首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Producing valuable coproducts from oleaginous microalgae is an option to reduce the total cost of biofuel production. Here, the influence of nitrogen sources on biomass yield and lipid accumulation of a newly identified oleaginous green microalgal strain, Mychonastes afer HSO-3-1, was evaluated. Carbon assimilation and the following lipid biosynthesis of M. afer were inhibited to some extent under weak acidic conditions (6 < pH < 7) and any of the tested nitrogen source. The highest lipid productivity of 50.7 mg L?1 day?1 was achieved with a 17.6 mM nitrogen supplement in the form of urea. The cell polar lipid content was significantly higher than triacylglycerol (TAG), and saturated palmitic acid (C16:0) occupied a dominant position in the fatty acid profiles while culturing M. afer in acidic medium with NH4 + as the nitrogen source. Under neutral conditions, the lipid productivities of M. afer cultivated in media containing 17.6 mM of NaNO3, NH4Cl, and NH4NO3 were 76.2, 77.5, and 79.0 mg L?1 day?1, respectively. The greatest TAG content (58.56%) of total lipids was obtained when NaNO3 was used as the nitrogen source. There was no significant difference in the fatty acid composition of M. afer cells when they were cultivated in neutral media supplemented with NaNO3, urea, NH4Cl, and NH4NO3. Therefore, NH4 + was not a suitable nitrogen source for M. afer cultivation due to the additional labor, working procedures, and alkali required to adjust the medium pH. Considering that using urea as nitrogen source could reduce the cost of nutrient salts substantially and urea can be taken up and utilized by most microalgae, it is a preferred nitrogen source. The major properties of biodiesel derived from M. afer HSO-3-1 met biodiesel quality, and nervonic acid concentrations remained at approximately 3.0% of total fatty acids.  相似文献   

2.
Abelmoschus manihot, an ornamental plant, was examined for phytoremediation purposes in accordance with the ability to accumulate cadmium and physiological mechanisms of cadmium tolerance. A net photosynthetic rate (A N) glasshouse experiment for 60 days was conducted to investigate the influence of different cadmium amounts (0–100 mg kg?1) on the growth, biomass, photosynthetic performance, reactive oxygen species (ROS) production, antioxidative enzyme activities, Cd uptake and accumulation of A. manihot. Exposure to cadmium enhanced plant growth even at 100 mg kg?1, without showing symptoms of visible damage. The cadmium concentration of shoots (stems or leaves) and roots was more than the critical value of 100 mg kg?1 and reached 126.17, 185.26 and 210.24 mg kg?1, respectively. BCF values of A. manihot plants exceeded the reference value 1.0 for all the Cd treatments, and TF values were greater than 1 at 15–60 mg kg?1 Cd treatment. The results also showed that cadmium concentrations of 60 mg kg?1 or less induced a significant enhancement in plant net photosynthetic rate (A N), stomatal conductance (G s), transpiration rate (T r), photosynthetic pigments and F v/F m. These parameters were slightly decreased at the higher concentration (100 mg kg?1). The ROS production (O2 ?, H2O2) and antioxidative response including SOD, CAT and POD were significantly enhanced by increasing cadmium. These results suggest that A. manihot can be considered as a Cd-hyperaccumulator and the hormetic effects may be taken into consideration in remediation of Cd contamination soil.  相似文献   

3.
The halotolerant cyanobacterium Anabaena sp was grown under NaCl concentration of 0, 170 and 515 mM and physiological and proteomic analysis was performed. At 515 mM NaCl the cyanobacterium showed reduced photosynthetic activities and significant increase in soluble sugar content, proline and SOD activity. On the other hand Anabaena sp grown at 170 mM NaCl showed optimal growth, photosynthetic activities and comparatively low soluble sugar content, proline accumulation and SOD activity. The intracellular Na+ content of the cells increased both at 170 and 515 mM NaCl. In contrast, the K+ content of the cyanobacterium Anabaena sp remained stable in response to growth at identical concentration of NaCl. While cells grown at 170 mM NaCl showed highest intracellular K+/Na+ ratio, salinity level of 515 mM NaCl resulted in reduced ratio of K+/Na+. Proteomic analysis revealed 50 salt-responsive proteins in the cyanobacterium Anabaena sp under salt treatment compared with control. Ten protein spots were subjected to MALDI-TOF–MS/MS analysis and the identified proteins are involved in photosynthesis, protein folding, cell organization and energy metabolism. Differential expression of proteins related to photosynthesis, energy metabolism was observed in Anabaena sp grown at 170 mM NaCl. At 170 mM NaCl increased expression of photosynthesis related proteins and effective osmotic adjustment through increased antioxidant enzymes and modulation of intracellular ions contributed to better salinity tolerance and optimal growth. On the contrary, increased intracellular Na+ content coupled with down regulation of photosynthetic and energy related proteins resulted in reduced growth at 515 mM NaCl. Therefore reduced growth at 515 mM NaCl could be due to accumulation of Na+ ions and requirement to maintain higher organic osmolytes and antioxidants which is energy intensive. The results thus show that the basis of salt tolerance is different when the halotolerant cyanobacterium Anabaena sp is grown under low and high salinity levels.  相似文献   

4.
Transgenic hairy roots of Datura spp., established using strain A4 of Agrobacterium rhizogenes, are genetically stable and produce high levels of tropane alkaloids. To increase biomass and tropane alkaloid content of this plant tissue, four Pseudomonas strains, Pseudomonas fluorescens P64, P66, C7R12, and Pseudomonas putida PP01 were assayed as biotic elicitors on transgenic hairy roots of Datura stramonium, Datura tatula, and Datura innoxia. Alkaloids were extracted from dried biomass, and hyoscyamine and scopolamine were quantified using liquid chromatography-tandem mass spectrometry analysis. D. stramonium and D. innoxia biomass production was stimulated by all Pseudomonas spp. strains after a 5-d treatment. All strains of P. fluorescens increased hyoscyamine yields compared to untreated cultures after both 5 and 10 d of treatment. Hyoscyamine yields were highest in D. tatula cultures exposed to a 5-d treatment with C7R12 (16.633 + 0.456 mg g?1 dry weight, a 431% increase) although the highest yield increases compared to the control were observed in D. stramonium cultures exposed to strains P64 (511% increase) and C7R12 (583% increase) for 10 d. D. innoxia showed the highest scopolamine yields after elicitation with P. fluorescens strains P64 for 5 d (0.653 + 0.021 mg g?1 dry weight, a 265% increase) and P66 for 5 and 10 d (5 d, 0.754 + 0.0.031 mg g?1 dry weight, a 321% increase; 10 d 0.634 + 0.046 mg g?1 dry weight, a 277% increase). These results show that the Pseudomonas strains studied here can positively and significantly affect biomass and the yields of hyoscyamine and scopolamine from transgenic roots of the three Datura species.  相似文献   

5.

Key message

The black locust is adapted to elevated [CO 2 ] through changes in nitrogen allocation characteristics in leaves.

Abstract

The black locust (Robinia pseudoacacia L.) is an invasive woody legume within Japan. This prolific species has a high photosynthetic rate and growth rate, and undergoes symbiosis with N2-fixing micro-organisms. To determine the effect of elevated CO2 concentration [CO2] on its photosynthetic characteristics, we studied the chlorophyll (Chl) and leaf nitrogen (N) content, and the leaf structure and N allocation patterns in the leaves and acetylene reduction activity after four growing seasons, in R. pseudoacacia. Our specimens were grown at ambient [CO2] (370 μmol mol?1) and at elevated [CO2] (500 μmol mol?1), using a free air CO2 enrichment (FACE) system. Net photosynthetic rate at growth [CO2] (A growth) and acetylene reduction activity were significantly higher, but maximum carboxylation rate of RuBisCo (V cmax), maximum rate of electron transport driving RUBP regeneration (J max), net photosynthetic rate under enhanced CO2 concentration and light saturation (A max), the N concentration in leaf, and in leaf mass per unit area (LMA) and ribulose-1,5-bisphosphate carboxylase oxygenase (RuBisCo) content were significantly lower grown at elevated [CO2] than at ambient [CO2]. We also found that RuBisCo/N were less at elevated [CO2], whereas Chl/N increased significantly. Allocation characteristics from N in leaves to photosynthetic proteins, NL (Light-harvesting complex: LHC, photosystem I and II: PSI and PSII) and other proteins also changed. When R. pseudoacacia was grown at elevated [CO2], the N allocation to RuBisCo (NR) decreased to a greater extent but NL and N remaining increased relative to specimens grown at ambient [CO2]. We suggest that N remobilization from RuBisCo is more efficient than from proteins of electron transport (NE), and from NL. These physiological responses of the black locust are significant as being an adaptation strategy to global environmental changes.
  相似文献   

6.
Carbon balancing within the plant species is an important feature for climatic adaptability. Photosynthesis and respiration traits are directly linked with carbon balance. These features were studied in 20 wild rice accessions Oryza spp., and cultivars. Wide variation was observed within the wild rice accessions for photosynthetic oxygen evolution or photosynthetic rate (A), dark (R d), and light induced respiration (LIR) rates, as well as stomatal density and number. The mean rate of A varied from 10.49 μmol O2 m?2 s?1 in cultivated species and 13.09 μmol O2 m?2 s?1 in wild spp., The mean R d is 2.09 μmol O2 m?2 s?1 and 2.31 μmol O2 m?2 s?1 in cultivated and wild spp., respectively. Light induced Respiration (LIR) was found to be almost twice in wild rice spp., (16.75 μmol O2 m?2 s?1) compared to cultivated Oryza spp., Among the various parameters, this study reveals LIR and A as the key factors for positive carbon balance. Stomatal contribution towards carbon balance appears to be more dependent on abaxial surface where several number of stomata are situated. Correlation analysis indicates that R d and LIR increase with the increase in A. In this study, O. nivara (CR 100100, CR 100097), O. rufipogon (IR 103404) and O. glumaepatula (IR104387) were identified as potential donors which could be used in rice breeding program. Co-ordination between gas exchange and patchiness in stomatal behaviour appears to be important for carbon balance and environmental adaptation of wild rice accessions, therefore, survival under harsh environment.  相似文献   

7.
The role of 4.1 or 8.2 μM meta-topolin (mT) on shoot multiplication, rooting and ex vitro acclimatization of micropropagated Corylus colurna L., a promising non-suckering rootstock for hazelnut (Corylus avellana L.), was examined in comparison to N6-benzyladenine (BA), the most used cytokinin in tissue culture of Corylus spp. The influence of 8.2 μM mT and BA on photosynthetic pigments content and antioxidant enzymes activity, catalase (CAT) and guaiacol peroxidase (POD), in regenerated shoots, and on the preparation of the rootstock for micrografting was also evaluated. The highest shoot multiplication was recorded on medium containing 8.2 μM mT and an overall positive effect of mT on growth and quality of micropropagated shoots was found. The highest chlorophyll a content (1.236 mg g?1 fresh weight, FW) and chlorophyll a/b ratio (2.48), and the lowest total carotenoids content (0.292 mg g?1 FW) and CAT activity (25.8 μmol min?1 mg?1 protein) were detected after 8.2 μM mT application, while no significant differences were found in chlorophyll b content and POD activity between the two cytokinins. The best rhizogenesis response (98% for 4.1 μM and 100% for 8.2 μM mT) and ex vitro acclimatization competence (higher than 78%) were exhibited from shoots multiplied on mT. Furthermore, the multiplication of rootstock on mT allowed obtaining the highest (70%) response of successful micrografting. The present findings provide the first evidence of the successful applicability of mT in C. colurna tissue culture and development of micrografted plantlets.  相似文献   

8.
A recombinant alcohol dehydrogenase (ADH) from Kangiella koreensis was purified as a 40 kDa dimer with a specific activity of 21.3 nmol min?1 mg?1, a K m of 1.8 μM, and a k cat of 1.7 min?1 for all-trans-retinal using NADH as cofactor. The enzyme showed activity for all-trans-retinol using NAD + as a cofactor. The reaction conditions for all-trans-retinol production were optimal at pH 6.5 and 60 °C, 2 g enzyme l?1, and 2,200 mg all-trans-retinal l?1 in the presence of 5 % (v/v) methanol, 1 % (w/v) hydroquinone, and 10 mM NADH. Under optimized conditions, the ADH produced 600 mg all-trans-retinol l?1 after 3 h, with a conversion yield of 27.3 % (w/w) and a productivity of 200 mg l?1 h?1. This is the first report of the characterization of a bacterial ADH for all-trans-retinal and the biotechnological production of all-trans-retinol using ADH.  相似文献   

9.
Phycobiliproteins, light-harvesting pigments found in cyanobacteria and in some eukaryotic algae, have numerous commercial applications in food, cosmetic, and pharmaceutical industries. Colorant production from cyanobacteria offers advantages over their production from higher plants, as cyanobacteria have fast growth rate and high photosynthetic efficiency and require less space. In this study, three cyanobacteria strains were studied for phycobiliprotein production and the influence of sodium nitrate, potassium nitrate and ammonium chloride on the growth and phycobiliprotein composition of the strains were evaluated. In the batch culture period of 12 days, Phormidium sp. and Pseudoscillatoria sp. were able to utilize all tested nitrogen sources; however, ammonium chloride was the best nitrogen source for both strains to achieve maximum growth rate μ?=?0.284?±?0.03 and μ?=?0.274?±?0.13 day?1, chlorophyll a 16.2?±? 0.5 and 12.2?±? 0.2 mg L?1, and phycobiliprotein contents 19.38?±?0.09 and 19.99?±?0.14% of dry weight, whereas, for Arthrospira platensis, the highest growth rate of μ?=?0.304?±?0.0 day?1, chlorophyll a 19.1?±?0.5 mg L?1, and phycobiliprotein content of 22.27?±?0.21% of dry weight were achieved with sodium nitrate. The phycocyanin from the lyophilized cyanobacterial biomass was extracted using calcium chloride and food grade purity (A620/A280 ratio >?0.7) was achieved. Furthermore, phycocyanin was purified using two-step chromatographic method and the analytical grade purity (A620/A280 ratio >?4) was attained. SDS-PAGE demonstrated the purity and presence of two bands corresponding to α- and β-subunits of the C-phycocyanin. The results showed that Phormidium sp. and Pseudoscillatoria sp. could be good candidates for phycocyanin production.  相似文献   

10.
The present work evaluated biomass productivity, carbon dioxide fixation rate, and biochemical composition of two microalgal species, Phaeodactylum tricornutum (Bacillariophyta) and Tetradesmus obliquus (Chlorophyta), cultivated indoors in high-technology photobioreactors (HT-PBR) and outdoors both in pilot ponds and low-technology photobioreactors in a greenhouse in southern Italy. Microalgae were grown in standard media, under nitrogen starvation, and in two liquid digestates obtained from anaerobic digestion of agro-zootechnical and vegetable biomass. P. tricornutum, cultivated in semi-continuous mode in indoor HT-PBRs with standard medium, showed a biomass productivity of 21.0?±?2.3 g m?2 d?1. Applying nitrogen starvation, the lipid productivity increased from 2.3 up to 4.5?±?0.5 g m?2 d?1, with a 24 % decrease of biomass productivity. For T. obliquus, a biomass productivity of 9.1?±?0.9 g m?2 d?1 in indoor HT-PBR was obtained using standard medium. Applying liquid digestates as fertilizers in open ponds, T. obliquus gave a biomass productivity (10.8?±?2.0 g m?2 d?1) not statistically different from complete medium such as P. tricornutum (6.5?±?2.2 g m?2 d?1). The biochemical data showed that the fatty acid composition of the microalgal biomass was affected by the different cultivation conditions for both microalgae. In conclusion, it was found that the microalgal productivity in standard medium was about doubled in HT-PBR compared to open ponds for P. tricornutum and was about 20 % higher for T. obliquus.  相似文献   

11.
Glucose-6-phosphate dehydrogenases (G6PDs) are important enzymes widely used in bioassay and biocatalysis. In this study, we reported the cloning, expression, and enzymatic characterization of G6PDs from the thermophilic bacterium Thermoanaerobacter tengcongensis MB4 (TtG6PD). SDS-PAGE showed that purified recombinant enzyme had an apparent subunit molecular weight of 60 kDa. Kinetics assay indicated that TtG6PD preferred NADP+ (k cat/K m = 2618 mM?1 s?1, k cat = 249 s?1, K m = 0.10 ± 0.01 mM) as cofactor, although NAD+ (k cat/K m = 138 mM?1 s?1, k cat = 604 s?1, K m = 4.37 ± 0.56 mM) could also be accepted. The K m values of glucose-6-phosphate were 0.27 ± 0.07 mM and 5.08 ± 0.68 mM with NADP+ and NAD+ as cofactors, respectively. The enzyme displayed its optimum activity at pH 6.8–9.0 for NADP+ and at pH 7.0–8.6 for NAD+ while the optimal temperature was 80 °C for NADP+ and 70 °C for NAD+. This was the first observation that the NADP+-linked optimal temperature of a dual coenzyme-specific G6PD was higher than the NAD+-linked and growth (75 °C) optimal temperature, which suggested G6PD might contribute to the thermal resistance of a bacterium. The potential of TtG6PD to measure the activity of another thermophilic enzyme was demonstrated by the coupled assays for a thermophilic glucokinase.  相似文献   

12.
A divalent cation-independent 16 kDa d-galactose binding lectin (AKL-2) was isolated from eggs of sea hare, Aplysia kurodai. The lectin recognized d-galactose and d-galacturonic acid and had a 32 kDa dimer consisting of two disulfide-bonded 16 kDa subunits. Eighteen N-terminus amino acids were identified by Edman degradation, having unique primary structure. Lectin blotting analysis with horseradish peroxidase-conjugated lectins has shown that AKL-2 was a glycoprotein with complex type oligosaccharides with N-acetyl d-glucosamine and mannose at non-reducing terminal. Two protein bands with 38 and 36 kDa in the crude extract of sea hare eggs after purification of the lectin was isolated by AKL-2-conjugated Sepharose column and elution with 0.1 M lactose containing buffer. It suggested that the lectin binds with an endogenous ligand in the eggs. AKL-2 kept extreme stability on haemagglutination activity if it was treated at pH 3 and 70 °C for 1 h. Glycan binding profile of AKL-2 by frontal affinity chromatography technology using 15 pyridylamine labeled oligosaccharides has been appeared that the lectin uniquely recognized globotriose (Galα1-4Galβ1-4Glc; Gb3) in addition to bi-antennary complex type N-linked oligosaccharides with N-acetyllactosamine. Surface plasmon resonance analysis of AKL-2 against a neo-glycoprotein, Gb3-human serum albumin showed the k ass and k diss values are 2.4 × 103 M?1 s?1 and 3.8 × 10?3 s?1, respectively. AKL-2 appeared cytotoxicity against both Burkitt’s lymphoma Raji cell and erythroleukemia K562. The activity to Raji by the lectin was preferably cancelled by the co-presence of melibiose mimicing Gb3. On the other hand, K562 was cancelled effectively by lactose than melibiose. It elucidated that AKL-2 had cytotoxic ability mediated glycans structure to cultured cells.  相似文献   

13.
Nitrous oxide (N2O) is one of the three main biogenic greenhouse gases (GHGs) and agriculture represents close to 30 % of the total N2O net emissions. In agricultural soils, N2O is emitted by two main microbial processes, nitrification and denitrification, both of which can convert synthetic nitrogen fertilizer into N2O. Legume-rhizobia symbiosis could be an effective and environmental-friendly alternative to nitrogen fertilization and hence, to mitigate soil N2O emissions. However, legume crops also contribute to N2O emissions. A better understanding of the environmental factors involved in the emission of N2O from nodules would be instrumental for mitigating the release of this GHG gas. In this work, in vivo N2O emissions from nodulated soybean roots in response to nitrate (0, 1, 2 and 4 mM) and flooding have been measured. To investigate the contribution of rhizobial denitrification in N2O emission from nodules, plants were inoculated with B. japonicum USDA110 and napA and nosZ denitrification mutants. The results showed that nitrate was essential for N2O emissions and its concentration enhanced N2O fluxes showing a statistical linear correlation, being the highest N2O fluxes obtained with 4 mM nitrate. When inoculated plants grown with 4 mM nitrate were subjected to flooding, a 150- and 830-fold induction of N2O emission rates from USDA110 and nosZ nodulated roots, respectively, was observed compared to non-flooded plants, especially during long-term flooding. Under these conditions, N2O emissions from detached nodules produced by the napA mutant were significantly lower (p?<?0.05) than those produced by the wild-type strain (382 versus 1120 nmol N2O h?1 g?1 NFW, respectively). In contrast, nodules from plants inoculated with the nosZ mutant accumulated statistically higher levels of N2O compared to wild-type nodules (2522 versus nmol 1120 N2O h?1 g?1 NFW, p?<?0.05). These results demonstrate that flooding is an important environmental factor for N2O emissions from soybean nodules and that B. japonicum denitrification is involved in such emission.  相似文献   

14.
Impact of different levels of elevated CO 2 on the activity of Frankia (Nitrogen-fixing actinomycete) in Casuarina equisetifolia rooted stem cuttings has been studied to understand the relationship between C. equisetifolia, Frankia and CO2. The stem cuttings of C. equietifolia were collected and treated with 2000 ppm of Indole Butyric Acid (IBA) for rooting. Thus vegetative propagated rooted stem cuttings of C. equisetifolia were inoculated with Frankia and placed in the Open top chambers (OTC) with elevated CO2 facilities. These planting stocks were maintained in the OTC for 12 months under different levels of elevated CO2 (ambient control, 600 ppm, 900 ppm). After 12 months, the nodule numbers, bio mass, growth, and photosynthesis of C. equisetifolia rooted stem cuttings inoculated with Frankia were improved under 600 ppm of CO2. The rooted stem cuttings of C. equisetifolia inoculated with Frankia showed a higher number of nodules under 900 ppm of CO2 and cuttings without Frankia inoculation exhibited poor growth. Tissue Nitrogen (N) content was also higher under 900 ppm of CO2 than ambient control and 600 ppm levels. The photosynthetic rate was higher (17.8 μ mol CO2 m?2 s?1) in 900 ppm of CO2 than in 600 ppm (13.2 μ mol CO2 m?2 s?1) and ambient control (8.3 μ mol CO2 m?2 s?1). This study showed that Frankia can improve growth, N fixation and photosynthesis of C. equietifolia rooted stem cuttings under extreme elevated CO2 level conditions (900 ppm).  相似文献   

15.
Sublethal concentrations of chemical insecticides may cause changes in some behavioral characteristics of natural enemies such as functional responses. The residual effect of three synthetic insecticides including deltamethrin, fenvalerate and azadirachtin were studied on functional response of Habrobracon hebetor Say to Ephestia kuehniella Zeller larvae. Seven host densities (2, 4, 8, 16, 32, 64 and 96) were used during a 24 h period. The resulting data were appropriately fit to Type II functional response models in all treatments: (1) control (0.0916 h?1; and T h  = 0.2011 h); (2) deltamethrin (a = 0.0839 h?1; and T h  = 0.3560 h); (3) fenvalerate (a = 0.0808 h?1 and T h  = 0.3623 h); and (4) azadirachtin (a = 0.0900 h?1 and T h  = 0.2042 h). Maximum theoretical parasitism rate (T/T h ) was 119.34 estimated for control wasps. There was no significant difference between the values of attack rates (a and a + D a ) in all treatments while the handling time was statistically affected in female wasps treated with fenvalerate. Our findings will be useful in safe application of these insecticides in pest management programmes.  相似文献   

16.
Improvement of photosynthetic traits is a promising strategy to break the yield potential barrier of major food crops. Leaf photosynthetic traits were evaluated in a set of high yielding Oryza sativa, cv. Swarna?×?Oryza nivara backcross introgression lines (BILs) along with recurrent parent Swarna, both in wet (Kharif) and dry (Rabi) seasons in normal irrigated field conditions. Net photosynthesis (PN) ranged from 15.37 to 23.25 µmol (CO2) m?2 s?1 in the BILs. Significant difference in PN was observed across the seasons and genotypes. Six BILs showed high photosynthesis compared with recurrent parent in both seasons. Chlorophyll content showed minimum variation across the seasons for any specific BIL but significant variation was observed among BILs. Significant positive association between photosynthetic traits and yield traits was observed, but this association was not consistent across seasons mainly due to contrasting weather parameters in both seasons. BILs 166s and 248s with high and consistent photosynthetic rate exhibited stable high yield levels in both the seasons compared to the recurrent parent Swarna. There is scope to exploit photosynthetic efficiency of wild and weedy rice to identify genes for improvement of photosynthetic rate in cultivars.  相似文献   

17.
Effects of oxygen transfer on recombinant protein production by Pichia pastoris under glyceraldehyde-3-phosphate dehydrogenase promoter were investigated. Recombinant glucose isomerase was chosen as the model protein. Two groups of oxygen transfer strategies were applied, one of which was based on constant oxygen transfer rate where aeration rate was Q O/V = 3 and 10 vvm, and agitation rate was N = 900 min?1; while the other one was based on constant dissolved oxygen concentrations, C DO = 5, 10, 15, 20 and 40 % in the fermentation broth, by using predetermined exponential glucose feeding with μ o = 0.15 h?1. The highest cell concentration was obtained as 44 g L?1 at t = 9 h of the glucose fed-batch phase at C DO = 20 % operation while the highest volumetric and specific enzyme activities were obtained as 4440 U L?1 and 126 U g?1 cell, respectively at C DO = 15 % operation. Investigation of specific enzyme activities revealed that keeping C DO at 15 % was more advantageous with an expense of relatively higher by-product formation and lower specific cell growth rate. For this strategy, the highest oxygen transfer coefficient and oxygen uptake rate were K L a = 0.045 s?1 and OUR = 8.91 mmol m?3 s?1, respectively.  相似文献   

18.
Optimization of process parameters for phytase production by Enterobacter sp. ACSS led to a 4.6-fold improvement in submerged fermentation, which was enhanced further in fed-batch fermentation. The purified 62 kDa monomeric phytase was optimally active at pH 2.5 and 60 °C and retained activity over a wide range of temperature (40–80 °C) and pH (2.0–6.0) with a half-life of 11.3 min at 80 °C. The kinetic parameters K m, V max, K cat, and K cat/K m of the pure phytase were 0.21 mM, 131.58 nmol mg?1 s?1, 1.64 × 103 s?1, and 7.81 × 106 M?1 s?1, respectively. The enzyme was fairly stable in the presence of pepsin under physiological conditions. It was stimulated by Ca+2, Mg+2 and Mn+2, but inhibited by Zn+2, Cu+2, Fe+2, Pb+2, Ba+2 and surfactants. The enzyme can be applied in dephytinizing animal feeds, and the baking industry.  相似文献   

19.
Nitrogen (N) is the key factor limiting photosynthetic processes and crop yield. Little is known about the response of leaf gas exchange of spring triticale (Triticosecale Wittm.) to N supply. The effect of N fertilizers on different gas exchange variables, i.e., photosynthetic rate (A), transpiration rate (E), stomatal conductance (g s), instantaneous water use efficiency (WUE) and maximum quantum yield of photosystem II (PSII) (F v/F m), chlorophyll index (SPAD, soil–plant analysis development), and the relationship of these variables with yield were studied in spring triticale grown under field conditions. Six treatments of N—0, 90, 180, 90 + 30, 90 + 30 + 30 kg ha?1 (applied as ammonium nitrate, AN) and one treatment of N 90 + 30 + 30 kg ha?1 (applied as urea ammonium nitrate solution, UAN) were compared. The analysis of variance showed that throughout the triticale growing season, N fertilization had significant effects on A, WUE, g s and SPAD. On average, N fertilizer application increased A values by 14–70%. E and F v/F m values were not influenced by N fertilization levels. The effect of growth stage and year on gas exchange variables and F v/F m and SPAD was found to be significant. At different growth stages, A values varied and maximum ones were reached at BBCH 31–33 (decimal code system of growth stages) and BBCH 59. With aging, values of A decreased independently of N fertilization level. The gas exchange variables were equally affected by both fertilizer forms. The interplay among grain yield, leaf gas exchange variables, F v/F m and SPAD of spring triticale was estimated. The statistical analysis showed that grain yield positively and significantly correlated with A and SPAD values throughout the growing season.  相似文献   

20.

Key message

Present study recommends DBH as independent variable of the derived allometric models and Biomass = a + b DBH 2 has been selected for total above-ground biomass, nutrients and carbon stock.

Abstract

Kandelia candel (L.) Druce is a shrub to small tree of the Sundarbans mangrove forest of Bangladesh. The aim of the study was to derive the allometric models for estimating above-ground biomass, nutrient and carbon stock in K. candel. A total of eight linear models with 64 regression equations were tested to derive the allometric models for biomass of each part of plant; and nutrients and carbon stock in total above-ground biomass. The best fitted allometric models were selected by considering the values of R 2, CV, R mse, MSerror, S a, S b, F value, AICc and Furnival Index. The selected allometric models were Biomass = 0.014 DBH2 + 0.03; √Biomass = 0.29 DBH ? 0.21; √Biomass = 0.66 √DBH ? 0.57; √Biomass = 1.19 √DBH ? 1.02; Biomass = 0.21 DBH2 + 0.12 for leaves, branches, bark, stem without bark and total above-ground biomass, respectively. The selected allometric models for Nitrogen, Phosphorous, Potassium and Carbon stock in total above-ground biomass were N = 0.39 DBH2 + 0.49, P = 0.77 DBH2 + 0.14, K = 0.87 DBH2 + 0.07 and C = 0.09 DBH2 + 0.05, respectively. The derived allometric models have included DBH as a single independent variable, which may give quick and accurate estimation of the above-ground biomass, nutrient and carbon stock in this species. This information may also contribute to a broader study of nutrient cycling, nutrient budgeting and carbon sequestration of the studied forest.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号