首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《BBA》2018,1859(10):1067-1074
In the present study, we studied the role of chloroplastic ATP synthase in photosynthetic regulation during leaf maturation. We measured gas exchange, chlorophyll fluorescence, P700 redox state, and the electrochromic shift signal in mature and immature leaves. Under high light, the immature leaves displayed high levels of non-photochemical quenching (NPQ) and P700 oxidation ratio, and higher values for proton motive force (pmf) and proton gradient (ΔpH) across the thylakoid membranes but lower values for the activity of chloroplastic ATP synthase (gH+) than the mature leaves. Furthermore, gH+ was significantly and positively correlated with CO2 assimilation rate and linear electron flow (LEF), but negatively correlated with pmf and ΔpH. ΔpH was significantly correlated with LEF and the P700 oxidation ratio. These results indicated that gH+ was regulated to match photosynthetic capacity during leaf maturation, and the formation of pmf and ΔpH was predominantly regulated by the alterations in gH+. In the immature leaves, the high steady-state ΔpH increased lumen acidification, which, in turn, stimulated photoprotection for the photosynthetic apparatus via NPQ induction and photosynthetic control. Our results highlighted the importance of chloroplastic ATP synthase in optimizing the trade-off between CO2 assimilation and photoprotection during leaf maturation.  相似文献   

2.
During photosynthesis, photosynthetic electron transport generates a proton motive force(pmf) across the thylakoid membrane, which is used for ATP biosynthesis via ATP synthase in the chloroplast. The pmf is composed of an electric potential(△Ψ) and an osmotic component(△pH).Partitioning between these components in chloroplasts is strictly regulated in response to fluctuating environments.However, our knowledge of the molecular mechanisms that regulate pmf partitioning is limited. Here, we report a bestrophin-like protein(At Best), which is critical for pmf partitioning. While the Dp H component was slightly reduced in atbest, the △Ψ component was much greater in this mutant than in the wild type, resulting in less efficient activation of nonphotochemical quenching(NPQ) upon both illumination and a shift from low light to high light. Although no visible phenotype was observed in the atbest mutant in the greenhouse, this mutant exhibited stronger photoinhibition than the wild type when grown in the field. At Best belongs to the bestrophin family proteins, which are believed to function as chloride(Cl~-) channels. Thus, our findings reveal an Researimportant Cl~- channel required for ion transport and homeostasis across the thylakoid membrane in higher plants. These processes are essential for fine-tuning photosynthesis under fluctuating environmental conditions.  相似文献   

3.
The light reactions of photosynthesis store energy in the form of an electrochemical gradient of protons, or proton motive force (pmf), comprised of electrical (Δψ) and osmotic (ΔpH) components. Both components can drive the synthesis of ATP at the chloroplast ATP synthase, but the ΔpH component also plays a key role in regulating photosynthesis, down-regulating the efficiency of light capture by photosynthetic antennae via the q(E) mechanism, and governing electron transfer at the cytochrome b(6)f complex. Differential partitioning of pmf into ΔpH and Δψ has been observed under environmental stresses and proposed as a mechanism for fine-tuning photosynthetic regulation, but the mechanism of this tuning is unknown. We show here that putrescine can alter the partitioning of pmf both in vivo (in Arabidopsis mutant lines and in Nicotiana wild type) and in vitro, suggesting that the endogenous titer of weak bases such as putrescine represents an unrecognized mechanism for regulating photosynthetic responses to the environment.  相似文献   

4.
The photosynthetic electron transfer chain generates proton motive force (pmf), composed of both electric field (Deltapsi) and concentration (DeltapH) gradients. Both components can drive ATP synthesis, whereas the DeltapH component alone can trigger feedback regulation of the antenna. It has often been suggested that a relatively large pmf is needed to sustain the energetic contributions of the ATP synthase reaction (DeltaG(ATP)), and that the Deltapsi component is dissipated during illumination, leading to an acidic lumen in the light. We suggest that this is incompatible with the stabilities of lumenal components and the observed activation of downregulation. Recent work on the chloroplast ATP synthase suggests that a more moderate pmf can sustain DeltaG(ATP). In addition, in vivo probes suggest that a substantial fraction of pmf can be stored as Deltapsi. Together, these factors should allow sufficient DeltaG(ATP) to maintain lumen pH in a range where lumenal enzyme activities are nearly optimal, and where the level of NPQ is regulated.  相似文献   

5.
Proton motive force (pmf) across thylakoid membranes is not only for harnessing solar energy for photosynthetic CO2 fixation, but also for triggering feedback regulation of photosystem II antenna. The mechanisms for balancing these two roles of the proton circuit under the long-term environmental stress, such as prolonged drought, have been poorly understood. In this study, we report on the response of wild watermelon thylakoid 'proton circuit' to drought stress using both in vivo spectroscopy and molecular analyses of the representative photosynthetic components. Although drought stress led to enhanced proton flux via a ∼34% increase in cyclic electron flow around photosystem I (PS I), an observed ∼fivefold decrease in proton conductivity, gH+, across thylakoid membranes suggested that decreased ATP synthase activity was the major factor for sustaining elevated qE. Western blotting analyses revealed that ATP synthase content decreased significantly, suggesting that quantitative control of the complex plays a pivotal role in down-regulation of gH+. The expression level of cytochrome b 6 f complex – another key control point in photosynthesis – also declined, probably to prevent excess-reduction of PS I electron acceptors. We conclude that plant acclimation to long-term environmental stress involves global changes in the photosynthetic proton circuit, in which ATP synthase represents the key control point for regulating the relationship between electron transfer and pmf.  相似文献   

6.
In natural variable environments, plants rapidly adjust photosynthesis for optimum balance between photochemistry and photoprotection. These adjustments mainly occur via changes in their proton motive force (pmf). Recent studies based on time resolved analysis of the Electro Chromic Signal (ECS) bandshift of photosynthetic pigments in the model plant Arabidopsis thaliana have suggested an active role of ion fluxes across the thylakoid membranes in the regulation of the pmf. Among the different channels and transporters possibly involved in this phenomenon, we previously identified the TPK3 potassium channel. Plants silenced for TPK3 expression displayed light stress signatures, with reduced Non Photochemical Quenching (NPQ) capacity and sustained anthocyanin accumulation, even at moderate intensities. In this work we re-examined the role of this protein in pmf regulation, starting from the observation that both TPK3 knock-down (TPK3 KD) and WT plants display enhanced anthocyanin accumulation in the light under certain growth conditions, especially in old leaves. We thus compared the pmf features of young “green” (without anthocyanins) and old “red” (with anthocyanins) leaves in both genotypes using a global fit analysis of the ECS. We found that the differences in the ECS profile measured between the two genotypes reflect not only differences in TPK3 expression level, but also a modified photosynthetic activity of stressed red leaves, which are present in a larger amounts in the TPK3 KD plants.  相似文献   

7.
Over‐reduction of the photosynthetic electron transport (PET) chain should be avoided, because the accumulation of reducing electron carriers produces reactive oxygen species (ROS) within photosystem I (PSI) in thylakoid membranes and causes oxidative damage to chloroplasts. To prevent production of ROS in thylakoid membranes the H+ gradient (ΔpH) needs to be built up across the thylakoid membranes to suppress the over‐reduction state of the PET chain. In this study, we aimed to identify the critical component that stimulates ΔpH formation under illumination in higher plants. To do this, we screened ethyl methane sulfonate (EMS)‐treated Arabidopsis thaliana, in which the formation of ΔpH is impaired and the PET chain caused over‐reduction under illumination. Subsequently, we isolated an allelic mutant that carries a missense mutation in the γ‐subunit of chloroplastic CF0CF1‐ATP synthase, named hope2. We found that hope2 suppressed the formation of ΔpH during photosynthesis because of the high H+ efflux activity from the lumenal to stromal side of the thylakoid membranes via CF0CF1‐ATP synthase. Furthermore, PSI was in a more reduced state in hope2 than in wild‐type (WT) plants, and hope2 was more vulnerable to PSI photoinhibition than WT under illumination. These results suggested that chloroplastic CF0CF1‐ATP synthase adjusts the redox state of the PET chain, especially for PSI, by modulating H+ efflux activity across the thylakoid membranes. Our findings suggest the importance of the buildup of ΔpH depending on CF0CF1‐ATP synthase to adjust the redox state of the reaction center chlorophyll P700 in PSI and to suppress the production of ROS in PSI during photosynthesis.  相似文献   

8.
Photosystem I (PSI) is a potential target of photoinhibition under fluctuating light. However, photosynthetic regulation under fluctuating light in field-grown plants is little known. Furthermore, it is unclear how young leaves protect PSI against fluctuating light under natural field conditions. In the present study, we examined chlorophyll fluorescence, P700 redox state and the electrochromic shift signal in the young and mature leaves of field-grown Cerasus cerasoides (Rosaceae). Within the first seconds after any increase in light intensity, young leaves showed higher proton gradient (ΔpH) across the thylakoid membranes than the mature leaves, preventing over-reduction of PSI in the young leaves. As a result, PSI was more tolerant to fluctuating light in the young leaves than in the mature leaves. Interestingly, after transition from low to high light, the activity of cyclic electron flow (CEF) in young leaves increased first to a high level and then decreased to a stable value, while this rapid stimulation of CEF was not observed in the mature leaves. Furthermore, the over-reduction of PSI significantly stimulated CEF in the young leaves but not in the mature leaves. Taken together, within the first seconds after any increase in illumination, the stimulation of CEF favors the rapid lumen acidification and optimizes the PSI redox state in the young leaves, protecting PSI against photoinhibition under fluctuating light in field-grown plants.  相似文献   

9.
The function of chloroplast ferredoxin quinone reductase (FQR)-dependent flow was examined by comparing a wild type tobacco and a tobacco transformant (ΔndhB) in which the ndhB gene had been disrupted with their antimycin A (AA)-fed leaves upon exposure to chilling temperature (4 °C) under low irradiance (100 μmol m−2 s−1 photon flux density). During the chilling stress, the maximum photochemical efficiency of photosystem (PS) 2 (Fv/Fm) decreased markedly in both the controls and AA-fed leaves, and P700+ was also lower in AA-fed leaves than in the controls, implying that FQR-dependent cyclic electron flow around PS1 functioned to protect the photosynthetic apparatus from chilling stress under low irradiance. Under such stress, non-photochemical quenching (NPQ), particularly the fast relaxing NPQ component (qf) and the de-epoxidized ratio of the xanthophyll cycle pigments, (A+Z)/(V+A+Z), formed the difference between AA-fed leaves and controls. The lower NPQ in AA-fed leaves might be related to an inefficient proton gradient across thylakoid membranes (ΔpH) because of inhibiting an FQR-dependent cyclic electron flow around PS1 at chilling temperature under low irradiance.  相似文献   

10.
11.
通过比较棉花(Gossypium hirsutum)幼叶和完全展开叶气体交换参数及叶绿素荧光特性的差异, 探讨高光强下幼叶的光抑制程度及明确光保护机制间的协调机理。在田间自然条件下, 以棉花刚展平的幼嫩叶片(幼叶)和面积已达到最大的完全展开叶片为研究对象, 通过测定不同发育阶段叶片气体交换参数及叶绿素a荧光参数的变化, 并运用Dual-PAM100对不同发育阶段的叶片进行快速光响应曲线的拟合。结果表明: 幼叶和完全展开叶片在光合、荧光特性方面表现出明显的差异。与完全展开叶相比, 较低的叶绿素(Chl)含量和气孔导度(Gs)是幼叶较低净光合速率(Pn)的限制因素, 从而直接导致其光系统II (PSII)实际光化学效率(ΦPSII)和光化学猝灭系数(qP)的降低。在1800 μmol·m-2·s-1光强以下, 完全展开叶具有较强的围绕PSI循环的电子流(CEF), 有利于合成ATP, 是其具有较高光合能力的原因之一。相同光强下, 幼叶较低的光饱和点(LSP)更易受光抑制, 但其PSII原初光化学效率(Fv/Fm)的日变化幅度显著小于完全展开叶, 说明强光下幼叶通过类胡萝卜素(Car)猝灭单线态氧、光呼吸(Pr)、热耗散(NPQ)以及PSI-CEF等光保护机制能有效地耗散过剩的光能, 从而避免其光合机构发生光抑制。  相似文献   

12.
张春艳  庞肖杰 《植物学报》2021,56(5):594-604
光谱技术已广泛应用于光合研究领域,如光吸收信号P515和P700氧化还原动力学以及叶绿素荧光等,可快速、准确地检测植物的光合活性。P515信号广泛存在于高等植物和藻类中,是类囊体膜上的色素分子吸收光能后,其吸收光谱发生位移造成。利用光诱导的P515快速和慢速动力学,可检测PSI和PSII反应中心的比值、ATP合酶的质子...  相似文献   

13.
Light-driven photosynthetic electron transport is coupled to the movement of protons from the chloroplast stroma to the thylakoid lumen. The resulting proton motive force that is generated is used to drive the conformational rotation of the transmembrane thylakoid ATPase enzyme which converts ADP (adenosine diphosphate) and Pi (inorganic phosphate) into ATP (adenosine triphosphate), the energy currency of the plant cell required for carbon fixation and other metabolic processes. According to Mitchell’s chemiosmotic hypothesis, the proton motive force can be parsed into the transmembrane proton gradient (ΔpH) and the electric field gradient (Δψ), which are thermodynamically equivalent. In chloroplasts, the proton motive force has been suggested to be split almost equally between Δψ and ΔpH (Kramer et al., Photosynth Res 60:151–163, 1999). One of the central pieces of evidence for this theory is the existence of a steady-state electrochromic shift (ECS) absorption signal detected ~515 nm in plant leaves during illumination. The interpretation of this signal is complicated, however, by a heavily overlapping absorption change ~535 nm associated with the formation of photoprotective energy dissipation (qE) during illumination. In this study, we present new evidence that dissects the overlapping contributions of the ECS and qE-related absorption changes in wild-type Arabidopsis leaves using specific inhibitors of the ΔpH (nigericin) and Δψ (valinomycin) and separately using leaves of the Arabidopsis lut2npq1 mutant that lacks qE. In both cases, our data show that no steady-state ECS signal persists in the light longer than ~60 s. The consequences of our observations for the suggesting parsing of steady-state thylakoid proton motive force between (ΔpH) and the electric field gradient (Δψ) are discussed.  相似文献   

14.
以杂交酸模(Rumex K-1)为试材,研究了不同光强下线粒体交替氧化酶呼吸途径(AOX途径)对酸模叶片光破坏的防御作用.结果表明:在200 μmol·m-2·s-1弱光下,用水杨基羟肟酸抑制AOX途径后,Rumex K-1叶片的PSⅡ实际光化学效率、光合线性电子传递速率以及光合放氧速率均显著下降,非还原性QB反应中心显著升高,加重了叶片的光抑制,而活性氧清除机制上调,避免了活性氧的过量积累,部分缓解了Rumex K-1叶片的光抑制;在800 μmol·m-2·s-1强光下,AOX途径受抑,导致Rumex K-1叶片发生严重的光抑制,而此时活性氧清除机制的上调不足以缓解活性氧过量的积累.无论在强光还是弱光下,AOX途径在Rumex K-1叶片的光破坏防御过程中都起着重要作用,而且在强光下,AOX途径对叶片的光破坏防御作用是叶绿体内其他光破坏防御途径所不能代替的.  相似文献   

15.
研究海岛棉(Gossypium barbadense)和陆地棉(G. hirsutum)两个棉花栽培种的光合作用特性, 探讨两个栽培种光合机构的光抑制以及防御保护机制, 以期为新疆棉花高光效品种选育和高产高效栽培实践提供理论基础。在新疆生态气候条件下, 系统测定了海岛棉和陆地棉的叶片运动、叶片接受光量子通量密度(PFD)、叶片温度、叶绿素荧光参数、气体交换参数和光呼吸速率的日变化。研究结果表明: 陆地棉叶片的“横向日性”较强而海岛棉较弱, 导致海岛棉叶片接受PFD较低, 但其叶片温度较高。海岛棉叶片的光合速率和气孔导度均显著低于陆地棉。在8:00-10:00 (北京时间, 下同)海岛棉叶片的光呼吸速率略低于陆地棉, 其余时间段海岛棉和陆地棉叶片的光呼吸速率相似。不同栽培种间, 叶片的最大光化学效率和实际光化学效率的日变化均无明显差异。除14:00-16:00以外, 海岛棉叶片的表观电子传递速率和光化学猝灭系数均显著低于陆地棉。8:00以后, 海岛棉叶片的非光化学猝灭显著高于陆地棉。因此, 在新疆生态气候条件下, 海岛棉和陆地棉叶片“横向日性”运动能力和气孔导度的差异导致叶片所处的光温环境不同, 同时造成海岛棉叶片的碳同化能力较低。为阻止光合电子传递链的过度还原, 减轻光合机构的光抑制, 陆地棉叶片主要通过光合机构的电子流途径耗散激发能, 而海岛棉叶片通过热耗散途径和相对较高的光呼吸能力来耗散激发能。  相似文献   

16.
The chloroplast ATP synthase gates the flow of protons out of the thylakoid lumen. In Chlamydomonas reinhardtii deletion of any of the genes for the ATP synthase subunits, or misfolding of the peptides results in photosynthetic membranes devoid of the enzyme (Lemaire and Wollman, J Biol Chem 264:675–685, 1989). This work examines the physiologic response of an algal strain in which the epsilon subunit of the chloroplast ATP synthase has been truncated. Removal of 10 amino acids from the C-terminus of the peptide results in a sharp decrease in the content of the enzyme, but does not result in its exclusion from the thylakoid membranes. The ATP synthase of this mutant strain has a higher rate of ATP hydrolysis than the wild-type enzyme. This strain of C. reinhardtii exhibits reduced growth in the light, dependence on acetate, and a low threshold for the onset of photoinhibition. The role of the ATP synthase in regulating the proton concentration of the lumen is discussed. This work was supported in part by a grant from the National Science Foundation (MCB0110232).  相似文献   

17.
Goss R  Opitz C  Lepetit B  Wilhelm C 《Planta》2008,228(6):999-1009
In the present study we address the question which factors during the synthesis of zeaxanthin determine its capacity to act as a non-photochemical quencher of chlorophyll fluorescence. Our results show that zeaxanthin has to be synthesized in the presence of a transmembrane proton gradient. However, it is not essential that the proton gradient is generated by the light-driven electron transport. NPQ-effective zeaxanthin can also be formed by an artificial proton gradient in the dark due to ATP hydrolysis. Zeaxanthin that is synthesized in the dark in the absence of a proton gradient by the low pH-dependent activation of violaxanthin de-epoxidase is not able to induce NPQ. The second important factor during the synthesis of zeaxanthin is the pH-value of the stromal side of the thylakoid membrane. Here we show that the stromal side has to be neutral or slightly basic in order to generate zeaxanthin which is able to induce NPQ. Thylakoid membranes in reaction medium pH 5.2, which experience low pH-values on both sides of the membrane, are unable to generate NPQ-effective zeaxanthin, even in the presence of an additional light-driven proton gradient. Analysing the pigment contents of purified photosystem II light-harvesting complexes we are further able to show that the NPQ ineffectiveness of zeaxanthin formed in the absence of a proton gradient is not caused by changes in its rebinding to the light-harvesting proteins. Purified monomeric and trimeric light-harvesting complexes contain comparable amounts of zeaxanthin when they are isolated from thylakoid membranes enriched in either NPQ-effective or ineffective zeaxanthin.  相似文献   

18.
In this work, we have investigated the effects of atmospheric CO(2) and O(2) on induction events in Hibiscus rosa-sinensis leaves. These effects manifest themselves as multiphase kinetics of P(700) redox transitions and non-monotonous changes in chlorophyll fluorescence. Depletion of CO(2) and O(2) in air causes a decrease in linear electron flux (LEF) and dramatic lowering of P(700)(+) level. This is explained by the impediment to electron efflux from photosystem 1 (PS1) at low acceptor capacity. With the release of the acceptor deficit, the rate of LEF significantly increases. We have found that oxygen promotes the outflow of electrons from PS1, providing the rise of P(700)(+) level. The effect of oxygen as an alternative electron acceptor becomes apparent at low and ambient concentrations of atmospheric CO(2) < or = 0.06-0.07%). A decrease in LEF at low CO(2) is accompanied by a significant (about 3-fold) rise of non-photochemical quenching (NPQ) of chlorophyll fluorescence. Such an increase in NPQ can be explained by more significant acidification of the thylakoid lumen. This occurs due to lessening the proton flux through the ATP synthases caused by a decrease in the ATP consumption in the Bassham-Benson-Calvin (BBC) cycle. pH-dependent mechanisms of electron transport control have been described within the frames of our mathematical model. The model describes the reciprocal changes in LEF and NPQ and predicts the redistribution of electron fluxes on the acceptor side of PS1. In particular, the contribution of cyclic electron flow around PS1 (CEF1) and water-water cycle gradually decays during the induction phase. This result is consistent with experimental data indicating that under the steady-state conditions the contribution of CEF1 to photosynthetic electron transport in Hibiscus rosa-sinensis is insignificant (< or = 10%).  相似文献   

19.
以矢竹(Pseudosasa japonica)、花叶矢竹(P. japonica f. akebonosuji)和曙筋矢竹(P. japonica f. akebono)为研究对象, 借助叶绿体超微结构和荧光动力学曲线的变化揭示不同叶色矢竹的光系统活性及光合特性差异。结果表明: 3个竹种的光合色素含量差异明显, 除花叶矢竹条纹叶白色部分叶绿体内无完整类囊体片层结构外, 花叶矢竹绿条纹和曙筋矢竹的基粒数明显少于矢竹, 叶绿体发育成熟度不一致; OJIP曲线及参数表明, 花叶矢竹条纹绿叶和曙筋矢竹光系统II (PSII)反应中心开放降低程度低于矢竹, 捕获能量用于电子传递的份额变小, PSII活性变弱; 而曙筋矢竹叶片P700至初级电子受体(QA)的电子传递链氧化还原平衡偏向于还原侧, 推测其光系统I (PSI)反应中心P700至PSII QA电子传递链受损。因此, PSII活性变化导致叶绿体发育不成熟, 可能是引起矢竹类叶色差异的直接原因。  相似文献   

20.
The observed levels of Delta G(ATP) in chloroplasts, as well as the activation behavior of the CF(1)CF(0)-ATP synthase, suggest a minimum transthylakoid proton motive force (pmf) equivalent to a Delta pH of approximately 2.5 units. If, as is commonly believed, all transthylakoid pmf is stored as Delta pH, this would indicate a lumen pH of less than approximately 5. In contrast, we have presented evidence that the pH of the thylakoid lumen does not drop below pH approximately 5.8 [Kramer, D. M., Sacksteder, C. A., and Cruz, J. A. (1999) Photosynth. Res. 60, 151-163], leading us to propose that Delta psi can contribute to steady-state pmf. In this work, it is demonstrated, through assays on isolated thylakoids and computer simulations, that thylakoids can store a substantial fraction of pmf as Delta psi, provided that the activities of ions permeable to the thylakoid membrane in the chloroplast stromal compartment are relatively low and the buffering capacity (beta) for protons of the lumen is relatively high. Measurements of the light-induced electrochromic shift (ECS) confirm the ionic strength behavior of steady-state Delta psi in isolated, partially uncoupled thylakoids. Measurements of the ECS in intact plants illuminated for 65 s were consistent with low concentrations of permeable ions and approximately 50% storage of pmf as Delta psi. We propose that the plant cell, possibly at the level of the inner chloroplast envelope, can control the parsing of pmf into Delta psi and Delta pH by regulating the ionic strength and balance of the chloroplast. In addition, this work demonstrates that, under certain conditions, the kinetics of the light-induced ECS can be used to estimate the fractions of pmf stored as Delta psi and Delta pH both in vitro and in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号