA78-PBP-PF4 and GCP2- psi PBP-PF4V1 loci arose from an evolutionarily recent duplication of an ancestral locus related to the murine Lix-Pbp-Pf4 locus.  相似文献   

3.
On chemokine stimulation, leucocytes produce and secrete proteolytic enzymes for innate immune defence mechanisms. Some of these proteases modify the biological activity of the chemokines. For instance, neutrophils secrete gelatinase B (matrix metalloproteinase-9, MMP-9) and neutrophil collagenase (MMP-8) after stimulation with interleukin-8/CXCL8 (IL-8). Gelatinase B cleaves and potentiates IL-8, generating a positive feedback. Here, we extend these findings and compare the processing of the CXC chemokines human and mouse granulocyte chemotactic protein-2/CXCL6 (GCP-2) and the closely related human epithelial-cell derived neutrophil activating peptide-78/CXCL5 (ENA-78) with that of human IL-8. Human GCP-2 and ENA-78 are cleaved by gelatinase B at similar rates to IL-8. In addition, GCP-2 is cleaved by neutrophil collagenase, but at a lower rate. The cleavage of GCP-2 is exclusively N-terminal and does not result in any change in biological activity. In contrast, ENA-78 is cleaved by gelatinase B at eight positions at various rates, finally generating inactive fragments. Physiologically, sequential cleavage of ENA-78 may result in early potentiation and later in inactivation of the chemokine. Remarkably, in the mouse, which lacks IL-8 which is replaced by GCP-2/LIX as the most potent neutrophil activating chemokine, N-terminal clipping and twofold potentiation by gelatinase B was also observed. In addition to the similarities in the potentiation of IL-8 in humans and GCP-2 in mice, the conversion of mouse GCP-2/LIX by mouse gelatinase B is the fastest for any combination of chemokines and MMPs so far reported. This rapid conversion was also performed by crude neutrophil granule secretion under physiological conditions, extending the relevance of this proteolytic cleavage to the in vivo situation.  相似文献   

4.
Interleukin-6 signaling via its soluble receptor (sIL-6R) differentially regulates inflammatory chemokine expression and leukocyte apoptosis to coordinate transition from neutrophil to mononuclear cell infiltration. sIL-6R activities may, however, be influenced in vivo by the occurrence of two sIL-6R isoforms that are released as a consequence of differential mRNA splicing (DS) or proteolytic cleavage (PC) of the cognate IL-6R (termed DS- and PC-sIL-6R). Using human peritoneal mesothelial cells and a murine model of peritoneal inflammation, studies described in this work have compared the ability of both isoforms to regulate neutrophil recruitment. In this respect, DS- and PC-sIL-6R were comparable in their activities; however, these studies emphasized that IL-6 trans signaling differentially controls neutrophil-activating CXC chemokine expression. In vitro, stimulation of mesothelial cells with IL-6 in combination with either DS-sIL-6R or PC-sIL-6R showed no induction of CXC chemokine ligand (CXCL)1 (GRO alpha) and CXCL8 (IL-8), whereas both isoforms enhanced CXCL5 (ENA-78) and CXCL6 (granulocyte chemotactic protein-2) expression. Moreover, when complexed with IL-6, both isoforms specifically inhibited the IL-1 beta-induced secretion of CXCL8. These findings were paralleled in vivo, in which induction of peritoneal inflammation in IL-6-deficient (IL-6(-/-)) mice resulted in enhanced keratinocyte-derived chemokine and macrophage-inflammatory protein-2 (the murine equivalent of CXCL1 and CXCL8) levels, but reduced LPS-induced CXC chemokine (the murine equivalent of CXCL5) expression. Reconstitution of IL-6 signaling in IL-6(-/-) mice with IL-6 and its soluble receptor isoforms corrected this chemokine imbalance and suppressed overall neutrophil infiltration. These data confirm that sIL-6R-mediated signaling primarily limits neutrophil influx; however, induction of CXCL5 and CXCL6 may regulate other neutrophil responses.  相似文献   

5.
Large DNA viruses, such as herpesvirus and poxvirus, encode proteins that target and exploit the chemokine system of their host. UL146 and UL147 in the cytomegalovirus (CMV) genome encode the two CXC chemokines vCXCL1 and vCXCL2. In this study, vCXCL1 was probed against a panel of the 18 classified human chemokine receptors. In calcium mobilization assays vCXCL1 acted as an agonist on both CXCR1 and CXCR2 but did not activate or block any of the other 16 chemokine receptors. vCXCL1 was characterized and compared with CXCL1/GROα, CXCL2/GROβ, CXCL3/GROγ, CXCL5/ENA-78, CXCL6/GCP-2, CXCL7/NAP-2 and CXCL8/IL-8 in competition binding, calcium mobilization, inositol triphosphate turnover, and chemotaxis assays using CXCR1- and CXCR2-expressing Chinese hamster ovary, 300.19, COS7, and L1.2 cells. The affinities of vCXCL1 for the CXCR1 and CXCR2 receptors were 44 and 5.6 nm, respectively, as determined in competition binding against radioactively labeled CXCL8. In calcium mobilization, phosphatidylinositol turnover, and chemotaxis assays, vCXCL1 acted as a highly efficacious activator of both receptors, with a rather low potency for the CXCR1 receptor but comparable with CXCL5 and CXCL7. It is suggested that CMV uses the UL146 gene product expressed in infected endothelial cells to attract neutrophils by activating their CXCR1 and CXCR2 receptors, whereby neutrophils can act as carriers of the virus to uninfected endothelial cells. In that way a lasting pool of CMV-infected endothelial cells could be maintained.  相似文献   

6.
Chronic inflammation may increase the risk to develop cancer, for instance esophagitis or gastritis may lead to development of esophageal or gastric cancer, respectively. The key molecules attracting leukocytes to local inflammatory sites are chemokines. We here provide a systematic review on the impact of CXC chemokines (binding the receptors CXCR1, CXCR2, CXCR3 and CXCR4) on the transition of chronic inflammation in the upper gastrointestinal tract to neoplasia. CXCR2 ligands, including GRO-α,β,γ/CXCL1,2,3, ENA-78/CXCL5 and IL-8/CXCL8 chemoattract pro-tumoral neutrophils. In addition, angiogenic CXCR2 ligands stimulate the formation of new blood vessels, facilitating tumor progression. The CXCR4 ligand SDF-1/CXCL12 also promotes tumor development by stimulating angiogenesis and by favoring metastasis of CXCR4-positive tumor cells to distant organs producing SDF-1/CXCL12. Furthermore, these angiogenic chemokines also directly enhance tumor cell survival and proliferation. In contrast, the CXCR3 ligands Mig/CXCL9, IP-10/CXCL10 and I-TAC/CXCL11 are angiostatic and attract anti-tumoral T lymphocytes and may therefore mediate tumor growth retardation and regression. Thus, chemokines exert diverging, sometimes dual roles in tumor biology as described for esophageal and gastric cancer. Therefore extensive research is needed to completely unravel the complex chemokine code in specific cancers. Possibly, chemokine-targeted cancer therapy will have to be adapted to the individual's chemokine profile.  相似文献   

7.
Chronic inflammation may increase the risk to develop cancer, for instance esophagitis or gastritis may lead to development of esophageal or gastric cancer, respectively. The key molecules attracting leukocytes to local inflammatory sites are chemokines. We here provide a systematic review on the impact of CXC chemokines (binding the receptors CXCR1, CXCR2, CXCR3 and CXCR4) on the transition of chronic inflammation in the upper gastrointestinal tract to neoplasia. CXCR2 ligands, including GRO-α,β,γ/CXCL1,2,3, ENA-78/CXCL5 and IL-8/CXCL8 chemoattract pro-tumoral neutrophils. In addition, angiogenic CXCR2 ligands stimulate the formation of new blood vessels, facilitating tumor progression. The CXCR4 ligand SDF-1/CXCL12 also promotes tumor development by stimulating angiogenesis and by favoring metastasis of CXCR4-positive tumor cells to distant organs producing SDF-1/CXCL12. Furthermore, these angiogenic chemokines also directly enhance tumor cell survival and proliferation. In contrast, the CXCR3 ligands Mig/CXCL9, IP-10/CXCL10 and I-TAC/CXCL11 are angiostatic and attract anti-tumoral T lymphocytes and may therefore mediate tumor growth retardation and regression. Thus, chemokines exert diverging, sometimes dual roles in tumor biology as described for esophageal and gastric cancer. Therefore extensive research is needed to completely unravel the complex chemokine code in specific cancers. Possibly, chemokine-targeted cancer therapy will have to be adapted to the individual's chemokine profile.  相似文献   

8.
Inflammatory bowel disease (IBD) are characterized recurrent inflammation of gastrointestinal tract. The etiology and pathogenesis this disease is currently unclear, but it has become evident that immune and genetic factors are involved in this process. The aim of this study was to determine whether gene polymorphisms: MIF-173 G/C; CXCL12-801 G/A and CXCR4 C/T exon 2 position of rs2228014 is associated with susceptibility to IBD. A total of 286 patients were examined with IBD, including 152 patients with ulcerative colitis and 134 with Crohn’s disease (CD) and 220 healthy subjects were recruited from the Polish population. Genotyping for polymorphisms in CXCL12/CXCR4 and MIF was performed by RFLP-PCR. Statistical significance was found for polymorphisms CXCR4, a receptor gene for CXCL12 genotypes and alleles in CD and for genotype C/T and T allele in ulcerative colitis with respect to control. This confirms the effect of CXCL12 gene. The interplay between CXCL12 and its receptor CXCR4 affects homeostasis and inflammation in the intestinal mucosa. Three-gene analysis in CD confirmed the association of genotype GGGGCT. Statistical analysis of clinical data of patients with ulcerative colitis showed significant differences in the distribution of genotype C/T and T allele for CXCR4 in the left-side colitis. Having CXCR4/CXCL12 chemokine axis polymorphisms may predispose to the development of IBD. Activation can also be their defensive reaction to the long-lasting inflammation.  相似文献   

9.
Chemokines and inflammatory response of endothelial cells is crucial in the development and progression of inflammatory disease. Lipopolysaccharide (LPS) is a well-known factor to trigger inflammatory response and induce damage of endothelial cells. The present study used lipopolysaccharide (LPS)-treated human vascular endothelial cells (HUVECs) to investigate the function of chemokine CXC chemokine ligand 4 (CXCL4) and its receptor CXC chemokine receptor 3 (CXCR3) in inflammatory-induced endothelial injury. LPS exposure (50, 100, 200 ng/ml) to HUVECs induced a dose- and time-dependent increase in CXCL4 and CXCR3 expression at both mRNA and protein levels. The LPS-induced endothelium hyperpermeability was inhibited by the addition of CXCL4 neutralizing antibody. Moreover, the addition of CXCL4 neutralizing antibody abolished the effects of LPS on tight junction (TJ) protein expression (occludin claudin-4 and Zonula occluden-1[ZO-1]) and p38 phosphorylation, which is supported by the observation of increased TJ protein expression and decreased p38 phosphorylation in LPS-treated HUVECs. SB203580, a p38 inhibitor, protected HUVECs from CXCL4-stimulated damage. In conclusion, CXCL4/CXCR3, which was enhanced by LPS, may be involved in endothelial proliferation, apoptosis, and permeability via the p38 signaling pathway.  相似文献   

10.
Posttranslational modifications, e.g. proteolysis, glycosylation, and citrullination regulate chemokine function, affecting leukocyte migration during inflammatory responses. Here, modification of CXCL5/epithelial cell-derived neutrophil-activating protein-78 (ENA-78) by proteases or peptidylarginine deiminases (PAD) was evaluated. Slow CXCL5(1–78) processing by the myeloid cell marker aminopeptidase N/CD13 into CXCL5(2–78) hardly affected its in vitro activity, but slowed down the activation of CXCL5 by the neutrophil protease cathepsin G. PAD, an enzyme with a potentially important function in autoimmune diseases, site-specifically deiminated Arg9 in CXCL5 to citrulline, generating [Cit9]CXCL5(1–78). Compared with CXCL5(1–78), [Cit9]CXCL5(1–78) less efficiently induced intracellular calcium signaling, phosphorylation of extracellular signal-regulated kinase, internalization of CXCR2, and in vitro neutrophil chemotaxis. In contrast, conversion of CXCL5 into the previously reported natural isoform CXCL5(8–78) provided at least 3-fold enhanced biological activity in these tests. Citrullination, but not NH2-terminal truncation, reduced the capacity of CXCL5 to up-regulate the expression of the integrin α-chain CD11b on neutrophils. Truncation nor citrullination significantly affected the ability of CXCL5 to up-regulate CD11a expression or shedding of CD62L. In line with the in vitro results, CXCL5(8–78) and CXCL5(9–78) induced a more pronounced neutrophil influx in vivo compared with CXCL5(1–78). Administration of 300 pmol of either CXCL5(1–78) or [Cit9]CXCL5(1–78) failed to attract neutrophils to the peritoneal cavity. Citrullination of the more potent CXCL5(9–78) lowers its chemotactic potency in vivo and confirms the tempering effect of citrullination in vitro. The highly divergent effects of modifications of CXCL5 on neutrophil influx underline the potential importance of tissue-specific interactions between chemokines and PAD or proteases.  相似文献   

11.
CXC chemokines bearing the glutamic acid-leucine-arginine (ELR) motif are crucial mediators in neutrophil-dependent acute inflammation. Interestingly, however, Interleukin (IL)-8/CXC ligand (CXCL) 8 is expressed in human milk in biologically significant concentrations, and may play a local maturational role in the developing human intestine. In this chemokine subfamily, there are six other known peptides beside IL-8/CXCL8, all sharing similar effects on neutrophil chemotaxis and angiogenesis. In this study, we measured the concentrations of these chemokines in human milk, sought their presence in human mammary tissue by immunohistochemistry, and confirmed chemokine expression in cultured human mammary epithelial cells (HMECs). Each of the seven ELR(+) CXC chemokines was measurable in milk, and except for NAP-2/CXCL7, these concentrations were higher than serum. The concentrations were higher in colostrum (except for GRO-beta/CXCL2 and NAP-2/CXCL7), and correlated negatively with time elapsed postpartum. IL-8/CXCL8, GRO-gamma/CXCL3, and ENA-78/CXCL5 concentrations were higher in preterm milk. There was intense immunoreactivity in mammary epithelial cells for all ELR(+) CXC chemokines, and the intensity of staining was higher in breast tissue with lactational changes. The supernatants from confluent HMEC cultures also contained measurable concentrations of all the seven ELR(+) CXC chemokines. These results confirm that all ELR(+) CXC chemokines are actively secreted by the mammary epithelial cells into human milk. Further studies are needed to determine if these chemokines share with IL-8/CXCL8 the protective effects on intestinal epithelial cells.  相似文献   

12.
PURPOSE OF REVIEW: The results of a landmark clinical study comparing intensive statin therapy with conventional statin therapy, in patients with acute coronary syndromes (ACS), are reviewed. The mechanisms behind these results are analysed drawing data from vascular and cell biology. RECENT FINDINGS: The Pravastatin or Atorvastatin Evaluation and Infection Therapy-Thrombolysis in Myocardial Infarction (PROVE IT-TIMI 22) study showed that intensive statin therapy with 80 mg of atorvastatin to achieve a low-density lipoprotein cholesterol of 62 mg/dl resulted in a 3.9% absolute and a 16% relative risk reduction in death or major cardiovascular events up to 2 years, compared to 40 mg of pravastatin, in patients with ACS. The results were especially significant as intensive statin therapy resulted in a very early benefit (<30 days) and occurred against a background of percutaneous coronary intervention (69%) for the index admission and high use of medications for secondary prevention. The PROVE IT and the Myocardial Ischaemia Reduction with Aggressive Cholesterol Lowering (MIRACL) C-reactive protein sub-study also showed that atorvastatin (80 mg) resulted in a significant reduction in markers of inflammation, whilst the Reversal of Atherosclerosis with Aggressive Lipid Lowering (REVERSAL) study showed that intensive statin therapy was associated with reduced progression of atherosclerosis compared with conventional doses of statins. SUMMARY: Intensive statin therapy results in a significant early reduction in adverse cardiac events in ACS patients which are sustained over 2 years. The early benefits seen are likely to result from modulation of inflammation, endothelial function and coagulation, i.e. the pleiotropic effects, whereas the greater reduction in low-density lipoprotein cholesterol results in reduced long-term events.  相似文献   

13.
The chemokine, epithelial neutrophil-activating peptide-78 (ENA-78), is a potent neutrophil chemotaxin whose expression is increased in inflamed synovial tissue and fluid in human rheumatoid arthritis compared with osteoarthritis. Since ENA-78 has been implicated in the pathogenesis of RA, we examined the expression of an ENA-78-like protein during the development of rat adjuvant-induced arthritis (AIA). Using an ELISA assay, we found increased levels of antigenic ENA-78-like protein in the sera of AIA animals compared with control normal animals by day 7 postadjuvant injection. ENA-78-like protein levels continued to increase as AIA developed. ENA-78-like protein levels in joint homogenates were increased in AIA animals later in the development of the disease, by day 18 during maximal arthritis, compared with control animals. Expression of ENA-78-like protein in both the AIA serum and joint correlated with the progression of inflammation of the joints. Anti-human ENA-78 administered before disease onset modified the severity of AIA, while administration of anti-ENA-78 after clinical onset of AIA did not modify the disease. These data support a role for an ENA-78-like protein as an important chemokine in the progression and maintenance of AIA.  相似文献   

14.
BACKGROUND: In addition to lowering cholesterol, statins are thought to beneficially modulate inflammation. Several chemokines including CXCL1/growth-related oncogene (GRO)-α, CXCL8/interleukin (IL)-8 and CCL2/monocyte chemoattractant protein (MCP)-1 are important in the pathogenesis of atherosclerosis and can be influenced by statin-treatment. Recently, we observed that atorvastatin-treatment alters the intracellular content and subcellular distribution of GRO-α in cultured human umbilical vein endothelial cells (HUVECs). The objective of this study was to investigate the mechanisms involved in this phenomenon. METHODOLOGY/ PRINCIPAL FINDINGS: The effect of atorvastatin on secretion levels and subcellular distribution of GRO-α, IL-8 and MCP-1 in HUVECs activated by interleukin (IL)-1β were evaluated by ELISA, confocal microscopy and immunoelectron microscopy. Atorvastatin increased the intracellular contents of GRO-α, IL-8, and MCP-1 and induced colocalization with E-selectin in multivesicular bodies. This effect was prevented by adding the isoprenylation substrate GGPP, but not the cholesterol precursor squalene, indicating that atorvastatin exerts these effects by inhibiting isoprenylation rather than depleting the cells of cholesterol. CONCLUSIONS/ SIGNIFICANCE: Atorvastatin targets inflammatory chemokines to the endocytic pathway and multivesicular bodies and may contribute to explain the anti-inflammatory effect of statins at the level of endothelial cell function.  相似文献   

15.
Chemokines participate in various processes of monocyte recruitment including monocyte arrest and migration. Our group and others have demonstrated that growth-related oncogene (GRO)-alpha (CXCL1) can support monocyte arrest in models of inflammation. Here we employed a parallel plate-flow chamber and Transwell reconstitution assay to test whether GRO family chemokines were sufficient for Mono Mac 6 (a human monocytic cell line) and isolated human monocyte recruitment. Our study shows that 1) GRO-alpha, -beta (CXCL2), and -gamma (CXCL3) all act as arrest chemokines for monocyte adhesion on vascular cell adhesion molecule (VCAM)-1 under flow in the presence of P-selectin; 2) CXCR2 is the functional receptor for GRO-family chemokines in monocyte arrest; however, CXCR2 is not an arrest chemokine receptor in general, since epithelial neutrophil-activating peptide ENA-78 failed to arrest monocytes; 3) GRO-alpha, -beta, and -gamma all fail to increase intracellular free Ca2+ or mediate monocyte chemotaxis; and 4) signaling through G alpha(i) protein, phosphoinositide 3-kinase, and actin polymerization but not Ca2+ mobilization or the mitogen-activated kinases p38 and MAPK/extracellular signal-related kinase are necessary for GRO-alpha-mediated Mono Mac 6 cell arrest under flow. We conclude that the GRO-family chemokines are specialized monocyte-arrest chemokines. Their role in monocyte recruitment in inflammation can be inhibited by blocking CXCR2 function or downstream signaling events.  相似文献   

16.
PURPOSE: To determine levels of the chemokines CCL1/I-309, CCL2/MCP-1, CCL3/MIP-1alpha, CCL4/MIP-1beta, CCL7/MCP-3, CCL8/MCP-2, CXCL5/ENA-78, CXCL6/GCP-2, CXCL10/IP-10, and CXCL11/I-TAC in the vitreous humor and serum, from patients with proliferative diabetic retinopathy (PDR), proliferative vitreoretinopathy (PVR), and rhegmatogenous retinal detachment with no PVR (RD), and to investigate the expression of MCP-1, CXCL12/SDF-1, and the chemokine receptor CXCR3 in epiretinal membranes. METHODS: Paired vitreous humor and serum samples were obtained from patients undergoing vitrectomy for the treatment of RD (57 specimens), PVR (32 specimens), and PDR (88 specimens). The levels of chemokines were measured by enzyme-linked immunosorbent assays. Eighteen PDR and 5 PVR membranes were studied by immunohistochemical techniques. RESULTS: Of all the chemokines studied, only MCP-1 and IP-10 were detected in vitreous humor samples. MCP-1 levels in vitreous humor samples were significantly higher than in serum samples (p < 0.001). MCP-1 levels were significantly higher in vitreous humor samples from patients with PVR and PDR compared with RD (p = 0.0002). MCP-1 levels in vitreous humor samples from patients with active PDR were significantly higher than in inactive PDR cases (p = 0.0224). IP-10 levels in vitreous humor samples were significantly higher than in serum samples (p = 0.0035). IP-10 levels were significantly higher in vitreous humor samples from patients with PVR and PDR compared with RD (p = 0.0083). The incidence of IP-10 detection in vitreous humor samples was significantly higher in active PDR cases compared with inactive cases (p = 0.0214). There was a significant association between the incidence of IP-10 detection and increased levels of MCP-1 in vitreous humor samples from all patients, and patients with RD and PDR (p < 0.001 for all comparisons). MCP-1, and SDF-1 were localized in myofibroblasts in PVR and PDR membranes and in vascular endothelial cells in PDR membranes. CXCR3 was expressed by vascular endothelial cells in PDR membranes. CONCLUSION: MCP-1, IP-10 and SDF-1 may participate in pathogenesis of PVR and PDR. Myofibroblasts and vascular endothelial cells are the major cell types expressing MCP-1, SDF-1, and CXCR3 in epiretinal membranes.  相似文献   

17.
The chemokine CXCL12 (also known as stromal cell-derived factor, SDF-1) is constitutively expressed by stromal resident cells and is involved in the homeostatic and inflammatory traffic of leukocytes. Binding of CXCL12 to glycosaminoglycans on endothelial cells (ECs) is supposed to be relevant to the regulation of leukocyte diapedesis and neoangiogenesis during inflammatory responses. To improve our understanding of the relevance of this process to rheumatoid arthritis (RA), we have studied the mechanisms of presentation of exogenous CXCL12 by cultured RA ECs. RA synovial tissues had higher levels of CXCL12 on the endothelium than osteoarthritis (OA) tissues; in both, CXCL12 colocalized to heparan sulfate proteoglycans (HSPGs) and high endothelial venules. In cultured RA ECs, exogenous CXCL12α was able to bind in a CXCR4-independent manner to surface HSPGs. Desulfation of RA EC HSPGs by pretreatment with sodium chlorate, or by replacing in a synthetic CXCL12α the residues Lys24 and Lys27 by Ser (CXCL12α-K2427S), decreased or abrogated the ability of the chemokine to bind to RA ECs. Ex vivo, synovial ECs from patients with either OA or RA displayed a higher CXCL12-binding capacity than human umbilical vein ECs (HUVECs), and in HUVECs the binding of CXCL12 was increased on exposure to tumor necrosis factor-α or lymphotoxin-α1β2. Our findings indicate that CXCL12 binds to HSPGs on ECs of RA synovium. The phenomenon relates to the interaction of HSPGs with a CXCL12 domain with net positive surface charge located in the first β strand, which encompasses a canonical BXBB HSPG-binding motif. Furthermore, we show that the attachment of CXCL12 to HSPGs is upregulated by inflammatory cytokines. Both the upregulation of a constitutive chemokine during chronic inflammation and the HSPG-dependent immobilization of CXCL12 in EC surfaces are potential sites for therapeutic intervention.  相似文献   

18.
Neutrophil specific chemokines are potent chemoattractants for neutrophils. IL-8/CXCL8 is the most extensively studied member of this group, and its concentrations increase during inflammatory conditions of the newborn infant including sepsis and chronic lung disease. A significant amount of information exists on the effects of IL-8/CXCL8 on neutrophil chemotaxis of neonates, but little is known about the other neutrophil specific chemokines. The aim of this study was to determine the relative potency of the neutrophil specific chemokines on chemotaxis of neonatal neutrophils and to compare this effect with the effect on adult neutrophils. Neutrophils were isolated from cord blood or healthy adult donors and incubated in a Neuroprobe chemotaxis chamber. Chemokine concentrations ranging from 1-1000 ng/mL were used. Differences in chemotactic potency existed among the seven neutrophil specific chemokines. Specifically, at 100 ng/mL, the order was IL-8/CXCL8>GRO-alpha/CXCL1>GCP-2/CXCL6>NAP-2/CXCL7>ENA-78/CXCL5>GRO-gamma/CXCL2>GRO-beta/CXCL3. This pattern was observed for adult and neonatal neutrophils. We conclude that (1) neutrophils from cord blood exhibit the same pattern of potency for each ELR chemokine as neutrophils from adults, and (2) migration of neonatal neutrophils is significantly less than that of adults at every concentration examined except the lowest (1 ng/mL).  相似文献   

19.
Chemokines are a family of chemotactic peptides affecting leukocyte migration during the inflammatory response. Post-translational modification of chemokines has been shown to affect their biological potency. Here, the isolation and identification of natural isoforms of the neutrophil chemoattractants GRO alpha and GRO gamma and the epithelial-cell-derived neutrophil attractant-78 (ENA-78), is reported. Cultured tumor cells produced predominantly intact chemokine forms, whereas peripheral blood monocytes secreted mainly NH2-terminally truncated forms. The order of neutrophil chemotactic potency of these CXC chemokines was GRO alpha > GRO gamma > ENA-78 both for intact and truncated forms. However, truncated GRO alpha (4,5,6-73), GRO gamma (5-73) and ENA-78(8,9-78) were 30-fold, fivefold and threefold more active than the corresponding intact chemokine. As a consequence, truncated GRO alpha (4,5,6-73) was 300-fold more potent than intact ENA-78 indicating that both the type of chemokine and its mode of processing determine the chemotactic potency. Similar observations were made when intact and truncated GRO alpha, GRO gamma and ENA-78 were compared for their capacity to induce an increase in the intracellular calcium concentration in neutrophilic granulocytes, and to desensitize the calcium response towards the CXC chemokine granulocyte chemotactic protein-2 (GCP-2). It must be concluded that physiological proteolytic cleavage of CXC chemokines in general enhances the inflammatory response, whereas for CC chemokines NH2-terminal processing mostly results in reduced chemotactic potency.  相似文献   

20.
The CC chemokine eotaxin/CCL11 is known to bind to the receptor CCR3 on eosinophils and Th2-type lymphocytes. In this study, we demonstrate that CCR3 is expressed on a subpopulation of primary human dermal microvascular endothelial cells and is up-regulated by TNF-alpha. We found that incubation of human dermal microvascular endothelial cells with recombinant eotaxin/CCL11 suppresses TNF-alpha-induced production of the neutrophil-specific chemokine IL-8/CXCL8. The eotaxin/CCL11-suppressive effect on endothelial cells was not seen on IL-1beta-induced IL-8/CXCL8 release. Eotaxin/CCL11 showed no effect on TNF-alpha-induced up-regulation of growth-related oncogene-alpha or IFN-gamma-inducible protein-10, two other CXC chemokines tested, and did not affect production of the CC chemokines monocyte chemoattractant protein-1/CCL2 and RANTES/CCL5, or the adhesion molecules ICAM-1 and E-selectin. These results suggest that eotaxin/CXCL11 is not effecting a general suppression of TNF-alphaR levels or signal transduction. Suppression of IL-8/CXCL8 was abrogated in the presence of anti-CCR3 mAb, pertussis toxin, and wortmannin, indicating it was mediated by the CCR3 receptor, G(i) proteins, and phosphatidylinositol 3-kinase signaling. Eotaxin/CCL11 decreased steady state levels of IL-8/CXCL8 mRNA in TNF-alpha-stimulated cells, an effect mediated in part by an acceleration of IL-8 mRNA decay. Eotaxin/CCL11 may down-regulate production of the neutrophil chemoattractant IL-8/CXCL8 by endothelial cells in vivo, acting as a negative regulator of neutrophil recruitment. This may play an important biological role in the prevention of overzealous inflammatory responses, aiding in the resolution of acute inflammation or transition from neutrophilic to mononuclear/eosinophilic inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号