首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soluble c-type cytochromes are central to metabolism of C1 compounds in methylotrophic bacteria. In order to characterize the role of c-type cytochromes in methane-utilizing bacteria (methanotrophs), we have purified four different cytochromes, cytochromes c-554, c-553, c-552, and c-551, from the marine methanotroph Methylomonas sp. strain A4. The two major species, cytochromes c-554 and c-552, were monoheme cytochromes and accounted for 57 and 26%, respectively, of the soluble c-heme. The approximate molecular masses were 8,500 daltons (Da) (cytochrome c-554) and 14,000 Da (cytochrome c-552), and the isoelectric points were pH 6.4 and 4.7, respectively. Two possible diheme c-type cytochromes were also isolated in lesser amounts from Methylomonas sp. strain A4, cytochromes c-551 and c-553. These were 16,500 and 34,000 Da, respectively, and had isoelectric points at pH 4.75 and 4.8, respectively. Cytochrome c-551 accounted for 9% of the soluble c-heme, and cytochrome c-553 accounted for 8%. All four cytochromes differed in their oxidized versus reduced absorption maxima and their extinction coefficients. In addition, cytochromes c-554, c-552, and c-551 were shown to have different electron paramagnetic spectra and N-terminal amino acid sequences. None of the cytochromes showed significant activity with purified methanol dehydrogenase in vitro, but our data suggested that cytochrome c-552 is probably the in vivo electron acceptor for the methanol dehydrogenase.  相似文献   

2.
M C Liu  W J Payne  H D Peck  Jr    J LeGall 《Journal of bacteriology》1983,154(1):278-286
Pseudomonas perfectomarinus (ATCC 14405) is a facultative anaerobe capable of either oxygen respiration or anaerobic nitrate respiration, i.e., denitrification. A comparative study of the electron transfer components of cells revealed five c-type cytochromes and cytochrome cd in the soluble fraction from anaerobically grown cells and four c-type cytochromes in the soluble fraction from aerobically grown cells. Purification procedures yielded three c-type cytochromes (designated c-551, c-554, and acidic c-type) from both kinds of cells as indicated by similarities in absorption spectra, molecular weight, and electrophoretic mobility. Cytochrome cd, a diheme c-type cytochrome (cytochrome c-552), and a split-alpha c-type cytochrome were recovered only from anaerobically grown cells. A c-type cytochrome with a low ratio of alpha to beta absorption peak heights was uniquely present in the aerobically grown cells. Liquid N2 temperature absorption spectroscopy on the membrane fraction from anaerobically grown cells revealed residual cytochrome cd as well as differences in the relative amounts of c-type and b-type cytochromes in membranes prepared from cells grown under the two different conditions.  相似文献   

3.
In Agrobacterium tumefaciens the main part of c-type cytochromes is tightly bound to the bacterial cell envelope structures. Several techniques were attempted to solubilize these cytochromes. The highest yield of cytochromes released is obtained by treatment of particle suspensions with 5% Triton X-100. Further purification confirms that the proteins are not really solubilized, but still aggregated in small heterogeneous complexes. Chromatography on a CM-cellulose column demonstrates that at least three different c-type cytochromes are present: cyt c-550, cyt c-552 and cyt c-556.  相似文献   

4.
The coordination geometry at the heme iron of the cytochromes c-553 from Desulfovibrio vulgaris and Desulfovibrio desulfuricans was investigated by 1H-nuclear magnetic resonance and circular dichroism spectroscopy. Individual assignments were obtained for heme c and the axial ligands. From studies of nuclear Overhauser enhancements the axial histidine imidazole ring orientation relative to the heme group was found to coincide with other c-type cytochromes. In contrast, a new structure was observed for the axial methionine in the reduced cytochromes c-553. This includes S chirality at the iron-bound sulfur atom, but compared to cytochromes c-551 from Pseudomonads and Rhodopseudomonas gelatinosa and cytochrome c5 from Pseudomonas mendocina, which also contain S-chiral methionine, a different spatial arrangement of the gamma- and beta-methylene groups and the alpha carbon of methionine prevails. For the ferricytochromes c-553 R chirality was found for the iron-bound sulfur. This is the first observation of different methionine chirality in different oxidation states of the same c-type cytochrome.  相似文献   

5.
Two c-type cytochromes were isolated from cells of the gram-negative bacterium Aquaspirillum itersonii grown under low aeration in the presence of nitrate. The major component, cytochrome c-550, was equated with the (single) c-type cytochrome previously reported to be present in this organism [Clark-Walker, G. D. & Lascelles, J. (1970) Arch. Biochem. Biophys. 136, 153-159], although a significantly higher molecular mass was apparent in the present work. The complete amino acid sequence of this cytochrome is reported in the accompanying paper. A second soluble c-type cytochrome, designated c-556, was also isolated. The molecular mass, isoelectric point, spectrum, midpoint oxidation reduction potential and amino acid composition of this monoheam cytochrome are reported. The possible relationship of this cytochrome to other cytochromes c-556 is discussed.  相似文献   

6.
Nitrosomonas europaea is an ammonia-oxidizing bacterium which contains multiple c-type cytochromes. Few of these components have been assigned physiological roles, but on the basis of molecular weight and redox potential cytochrome c-552 has been considered to be an analogue of the mitochondrial cytochrome-c family of proteins. We present the N-terminal amino acid sequence (47 residues) of cytochrome c-552 and show that this protein is most closely related to the group of small cytochrome-c components from pseudomonads (cytochromes c-551) and is probably evolutionarily distant from the analagous protein (cytochrome c-550) from the nitrite-oxidizing bacterium Nitrobacter agilis.  相似文献   

7.
When a total soluble extract of Nitrosomonas europaea was denatured with dodecyl sulphate, subjected to dodecyl sulphate/polyacrylamide-gel electrophoresis and illuminated with near-u.v. light, eight bands of protein fluorescence were observed. All but one of these bands were red in colour, a property characteristic of c-type cytochromes. Standard techniques were used to purify soluble c-type cytochromes from this organism, and it was then possible to assign all but two very minor bands to specific c-type cytochromes, namely hydroxylamine oxidase, cytochrome c-554, cytochrome c-552 and a cytochrome c-550 not previously described. The eight band had fluorescence peaking in the green region of the spectrum, probably caused by covalently bound flavin, and co-purified with hydroxylamine oxidase. The following physical properties were determined for these components: isoelectric point, molecular weights according to gel filtration and mobility on dodecyl sulphate/polyacrylamide gels, and alpha-band spectra at room temperature and 77K. Redox potentials were measured as follows: cytochrome c-554, E(m,7) = +20mV; cytochrome c-552, E(m,7) = +230mV; cytochrome c-550, E(m,7) = +140mV. When washed membranes were applied to dodecyl sulphate/polyacrylamide gels in the same way, a number of fluorescent bands were observed that could be matched by soluble proteins. In addition, there was one band that could not be detected in supernatants, migrating with an apparent molecular weight of 24000. This species is probably coincident with a c-type cytochrome having E(m,7) = +170mV found in redox titration of these membranes. In future studies, gel fluorescence should form a useful complement to spectroscopy for analysis of cytochrome composition in active cell-free preparations or semi-purified material.  相似文献   

8.
A detailed study of the soluble cytochrome composition of Rhodopseudomonas sphaeroides (ATCC 17023) indicates that there are five c-type cytochromes and one b-type cytochrome present. The molecular weights, heme contents, amino acid compositions, isoelectric points, and oxidation-reduction potentials were determined and the proteins were compared with those from other bacterial sources. Cytochromes c2 and c' have previously been well characterized. Cytochrome c-551.5 is a diheme protein which has a very low redox potential, similar to certain purple bacterial and algal cytochromes. Cytochrome c-554 is an oligomer, which is spectrally similar to the low-spin isozyme of cytochrome c' found in other purple bacteria (e.g., Rhodopseudomonas palustris cytochrome c-556). An unusual high-spin c-type heme protein has also been isolated. It is spectrally distinguishable from cytochrome c' and binds a variety of heme ligands including oxygen. A large molecular-weight cytochrome b-558 is also present which appears related to a similar protein from Rhodospirillum rubrum, and the bacterioferritin from Escherichia coli. None of the soluble proteins appear to be related to the abundant membrane-bound c-type cytochrome in Rps. sphaeroides which has a larger subunit molecular weight similar to mitochondrial cytochrome c1 and chloroplast cytochrome f.  相似文献   

9.
Y Sanbongi  Y Igarashi  T Kodama 《Biochemistry》1989,28(25):9574-9578
The denaturation of the c-type cytochrome of the thermophilic bacterium Hydrogenobacter thermophilus cytochrome c-552 by heat and guanidine hydrochloride was studied by measuring the change in circular dichroic spectra. The melting temperature (T1/2) of cytochrome c-552 in the presence of 1.5 M guanidine hydrochloride was 34 degrees C higher than that of the c-type cytochrome of Pseudomonas aeruginosa cytochrome c-551. Hydrogenobacter cytochrome c-552 is a much more stable protein than cytochrome c-551 of the mesophilic bacterium P. aeruginosa, even though their amino acid sequences are 56% identical and they have numerous other similarities. However, notwithstanding these similarities between the sequences of the cytochromes c-552 and c-551 that were compared, it is very likely that these differences in stability could be due to some heretofore undefined differences in their spatial structures. It has been suggested that alpha-helix structure and electrostatic interaction could be the source of the stable spatial structure of cytochrome c-552.  相似文献   

10.
Rate constants have been measured for the reactions of a series of high-spin cytochromes c' and their low-spin homologues (cytochromes c-554 and c-556) with the semiquinones of free flavins and flavodoxin. These cytochromes are approximately 3 times more reactive with lumiflavin and riboflavin semiquinones than are the c-type cytochromes that are homologous to mitochondrial cytochrome c. We attribute this to the greater solvent exposure of the heme in the c'-type cytochromes. In marked contrast, the cytochromes c' are 3 orders of magnitude less reactive with flavodoxin semiquinone than are the c-type cytochromes. We interpret this result to be a consequence of the location of the exposed heme in cytochrome c' at the bottom of a deep groove in the surface of the protein, which is approximately 10-15 A deep and equally as wide. While free flavins are small enough to enter the groove, the flavin mononucleotide (FMN) prosthetic group of flavodoxin is apparently prevented by steric constraints from approaching the heme more closely than approximately 10 A without dynamic structural rearrangements. Most cytochromes c' are dimeric, but a few are monomeric. The three-dimensional structure of the Rhodospirillum molischianum cytochrome c' dimer suggests that the heme should be more exposed in the monomer than in the dimer, but no relationship is observed between intrinsic reactivity toward free flavin semiquinones and the aggregation state of the protein. Likewise, there is no evidence that the spin state or ligand field of the iron has any effect on intrinsic reactivity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The complete amino acid sequence of thermophilic cytochrome c-552 from Thermus thermophilus HB8 is presented. The 131-residue sequence was derived by analysis of three cyanogen bromide fragments of the S-carboxymethylated apo-protein and their subpeptides. The sequence is homologous to c-type cytochromes, especially in the heme-binding region.  相似文献   

12.
The redox potentials of many c-type cytochromes vary with pH over the physiological pH range. We have investigated the pH dependence of redox potential for the four homologous cytochromes c-551 from Pseudomonas aeruginosa, Pseudomonas stutzeri strain 221, Pseudomonas stutzeri strain 224, and Pseudomonas mendocina . The pH dependence is due to an ionizable group that ionizes with pKox in ferricytochrome c-551 but with a higher pK, pKred , in ferrocytochrome c-551. For P. aeruginosa cytochrome c-551 it has been shown that this ionizable group is one of the heme propionic acid substituents [Moore, G. R., Pettigrew , G. W., Pitt , R. C., & Williams, R. J. P. (1980) Biochim. Biophys. Acta 590, 261-271]but the values of pKox and pKred are significantly lower in this protein than in the other three cytochromes. NMR and chemical modification studies show that for the two P. stutzeri cytochromes c-551 and P. mendocina cytochrome c-551, this propionic acid substituent is again important for the pH dependence of the redox potential. However, a histidine occurring at position 47 in their sequences hydrogen bonds to the propionic acid and thereby raises its pK. In P. aeruginosa cytochrome c-551, His-47 is substituted by Arg-47. Hydrogen-bonding schemes involving His-47 and the propionic acid are proposed.  相似文献   

13.
Four soluble cytochromes of the c type were isolated from the freshwater dinoflagellate Peridinium cinctum collected from Lake Kinneret, Israel. Cytochrome c with alpha-band maximum at 550 nm in the reduced state had a molecular mass of 10,200 Da, pI 7.4, and Em of 278 m V. This cytochrome was active in the respiratory chain of beef heart Keilin-Hartree particles. Cytochrome c-553 had a molecular mass of 13,200 Da, pI 4.9, and Em of 384 m V, and was active in light induced electron transport of Euglena gracilis chloroplast fragments. Cytochrome c-554 had a molecular mass of 13,500 Da, pI 4.4, and Em of 326 m V. This cytochrome was inactive in light induced electron transport but competed with cytochrome c-552 of Euglena in the assay. The acidic cytochrome c-557 was present in very small quantities. The properties of the soluble c-type cytochromes of P. cinctum are compatible with the classification of dinoflagellates as primitive eucaryotes.  相似文献   

14.
The complete amino acid sequence of a 26-kDa low redox potential cytochrome c-551 from Rhodocyclus tenuis was determined by a combination of Edman degradation and mass spectrometry. There are 240 residues including two heme binding sites at positions 41, 44, 128, and 132. There is no evidence for gene doubling. The only known homolog of Rc. tenuis cytochrome c-551 is the diheme cytochrome c-552 from Pseudomonas stutzeri which contains 268 residues and heme binding sites at nearly identical positions. There is 44% overall identity between the Rc. tenuis and Ps. stutzeri cytochromes with 10 internal insertions and deletions. The Ps. stutzeri cytochrome is part of a denitrification gene cluster, whereas Rc. tenuis is incapable of denitrification, suggesting different functional roles for the cytochromes. Histidines at positions 45 and 133 are the fifth heme ligands and conserved histidines at positions 29, 209, and 218 and conserved methionines at positions 114 and 139 are potential sixth heme ligands. There is no obvious homology to the low-potential diheme cytochromes characterized from other purple bacterial species such as Rhodobacter sphaeroides. There are therefore at least two classes of low-potential diheme cytochromes c found in phototrophic bacteria. There is no more than 11% helical secondary structure in Rc. tenuis cytochrome c-551 suggesting that there is no relationship to class I or class II c-type cytochromes.  相似文献   

15.
Little is known about c-type cytochromes in Gram-positive bacteria in contrast to the wealth of information available on this type of cytochrome in Gram-negative bacteria and in eucaryotes. In the present work, the strictly aerobic bacterium Bacillus subtilis was analyzed for subcellular localization and number of different cytochromes c. In vivo labeling with radioactive 5-aminolevulinic acid, a precursor to heme, showed that the proteins containing covalently bound heme are predominantly found in the membrane fraction. One major membrane-bound cytochrome c of about 15 kDa and with an alpha-band absorption peak in the reduced state at 550 nm was analyzed in more detail. Cytochrome c-550 has the properties of an integral membrane protein. The physiological function of this relatively high redox potential cytochrome is not known. Its structural gene, cccA, was cloned, sequenced, and overexpressed in B. subtilis. The gene maps adjacent to rpoD (sigA) at 223 degrees on the chromosome. The amino acid sequence of cytochrome c-550 as deduced from the DNA sequence consists of 120 residues and contains one heme c binding site (Cys-Ile-Ala-Cys-His) located approximately in the middle of the polypeptide. From the hydropathy distribution and from comparisons to soluble c-type cytochromes of known three-dimensional structure, cytochrome c-550 seemingly consists of two domains; an N-terminal membrane-anchor domain and a C-terminal heme domain. A model for the topography of the cytochrome in the cytoplasmic membrane is suggested in which the N-terminal part spans the membrane in the form of a single segment in an alpha-helical conformation and the C-terminal heme domain is exposed on the extracytoplasmic side of the membrane. Deletion of cccA from the chromosome revealed another membrane-bound cytochrome with absorption maximum at 550 nm in the reduced state. Analysis of cccA deletion mutants demonstrated that the cytochrome c-550 encoded by cccA is not essential for growth of B. subtilis on rich or minimal media.  相似文献   

16.
Four soluble c-type cytochromes, the high redox potential 4-Fe-S ferredoxin known as HiPIP, a large molecular weight 2-Fe-S ferredoxin and a 4-Fe-S 'bacterial' ferredoxin, were isolated from extracts of two strains of Rps. marina. Cytochrome c-550, cytochrome c' and cytochrome c-549 were previously described, and we have extended their characterization. Cytochrome c-558, which has not previously been observed in Rps. marina, appears to be a low-spin isozyme of the more commonly observed high-spin cytochrome c'. HiPIP, which was not observed in previous work, was found to be abundant in Rps. marina. The 2-Fe-S ferredoxin, which has previously been observed only in Rps. palustris, has a native size greater than 100 kDa and a subunit size of 17 kDa. The 'bacterial' ferredoxin appears to have only a single four-iron-sulfur cluster. We examined photosynthetic membranes by difference spectroscopy and found abundant c-type cytochromes. Approximately one-quarter of the heme can be reduced by ascorbate and the remainder by dithionite. There is 2 nm difference between the high-potential heme (554 nm) and the low (552 nm). These characteristics resemble those of the tetraheme reaction center cytochrome of Rps. viridis. In addition to the electron transfer components, we found small amounts of a fluorescent yellow protein which has spectral resemblance to a photoactive yellow protein from Ec. halophila.  相似文献   

17.
Two cytochromes c of Methylomonas J   总被引:2,自引:0,他引:2  
Two kinds of c-type cytochromes, cytochrome c-551 (I), and cytochrome c-551 (II), were highly purified and crystallized from cell-free extract of methanol-grown Methylomonas J (formerly Pseudomonas sp. J) and their physiochemical and biochemical properties were studied. Cytochrome c-551 (I) had an absorption peak at 409 nm in the oxidized form and peaks at 417, 523, 551 nm, and a shoulder at 532 nm in the reduced form. The millimolar extinction coefficient of the alpha-peak of the reduced form was 25.3. The isoelectric point was at pH 5.3 and its standard redox potential was 0.29 V at pH 7.0. The molecular weight was estimated to be 16,000. Cytochrome c-551 (II) had absorption maxima at 409 nm in the oxidized form, and at 416, 521, and 551 nm in the reduced form. The millimolar extinction coefficient of the alpha-peak of the reduced form was 22.4. The isoelectric point was at pH 4.3 and its standard redox form was 22.4. The isoelectric point was at pH 4.3 and its standard redox potential was 0.24 V at pH 7.0. The molecular weight was estimated to be 12,500. The two cytochromes were reduced by methanol dehydrogenase [EC 1.1.99.8] of this bacterium, and formaldehyde was detected as an oxidation product. Ammonium chloride was not essential for reduction of the cytochromes. No significant reduction of the cytochromes was observed by methylamine dehydrogenase isolated from methylamine-grown cells or by 2,6-dichlorophenol-indophenol (DCPIP)-dependent aldehyde dehydrogenase of the methanol-grown cells. The reduced forms of the cytochromes were oxidized by blue copper protein of the methanol-grown cells.  相似文献   

18.
The amino acid sequences of the two heme c-containing tryptic peptides of Pseudomonas cytochrome-c peroxidase have been determined. The tryptic peptides were isolated from two cyanogen bromide fragments of the protein. Both heme-binding sites have the Cys-X-Y-Cys-His structure characteristic of c-type cytochromes. The sequences of the two peptides show distinct homology with each other, suggesting the occurrence of gene doubling during evolution of the protein molecule. The function of the heme c moieties in the catalytic cycle of the enzyme is discussed on the basis of their homology with the proximal histidine region of peroxidase (horseradish peroxidase and yeast cytochrome-c peroxidase) and cytochromes (horse cytochrome c and Pseudomonas cytochrome c-551).  相似文献   

19.
We have found correlations between rate constants and the difference in redox potential of the reactants for electron-transfer reactions between oxidized cytochromes and either photoproduced riboflavin or flavin mononucleotide (FMN) semiquinones (the latter rate constants extrapolated to infinite ionic strength). The riboflavin-cytochrome rate constants are about 70% of those for reduction by lumiflavin, probably because of steric interference by the ribityl side chain. Reduction of cytochromes by FMN semiquinone was ionic strength dependent in all cases, due to electrostatic interactions. Extrapolation of rate constants to infinite ionic strength shows that the phosphate exerts a significant steric effect as well (rate constants average about 27% of those for lumiflavin, although part of this decrease is due to a difference in the semiquinone pK value). Differences in the magnitude of the FMN steric effect correlate well with surface topology differences for those cytochromes whose three-dimensional structures are known. Mitochondrial cytochromes c and the cytochromes c2 all showed attractive (plus-minus) interaction with FMN in spite of the fact that some of these proteins have large net negative charges. Four small c-type cytochromes (including Pseudomonas cytochrome c-551) show a weak repulsive interaction with FMN semiquinone. We conclude that flavosemiquinones interact at a site on the cytochromes that is near the exposed heme edge. There is a large positive electrostatic field at this site in mitochondrial cytochrome c and the cytochromes c2, but this region is primarily hydrophobic in Pseudomonas cytochrome c-551 and in the other small bacterial cytochromes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
A Rhodobacter capsulatus mutant lacking cytochrome oxidase activity was isolated by Tn5 mutagenesis. Difference spectroscopy of crude extracts and extracted c-type cytochromes demonstrated that this mutant completely lacked all c-type cytochromes. The strain did, however, synthesize normal amounts of b-type cytochromes and nonheme iron. This mutant also excreted large amounts of coproporphyrin and protoporphyrin and synthesized reduced amounts of bacteriochlorophyll, suggesting a link between the synthesis of c-type cytochromes and the expression of the tetrapyrrole biosynthetic pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号