首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Heat stress is one of the main abiotic stresses that limit plant growth. The effects of high temperature on oxidative damage, PSII activity and D1 protein turnover were studied in three wheat varieties with different heat susceptibility (CS, YN949 and AK58). The results showed that heat stress induced lower lipid peroxidation in AK58 and YN949 than CS, which was related to different changes of SOD, CAT, POD and H2O2. Similarly, AK58 and YN949 performed better PSII photochemical efficiency (Fv/Fm, ΦPSII and ETR) under high temperature, which was attributed to rapid synthesis and degradation of D1 protein. Moreover, higher expression of D1 protein turnover-related genes (PsbA, STN8, PBCP, Deg1, Deg2, Deg5, Deg8, FtsH1/5 and FtsH2/8) and SOD activity in AK58 and YN949 under normal conditions also established a basis for acclimatizing high temperatures, thereby alleviating PSII photoinhibition and reducing oxidative damage when exposed to heat stress.  相似文献   

3.
The objective of this investigation was to evaluate the simultaneous action of light stress and salinity. Pulse amplitude modulated chlorophyll fluorescence, P700 redox state, and pigment analysis were used to assess the impact of high light intensity on Paulownia tomentosa × fortunei and Paulownia elongata × elongata grown on soils with different salinity. It was found that light stress reduced the amount of pigments and the efficiency of photochemical energy conversion, inhibited the maximum and the effective quantum yields of PSII photochemistry, decreased photochemical quenching and photosynthetic rate. Data also showed influence on the primary quinone acceptor (QA) reoxidation, which led to the restriction of the electron flow from QA to plastoquinone and stimulation of the cyclic electron flow. The possible reasons for the increased effects of the light stress under conditions of high salt concentration in soil for Paulownia tomentosa × fortunei are discussed.  相似文献   

4.
Effects of red (RL) and blue (BL) light on acclimation of the unicellular green alga Chlamydomonas reinhardtii to the low level of ambient CO2 were studied. C. reinhardtii cells grown at 5% CO2 and under white light (170 μmol/(m2s)) had a relatively low activity of extracellular carbonic anhydrase (CA), a low affinity for dissolved inorganic carbon, and a low rate of photosynthesis under CO2-limiting conditions. These cells readily started acclimation to the low CO2 concentration when they were exposed to atmospheric air (~ 0.03% CO2) under RL or BL (150 μmol/(m2 s) each). The acclimation was manifested in a significant increase in the CO2-limited rate of photosynthesis, the affinity for dissolved inorganic carbon, and the extracellular CA activity with no difference between RL-and BL-cells. Independently of light quality, the acclimation was completed for 5–7 h after cell exposure to air. As is evident from RL-and BL-dependent changes in the sum of chlorophylls and chlorophyll a/b ratio, transfer of C. reinhardtii cells to air and RL or BL triggered also the process of algal photosynthetic adaptation to light quality. However, this process did not interfere with acclimation to low CO2 because started 4 h later. On the basis of similarity in the low CO2-induced changes under RL and BL, it is concluded that acclimation of C. reinhardtii to CO2-limiting conditions does not depend on light quality.  相似文献   

5.
Although light is the ultimate substrate in photosynthesis, strong light can also be harmful and lead to photoinhibition. The DEG proteases play important roles in the degradation of misfolded and damaged proteins. In this study, two photoinhibition-related genes from soybean [Glycine max (L.) Merr.], GmDeg1 and GmDeg2, were cloned. Bioinformatics analysis indicated that these two proteases both contain a PDZ domain and are serine proteases. The expression levels of GmDeg1 and GmDeg2 increased significantly after 12 h of photooxidation treatment, indicating that GmDeg1 and GmDeg2 might play protective roles under strong light conditions. In in vitro proteolytic degradation assays, recombinant GmDeg1 and GmDeg2 demonstrated biological activities at temperatures ranging from 20°C to 60°C and at pH 5.0 to 8.0. By contrast, the proteases showed no proteolytic effect in the presence of a serine protease inhibitor. Taken together, these results provided strong evidence that GmDeg1 and GmDeg2 are serine proteases that could degrade the model substrate in vitro, indicating that they might degrade damaged D1 protein and other mis-folded proteins in vivo. Furthermore, GmDeg1 and GmDeg2 were transformed into Arabidopsis thaliana to obtain transgenic plants. Leaves from the transgenic and wild-type plants were subjected to strong light conditions in vitro, and the PSII photochemical efficiency (Fv/Fm) was measured. The Fv/Fm of the transgenic plants was significantly higher than that of the wild-type plants at most time points. These results imply that GmDeg1 and GmDeg2 would have similar functions to Arabidopsis AtDeg1, thus accelerating the recovery of PSII photochemical efficiency.  相似文献   

6.
Bemisia tabaci Middle East-Asia Minor 1 (MEAM1) infestation adversely affected photosynthesis of host plants. In the current study, chlorophyll a fluorescence was measured to determine the effects of MEAM1 nymph infestation of tobacco local and systemic leaves on energy metabolism and electron transport of photosystemII(PSII). The results showed that the density of PSII reaction centres per excited cross section (CS) (RC/CS) of infested and systemic leaves was reduced at 14 and 20 days. In systemic leaves, the number of PSII closed reaction centres (1-qP) increased significantly at 14 and 20 days. Absorption flux per QA? reducing PSII reaction centre (RC) (ABS/RC), trapped energy flux per RC (TRo/RC), and electron transport per RC (ETo/RC) of infested and systemic leaves increased with MEAM1 nymph infestation. The most obvious increase in absorption flux per CS (ABS/CSo) and trapped energy flux per CS (TRo/CSo) of infested and systemic leaves occurred at 14 days. MEAM1 nymph infestation significantly reduced the energy required for PSII QA to be completely reduced (Sm) in tobacco leaves. These results suggested that MEAM1 nymph infestation caused changes in light-harvesting antenna system and deactivation of the reaction centre, resulting in the reduction of photons absorbed by reaction centres per unit area. MEAM1 nymph infestation, particularly the 3rd instar nymphs, decreased light utilization ability and increased excess excitation energy in tobacco leaves. With MEAM1 nymph infestation, the relative electron transport capacity of the entire electron transport chain decreased, and more light energy was used to reduce QA.  相似文献   

7.
The native alpine plant Saussurea superba is widely distributed in Qinghai–Tibetan Plateau regions. The leaves of S. superba grow in whorled rosettes, and are horizontally oriented to maximize sunlight exposure. Experiments were conducted in an alpine Kobresia humilis meadow near Haibei Alpine Meadow Ecosystem Research Station (37°29′–37°45′N, 101°12′–101°33′E; alt. 3200 m). Leaf growth, photosynthetic pigments and chlorophyll fluorescence parameters were measured in expanding leaves of S. superba. The results indicate that leaf area increased progressively from inner younger leaves to outside fully expanded ones, and then slightly decreased in nearly senescent leaves, due to early unfavorable environmental conditions, deviating from the ordinary growth pattern. The specific leaf area decreased before leaves were fully expanded, and the leaf thickness was largest in mature leaves. There were no significant changes in the content of chlorophylls (Chl) and carotenoids (Car), but the ratios of Chl a/b and Car/Chl declined after full expansion of the leaves. The variation of Chl a/b coincided well with changes in photochemical quenching (q P) and the fraction of open PSII reaction centers (q L). The maximum quantum efficiency of PSII photochemistry after 5 min dark relaxation (F (v)/F (m)) continuously increased from younger leaves to fully mature leaves, suggesting that mature leaves could recover more quickly from photoinhibition than younger leaves. The light-harvesting capacity was relatively steady during leaf expansion, as indicated by the maximum quantum efficiency of open PSII centers (\(F_{\text{v}}^{{\prime }}\)/\(F_{\text{m}}^{{\prime }}\)). UV-absorbing compounds could effectively screen harmful solar radiation, and are a main protection way on the photosynthetic apparatus. The decline of q P and q L during maturation, together with limitation of quantum efficiency of PSII reaction centers (L (PFD)), shows a decrease of oxidation state of QA in PSII reaction centers under natural sunlight. Furthermore, light-induced (Φ NPQ) and non-light-induced quenching (Φ NO) were consistent with variation of L (PFD). It is concluded that the leaves of S. superba could be classified into four functional groups: young, fully expanded, mature, and senescent. Quick recovery from photoinhibition was correlated with protection by screening pigments, and high level of light energy trapping was correlated with preservation of photosynthetic pigments. Increasing of Φ NPQ and Φ NO during leaves maturation indicates that both thermal dissipation of excessive excitation energy in safety and potential threat to photosynthetic apparatus were strengthened due to the declination of q P and q L, and enhancement of L (PFD).  相似文献   

8.
Arbuscular mycorrhizal fungi (AMF) can promote plant growth performance, but their effectiveness varies depending on soil nitrogen (N) availability. To clarify the effectiveness of exogenous AMF along an N-fertilization gradient (0, 2, 10, 20, and 30 mM), the impacts of exogenous Rhizophagus irregularis and N on the growth, photochemical activity, and nutritional status of Populus?×?canadensis ‘Neva’ in natural soil were evaluated in a pot experiment. The results showed that the 10 mM N level was the optimal fertilization regime with the highest promotion effect on plant growth and the maximum quantum yield of photosystem II (PSII) (Fv/Fm). Excess N (20 and 30 mM) fertilization reduced the actual quantum yield of PSII (ФPSII) and the Fv/Fm of the plants. Regardless of the N availability, inoculated plants exhibited greater Fv/Fm values than did non-inoculated plants. The biomass of inoculated plants was significantly higher compared with the control under low N levels (0 and 2 mM). Under high N levels, inoculated plants showed significant increases in ФPSII. Moreover, the nutrient imbalance of plants inoculated with exogenous R. irregularis was eased by increasing P, Fe, Mn and Cu uptake in roots and higher P, Ca, Mg, Fe, Mn and Zn concentrations in leaves. Moreover, the Fv/Fm and ФPSII exhibited positive correlations with P, Ca, Mg and Zn concentrations in leaves. In conclusion, inoculation with exogenous R. irregularis can benefit plant fitness by improving the photochemical capacity and nutrient composition of poplar under different N levels.  相似文献   

9.

Key message

CHX had remarkable inhibition on P. edulis photosynthesis, and the reflectance indexes and F 685 / F 735 had the potential value for quantifying the effects of antibiotics on trees.

Abstract

To reveal the effects of antibiotics on photosynthesis and provide help for remote sensing the influence of antibiotics on trees, we investigated the effects of cycloheximide (CHX) on Phyllostachys edulis. In CHX treatment, the photosynthetic pigment content in P. edulis was decreased markedly, which led to the increase in the reflectance spectra in visible region. CHX reduced the donor side and acceptor side of photosystem II (PSII), density of reaction centers, quantum production and electron transport in PSII, and raised the dissipation of absorbed light energy. Besides the dissipation, the absorbed light energy can be emitted as fluorescence with two main peaks in the red (685 nm) and far-red (735 nm) region, respectively. In 0.50 mM CHX treatment, a significant decline in the height and area of the peak at 685 nm might result from Chl loss reducing the light absorption and lower photochemical reaction in PSII. When fourth derivative analysis of fluorescence emission spectra was performed, the changes of the peaks at 718, 735 and 750 nm might result from the decline of absorbed solar radiation caused by the reduced pigment content and/or the damages to the PSI. In CHX treatment, a remarkable increase in intercellular CO2 concentrations and light compensation point and decrease in light saturation point demonstrated that the CO2 assimilation ability was decreased. Those results suggested that the photosynthesis in trees can be reduced after they were watered with wastewater containing CHX. The reflectance indexes and F 685/F 735 (H 685/H 735 and A 685/A 735) were markedly affected by CHX, demonstrating that they had the potential value for quantifying the effects of antibiotics on trees.
  相似文献   

10.
Changes of chlorophyll (Chl) a fluorescence and photosynthetic pigment contents were analysed in galled leaves (visibly damaged and undamaged parts) and intact leaves. The values of minimal fluorescence of the dark-adapted state, maximal quantum yield of PSII photochemistry, effective quantum yield of PSII photochemical conversion, and photochemical quenching coefficient decreased in Ulmus pumila L. leaves galled by Tetraneura ulmi (L.) and in U. glabra Huds. galled by Eriosoma ulmi (L.). Colopha compressa (Koch.) feeding affected these parameters only in damaged parts of U. laevis Pall. galled leaves. The increasing number of T. ulmi galls progressively decreased photosynthetic performance. In gall tissues of all analysed aphid species, the lowest photosynthetic pigment content was found, indicating that the photosynthetic capacity must have been low in galls. Significant reduction of Chl and carotenoid contents were observed in damaged and undamaged portions of galled leaves only in the case of T. ulmi feeding.  相似文献   

11.
Leaf reddening in overwintering evergreens largely restricts their application in landscapes and is generally triggered in response to excess light. To explore how leaves respond to excess light and examine the potential relevance of leaf reddening in this process, a comparative field study was conducted on the sun leaves (SUL), shade leaves (SHL) and three levels of artificially shaded sun leaves (SSUL) of Buxus microphylla ‘Wintergreen’. The seasonal changes in leaf colorations, chlorophyll (Chl) and carotenoid contents, leaf absorbance and chlorophyll fluorescence characteristics were investigated. The results showed that SUL upregulated Chl a/b with increased reductions in Chl b compared with Chl a, accumulated red pigments in the upper palisade mesophyll with reduced absorption in blue and red light but increased absorption in green light, and additionally, significantly downregulated photochemical activities through the sustained enhancement of energy dissipation in PSII antenna (ΦD) from fall to midwinter. In the SSUL, as the light intensity decreased, all of the above processes were mitigated except that the SSUL maintained constant absorptions in blue light region and whose levels were similar to those of the SUL and SHL. In contrast, the SHL maintained relatively high levels of Chl a and Chl b, remained completely green and showed regulated ΦD and ΦE (energy dissipation in PSII reaction centers) to maintain relatively high photochemical activity in the winter. We conclude that the sun leaves downregulate Chl contents to reduce the light absorption and simultaneously enhance sustained ΦD to dissipate most of the light energy, whereas shade leaves maintain relatively high Chl contents and demonstrate regulated proportions of ΦD and ΦE to match the extent to which the absorbed light can be utilized through photochemical reactions. The accumulated red pigments in sun phenotypes may provide a shading effect on Chls by directing energy to non-photosynthetic reaction centers in the blue light region where the absorption is offset by the reduced Chls.  相似文献   

12.
13.
The effects of exogenous applied proline (Pro), on photosystem II (PSII) photochemistry of drought stressed (DS) 4-week old Arabidopsis thaliana plants, was studied by using chlorophyll (chl) fluorescence imaging. The maximum quantum yield of PSII photochemistry (F v /F m) in DS plants decreased significantly to 77% of that of the control value, suggesting that DS plants could not maintain PSII function, possibly due to accelerated photoinhibition of PSII. Free Pro and total soluble sugars (SS) increased, in response to DS. Exogenous foliar application of Pro by spraying, led to a remarkable increase in the accumulation of Pro and surprisingly also of SS. Both of them served to scavenge reactive oxygen species (ROS), as it was evident by the decreased lipid peroxidation level measured as malondialdehyde (MDA). DS plants sprayed with Pro showed a tolerance to photoinhibition, this indicated by F v/F m being close to values typical of healthy leaves by maintaining more than 98% of PSII function. Also the higher quantum efficiency of PSII photochemistry (Φ PSΙΙ ) and the decreased excitation pressure (1 ? q p ) recorded for stressed leaves with Pro, lead us to conclude that Pro appears to be involved in the protection of chloroplast structures by quenching ROS. The enhanced dissipation of excess light energy of PSII, in part accounts for the observed increased resistance to DS in A. thaliana leaves with Pro. Our data pointed out that Pro signalling interacts with SS signaling pathway and provided a new insight in Pro metabolism.  相似文献   

14.
Leaf rust, caused by Puccinia triticina, is one of the most widespread diseases in common wheat globally. The Chinese wheat cultivar Zhoumai 22 is highly resistant to leaf rust at the seedling and adult stages. Seedlings of Zhoumai 22 and 36 lines with known leaf rust resistance genes were inoculated with 13 P. triticina races for gene postulation. The leaf rust response of Zhoumai 22 was different from those of the single gene lines. With the objective of identifying and mapping, the new gene(s) for resistance to leaf rust, F1, F2 plants and F2:3 lines from the cross Zhoumai 22/Chinese Spring were inoculated with Chinese P. triticina race FHDQ at the seedling stage. A single dominant gene, tentatively designated LrZH22, conferred resistance. To identify other possible genes in Zhoumai 22, ten P. triticina races avirulent on Zhoumai 22 were used to inoculate 24 F2:3 lines. The same gene conferred resistance to all ten avirulent races. A total of 1300 simple sequence repeat (SSR) markers and 36 EST markers on 2BS were used to test the parents, and resistant and susceptible bulks. Resistance gene LrZH22 was mapped in the chromosome bin 2BS1-0.53-0.75 and closely linked to six SSR markers (barc183, barc55, gwm148, gwm410, gwm374 and wmc474) and two EST markers (BF202681 and BE499478) on chromosome arm 2BS. The two closest flanking SSR loci were Xbarc55 and Xgwm374 with genetic distances of 2.4 and 4.8 cM from LrZH22, respectively. Six designated genes (Lr13, Lr16, Lr23, Lr35, Lr48 and Lr73) are located on chromosome arm 2BS. In seedling tests, LrZH22 was temperature sensitive, conferring resistance at high temperatures. The reaction pattern of Zhoumai 22 was different from that of RL 4031 (Lr13), RL 6005 (Lr16) and RL 6012 (Lr23), Lr35 and Lr48 are adult-plant resistance genes, and Lr73 is not sensitive to the temperature. Therefore, LrZH22 is likely to be a new leaf rust resistance gene or allele.  相似文献   

15.
Senescence is both a highly controlled and a strictly regulated process that is gene dependent. To study the PSII reaction in different types of leaf senescence processes, stem girdling was performed on Alhagi sparsifolia to investigate the leaf status in the control, natural senescence, and girdling-induced senescence leaves. The results showed that during senescence, leaf soluble sugar content, starch content, and the energy absorbed by the unit reaction center (ABS/RC) increased; whereas leaf photosynthetic rate, photosynthetic pigment content, maximum photochemical efficiency (φ Po), and energy used by the acceptor site in electron transfer (ETo/RC) decreased. The result of the present research implied that stem girdling significantly accelerated leaf senescence, which was due to the accumulation of carbohydrate. Natural senescence is a highly controlled process, which is an ordered process played by genes, whereas girdling-induced senescence is a disordered one. In addition, natural senescence slightly inhibits the acceptor site of PSII but did not damage the donor site of PSII. Conversely, girdling-induced senescence not only damaged the donor site of PSII (for example, oxygen-evolving complex), but also significantly inhibited the acceptor site of PSII. Moreover, both types of senescence led to an increase in the energy absorbed by the unit reaction center (ABS/RC), which subsequently resulted in an increasing excitation pressure in the reaction center (DIo/RC), as well as additional saved carotenoid for absorbing residual light energy and quenching reactive oxygen species during senescence.  相似文献   

16.
To determine the effects of vermicompost leachate (VCL) on resistance to salt stress in plants, young tomato seedlings (Solanum lycopersicum, cv. Ailsa Craig) were exposed to salinity (150 mM NaCl addition to nutrient solution) for 7 days after or during 6 mL L??1 VCL application. Salt stress significantly decreased leaf fresh and dry weights, reduced leaf water content, significantly increased root and leaf Na+ concentrations, and decreased K+ concentrations. Salt stress decreased stomatal conductance (gs), net photosynthesis (A), instantaneous transpiration (E), maximal efficiency of PSII photochemistry in the dark-adapted state (Fv/Fm), photochemical quenching (qP), and actual PSII photochemical efficiency (ΦPSII). VCL applied during salt stress increased leaf fresh weight and gs, but did not reduce leaf osmotic potential, despite increased proline content in salt-treated plants. VCL reduced Na+ concentrations in leaves (by 21.4%), but increased them in roots (by 16.9%). VCL pre-treatment followed by salt stress was more efficient than VCL concomitant to salt stress, since VCL pre-treatment provided the greatest osmotic adjustment recorded, with maintenance of net photosynthesis and K+/Na+ ratios following salt stress. VCL pre-treatment also led to the highest proline content in leaves (50 µmol g??1 FW) and the highest sugar content in roots (9.2 µmol g??1 FW). Fluorescence-related parameters confirmed that VCL pre-treatment of salt-stressed plants showed higher PSII stability and efficiency compared to plants under concomitant VCL and salt stress. Therefore, VCL represents an efficient protective agent for improvement of salt-stress resistance in tomato.  相似文献   

17.
Pulse amplitude modulation fluorimetry was used to assess chlorophyll fluorescence parameters in Chlamydomonas reinhardtii cells during sulfur deprivation. A significant (fourfold) increase in the chlorophyll fluorescence yield (parameters F 0 and F m) normalized to the chlorophyll concentration was shown for deprived cells. The chlorophyll content did not change during the deprivation experiments. An analysis of nonphotochemical quenching of chlorophyll fluorescence indicated a considerable modification of the energy deactivation pathways in photosystem II (PSII) of sulfur-deprived cells. For example, starved cells exhibited a less pronounced pH-dependent quenching of excited states and a higher thermal dissipation of excess light energy in the reaction centers of PSII. It was also shown that the photosynthetic apparatus of starved cells is primarily in state 2 and that back transition to state 1 is suppressed. However, these changes cannot cause the discovered elevation of chlorophyll fluorescence intensity (F 0 and F m) in the cells under sulfur limitation. The observed increase in the chlorophyll fluorescence intensity under sulfur deprivation may be due to partial dissociation of peripheral light-harvesting complexes from the reaction centers of PSII or a malfunction of the dissipative cycle in PSII, involving cytochrome b 559.  相似文献   

18.

Key message

The shortening of Aegilops speltoides segment did not facilitate recombination between stem rust resistance genes Sr36 and Sr39 . Robustness of marker rwgs28 for marker-assisted selection of Sr39 was demonstrated.

Abstract

Stem rust resistance genes Sr39 and Sr36 were transferred from Aegilops speltoides and Triticum timopheevii, respectively, to chromosome 2B of wheat. Genetic stocks RL6082 and RWG1 carrying Sr39 on a large and a shortened Ae. speltoides segments, respectively, and the Sr36-carrying Australian wheat cultivar Cook were used in this study. This investigation was planned to determine the genetic relationship between these genes. Stem rust tests on F3 populations derived from RL6082/Cook and RWG1/Cook crosses showed tight repulsion linkage between Sr39 and Sr36. The genomic in situ hybridization analysis of heterozygous F3 family from the RWG1/Cook population showed that the translocated segments do not overlap. Meiotic analysis on the F1 plant from RWG1/Cook showed two univalents at the metaphase and anaphase stages in a majority of the cells indicating absence of pairing. Since meiotic pairing has been reported to initiate at the telomere, pairing and recombination may be inhibited due to very little wheat chromatin in the distal end of the chromosome arm 2BS in RWG1. The Sr39-carrying large Ae. speltoides segment transmitted preferentially in the RL6082/Cook F3 population, whereas the Sr36-carrying T. timopheevii segment over-transmitted in the RWG1/Cook cross. Genotyping with the co-dominant Sr39- and Sr36-linked markers rwgs28 and stm773-2, respectively, matched the phenotypic classification of F3 families. The RWG1 allele amplified by rwgs28 was diagnostic for the shortened Ae. speltoides segment and alternate alleles were amplified in 29 Australian cultivars. Marker rwgs28 will be useful in marker-assisted pyramiding of Sr39 with other genes.
  相似文献   

19.
The purpose of the present study was to investigate the mechanism of DA-6 in alleviating the salinity inhibition of Cassia obtusifolia L. seeds and seedlings. NaCl (100 mM) was used to mimic salinity stress in a series of experiments. Varying combinations of DA-6 were added to seeds and seedlings under salinity stress. Seed germination indices and seedling parameters were investigated. Seed germination and seedling growth were significantly inhibited under salinity stress. NaCl-induced inhibitory effects on seed germination and seedling growth were ameliorated by DA-6 with different concentrations. Addition of DA-6 to seeds (50 µM) and seedlings (100 µM) significantly alleviated damage to the plant cells under salinity stress. DA-6 (regardless of the presence or absence of NaCl) enhanced chlorophyll concentration, total soluble sugars, free proline, and soluble protein, and improved photosystem II (PSII) photochemical efficiency levels (F v/F m), PSII actual photochemical efficiency (ΦPSII), and the photochemical quench coefficient. In contrast, the initial fluorescence (F o) and the non-photochemical quenching coefficient decreased. Application of DA-6 also enhanced the activities of superoxide dismutase (SOD; EC 1.15.1.1), peroxidase (POD; EC 1.11.1.7), catalase (CAT; EC 1.11.1.6), ascorbate peroxidase (APX; EC 1.11.1.11), and glutathione reductase (GR; EC 1.6.4.2), thus alleviating oxidative damage, as indicated by decreases in thiobarbituric acid-reactive substances, hydrogen peroxide concentration (H2O2), relative conductivity, and lipoxygenase activity (LOX; EC 1.13.11.12). Based on the experimental results, we conclude that DA-6 induces advantageous effects on the attenuation of salt-stress inhibition of C. obtusifolia seeds and seedlings and alleviates oxidative damage by conferring beneficial cytoprotection and activating antioxidant enzymes. DA-6 can be used as an effective plant growth regulator to alleviate salinity stress.  相似文献   

20.
The effects of the exogenous application of nitric oxide (NO, in the form of sodium nitroprusside, SNP) on the diurnal variation in photosynthesis, chlorophyll content, chlorophyll fluorescence, light response curve and the net assimilation of CO2 against intercellular CO2 concentration (A-Ci) curve parameters were investigated in the leaves of bamboo (Indocalamus barbatus McClure) exposed to simulated acid rain (SAR, pH 3.0) stress. According to the results of the diurnal variation in photosynthesis, foliar applications of 100–400 mg/L SNP effectively inhibited the decrease in net photosynthetic rate (Pn) as a result of non-stomatal factors, and mitigated midday depression under acid rain stress. The mitigating effect was most pronounced at 400 mg/L SNP. However, at higher concentrations of SNP (700 and 1000 mg/L), the mitigating effect became weak and even counterproductive. The results of the chlorophyll content, light response and A-Ci curve parameters suggested that the regulating role of NO against acid rain in the photosynthetic processes occurs through improving not only the efficiency of the light-harvesting and the activity of photosynthetic apparatus, but also the absorption of CO2 and the availability of CO2 for photosynthesis. The results of the chlorophyll fluorescence investigation further indicated that NO protected PSII activity from the damage of acid rain toxicity by enhancing the electron transport activity and photochemical efficiency, especially concerning the increase in the proportion of PSII open reaction centers. Furthermore, NO induced an increase in photorespiration (Rp), rather than an increase in non-photochemical quenching (NPQ), to dissipate the excessive excitation energy, which provided some protection to the photosynthetic apparatus under acid rain stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号