首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In previous work (Brooker, R. J., and Wilson, T. H. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 3959-3963), lactose permease mutants were isolated which possessed an enhanced recognition for maltose. In some of these mutants, the wild-type alanine residue at position 177 was changed to valine or threonine. To gain further insight into the side chain requirement at position 177 that confers maltose recognition, further substitutions of isoleucine, leucine, phenylalanine, proline, and serine have been made via site-directed mutagenesis. Permeases containing alanine or serine exhibited poor maltose recognition whereas those containing isoleucine, leucine, phenylalanine, proline, or valine showed moderate or good recognition. As far as galactosides are concerned, the Val-177, Pro-177, and Ser-177 mutants were able to transport lactose as well as, or slightly better than, the wild-type strain. The other mutants displayed moderately reduced levels of lactose transport. For example, the Phe-177 mutant, which was the most defective, showed a level of downhill transport which was approximately 20% that of the wild-type strain. In uphill transport assays, all of the position 177 mutants were markedly defective in their ability to accumulate beta-D-thiomethylgalactopyranoside against a concentration gradient. Finally, the position 177 mutants were analyzed for their ability to catalyze an H+ leak. Interestingly, even though the wild-type permease does not leak H+ across the bacterial membrane, all of the position 177 mutants were shown to transport H+ in the absence of sugars. For most of the mutants, this H+ leak was blocked by the addition of beta-D-thiodigalactoside. Overall, these results are discussed with regard to the effects of position 177 substitutions on the sugar recognition site and H+ transport.  相似文献   

2.
The double mutant of the lactose permease containing Val177/Asn319 exhibits proton leakiness by two pathways (see Brooker, R. J. (1991) J. Biol Chem. 266, 4131-4138). One type of H+ leakiness involves the uncoupled influx of H+ (leak A pathway) while a second type involves the coupled influx of H+ and galactosides in conjunction with uncoupled galactoside efflux (leak B pathway). In the current study, 14 independent lactose permease mutants were isolated from the Val177/Asn319 parent which were resistant to thiodigalactoside growth inhibition but retained the ability to transport maltose. All of these mutants contained a third mutation (besides Val177/Asn319) at one of two sites. Eight of the mutants had Ile303 changed to Phe, while six of the mutants had Tyr236 changed to Asn or His. Each type of triple mutant was characterized with regard to sugar transport, H+ leakiness, and sugar specificity. Like the parental strain, all three types of triple mutant showed moderate rates of downhill lactose transport and were defective in the uphill accumulation of sugars. However, with regard to proton leakiness, the triple mutants fell into two distinct categories. The mutant containing Phe303 was generally less H+ leaky than the parent either via the leak A or leak B pathway. In contrast, the triple mutants containing position 236 substitutions (Asn or His) were actually more H+ leaky via the leak A pathway and exhibited similar H+ leakiness via the leak B pathway at high thiodigalactoside concentrations. The ability of the position 236 mutants to grow better than the parent in the presence of low concentrations of thiodigalactoside appears to be due to a decrease in affinity for this particular sugar rather than a generalized defect in H+ leakiness. Finally, the triple mutants showed a sugar specificity profile which was different from either the Val177/Asn319 parent, the single Val177 mutant, or the wild-type strain. These results are discussed with regard to the effects of mutations on both the sugar and H+ transport pathways.  相似文献   

3.
The sugar specificity mutants of the lactose permease containing Val177 or Val177/Asn319 were analyzed with regard to their ability to couple H+ and sugar co-transport. Both mutants were able to transport lactose downhill to a significant degree. The Val177 mutant was partially defective in the active accumulation of galactosides, whereas the Val177/Asn319 mutant was completely defective in the uphill accumulation of sugars. With regard to coupling, the Val177 mutant was shown to catalyze the uncoupled transport of H+ to a substantial degree. This led to a decrease in the H+ electrochemical gradient under aerobic conditions and also resulted in faster H+ uptake when a transient H+ electrochemical gradient was generated under anaerobic conditions. Interestingly, galactosides were shown to diminish the rate of uncoupled H+ transport in the Val177 strain. The Val177/Asn319 strain also catalyzed uncoupled H+ transport, but to a lesser degree than the single Val177 mutant. In addition, the Val177/Asn319 mutant was shown to transport galactosides with or without H+. The observed H+/lactose stoichiometry was 0.30 in the double mutant compared to 0.98 in the wild-type strain. When an H+ electrochemical gradient was generated across the membrane, the Val177/Asn319 mutant permease was shown to facilitate an extremely rapid net H+ leak if nonmetabolizable galactosides had been equilibrated across the membrane. The mechanism of this leak is consistent with a circular pathway involving H+/galactoside influx and uncoupled galactoside efflux. The magnitude of the H+ leak in the presence of nonmetabolizable galactosides was so great in the double mutant that low concentrations of certain galactosides (i.e. 0.5 mM thiodigalactoside) resulted in a complete inhibition of growth. These results are discussed with regard to the possibility that cation and sugar binding to the lactose permease may involve a direct physical coupling at a common recognition site.  相似文献   

4.
The double mutant, Val-177/Asn-322, was investigated with regard to its ability to transport H+ and galactosides. In downhill lactose transport assays, the wild-type strain had a Km value for lactose uptake of 0.9 mM and a Vmax of 0.65 mumol lactose/min.mg protein while the mutant had a significantly higher Km value of 1.9 mM but a similar Vmax of 0.49 mumol/min.mg protein. In spite of its moderate ability to transport lactose downhill, the Val-177/Asn-322 mutant exhibited the striking property of being completely defective in the uphill accumulation of lactose or methyl-beta-D-thiogalactopyranoside. Direct measurements of H+ transport, however, showed that the mutant's defect in active accumulation is not due to a defect in the ability to transport H+ with lactose or methyl-beta-D-thiogalactopyranoside. The Val-177/Asn-322 mutant strain had a H+:lactose stoichiometry of 0.84 which was similar to that measured in the wild-type strain (0.68). These results are discussed with regard to the role His-322 plays in H+ transport, active accumulation of sugars, and sugar recognition.  相似文献   

5.
The Escherichia coli strain carrying the lac Y54-41 gene encodes a mutant lactose permease which carries out normal downhill transport of galactosides but is defective in uphill accumulation. In this study, the mutant lac Y54-41 gene was cloned onto the multicopy vector pUR270. As expected, the cloned gene was shown to express normal downhill transport activity but was markedly defective in the uphill transport of methyl-beta-D-thiogalactopyranoside. Direct measurements of H+ transport revealed that the mutant permease can transport H+ with methyl-beta-D-thiogalactopyranoside but at a significantly reduced capacity compared to the wild-type strain. However, under conditions where the mutant and wild-type strains both transport lactose at similar rates, no detectable H+ transport was observed in the mutant strain. The entire cloned lac Y54-41 gene was subjected to DNA sequencing, and a single base substitution was found which replaces glycine 262 in the protein with a cysteine residue. Inhibition experiments showed that the mutant permease is dramatically more sensitive to three different sulfhydryl reagents: N-ethylmaleimide, p-hydroxymericuribenzoate, and p-hydroxymercuriphenylsulfonic acid. However, the lactose analogue, thiodigalactoside, was only marginally effective at protecting against inhibition in the mutant strain. The results are consistent with the idea that the sulfhydryl reagents are inhibiting the mutant permease activity by reacting with cysteine 262.  相似文献   

6.
The single asparagine 322 mutant of the lactose permease was made by constructing a hybrid plasmid which contained the amino-terminal coding sequence from the wild-type permease gene and the carboxyl-terminal coding sequence from a previously characterized double mutant permease which contained an asparagine residue at position 322. Since histidine at position 322 has been postulated to be critically involved with H+ transport and the active accumulation of sugars, the ability of the Asn-322 mutant to couple H+ and sugar transport was carefully examined. Measurements of proton/lactose stoichiometries gave very similar values for the wild-type (0.78) and the Asn-322 strain (0.82). Moreover, the Asn-322 mutant was able to effectively accumulate lactose against a concentration gradient although the levels of accumulation in the Asn-322 mutant (approximately 5-7-fold) were significantly less than that of the wild-type strain (approximately 30-40-fold). Overall, these results are inconsistent with the notion that an ionizable histidine residue at position 322 is obligatorily required for H+ transport or the active accumulation of galactosides against a concentration gradient. The ability of the Asn-322 mutant to recognize a variety of sugars was compared with wild-type, Val-177, and Val-177/Asn-322 strains. The Asn-322 mutant exhibited an ability to recognize and transport maltose (an alpha-glucoside) which was significantly better than the wild-type strain but not as good as either the single Val-177 mutant or the double Val-177/Asn-322 mutant. Both the Asn-322 and the Val-177/Asn-322 strain showed a relatively poor recognition for alpha-galactosides (i.e. melibiose), beta-galactosides (lactose and thiodigalactoside), and beta-glucosides (cellobiose). In contrast, the single Val-177 strain exhibited a normal recognition for these sugars.  相似文献   

7.
In the present study, lactose permease mutants were isolated which have an enhanced recognition toward maltose (an alpha-glucoside) and diminished recognition for cellobiose (a beta-glucoside). Nine mutants were isolated from a strain encoding a wild-type permease (pTE18) and nine from a strain encoding a mutant permease which recognizes maltose (pB15). All 18 mutants were subjected to DNA sequencing, and it was found that all mutations are single base substitutions within the lac Y gene effecting single amino acid substitutions within the protein. From the pTE18 parent, substitutions involved Tyr-236 to Phe or His; Ser-306 to Thr; and six independent mutants in which Ala-389 was changed to Pro. From pB15, Tyr-236 was changed to Phe or Asn, Ser-306 to Thr or Leu, Lys-319 to Asn, and His-322 to Tyr, Asn, or Gln. All 18 mutants exhibited enhanced recognition for maltose (compared with the pTE18 strain) and a diminished recognition for cellobiose. In addition, all mutants showed a diminished recognition toward beta-galactosides as well. The Phe-236, His-236, Leu-306, Asn-319, Tyr-322, Asn-322, and Gln-322 mutants were completely defective in the uphill accumulation of methyl-beta-D-thiogalactopyranoside whereas the Asn-236, Thr-306, and Pro-389 mutants could effectively accumulate methyl-beta-D-thiogalactopyranoside against a concentration gradient. The mutants obtained in this study, together with previous lactose permease mutants, tend to be found on transmembrane segments, and those which are on the same transmembrane segment are often found three or four amino acids away from each other. This pattern is consistent with a protein structure in which important amino acid side chains project from several transmembrane segments in such a way as to form a hydrophilic channel for the recognition and transport of H+ and galactosides. It is proposed that the mechanism for H+/lactose cotransport is consistent with a "flanking gate" model in which the protein contains a single recognition site for galactosides within the channel which is flanked on either side by gates.  相似文献   

8.
Within the lactose permease, an arginine residue is found on a transmembrane segment at position 302. Based upon the effects of mutations at or in the vicinity of Arg-302, this residue has been implicated to be involved with H+ and/or sugar recognition. To further elucidate the role of this residue, we have substituted Arg-302 with serine, histidine, and leucine via site-directed mutagenesis. All three of these substitutions result in an impaired ability to transport galactosides as evidenced by their poor growth on minimal plates supplemented with lactose or melibiose. Furthermore, in vitro transport assays revealed substantial alterations in the kinetic constants for downhill lactose transport. The wild-type strain exhibited a Km for lactose transport of 0.30 mM and a Vmax of 267 nmol of lactose/min.mg of protein. The Ser-302, His-302, and Leu-302 were observed to have Km values of 0.18, 2.3, and 2.8 mM, and Vmax values of 11.6, 56.4, and 22.0 nmol of lactose/min.mg of protein, respectively. In uphill transport assays, all three mutants were unable to accumulate beta-methyl-D-thiogalactoside. However, both the Ser-302 and His-302 mutants were able to accumulate lactose against a concentration gradient. During H+ transport assays, all three mutants were shown to transport H+ in conjunction with thiodigalactoside. In addition, the Ser-302 and His-302 strains exhibited small alkalinizations upon the addition of lactose. However, for the Leu-302 mutant, the addition of lactose did not result in a significant level of H+ transport. Finally, experiments were conducted which were aimed at measuring the ability of the mutant permeases to catalyze an H+ leak. In this regard, a comparison was made between the wild-type and mutant strains concerning their steady state pH gradient and their rates of H+ influx following oxygen pulses. The results of these experiments suggest that mutations at position 302 cause a sugar-dependent H+ leak.  相似文献   

9.
Wild-type lac permease from Escherichia coli and two site-directed mutant permeases containing Arg in place of His35 and His39 or His322 were purified and reconstituted into proteoliposomes. H35-39R permease is indistinguishable from wild type with regard to all modes of translocation. In contrast, purified, reconstituted permease with Arg in place of His322 is defective in active transport, efflux, equilibrium exchange, and counterflow but catalyzes downhill influx of lactose without concomitant H+ translocation. Although permease with Arg in place of His205 was thought to be devoid of activity [Padan, E., Sarkar, H. K., Viitanen, P. V., Poonian, M. S., & Kaback, H. R. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 6765], sequencing of lac Y in pH205R reveals the presence of two additional mutations in the 5' end of the gene, and replacement of this portion of lac Y with a restriction fragment from the wild-type gene yields permease with normal activity. Permeases with Asn, Gln, or Lys in place of His322, like H322R permease, catalyze downhill influx of lactose without H+ translocation but are unable to catalyze active transport, equilibrium exchange, or counterflow. Unlike H322R permease, however, the latter mutants catalyze efflux at rates comparable to that of wild-type permease, although the reaction does not occur in symport with H+. Finally, as evidenced by flow dialysis and photoaffinity labeling experiments, replacement of His322 appears to cause a marked decrease in the affinity of the permease for substrate. The results confirm and extend the contention that His322 is the only His residue in the permease involved in lactose/H+ symport and that an imidazole moiety at position 322 is obligatory.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The Escherichia coli K12 strain X71-54 carries the lac YUN allele, coding for a lactose/H+ carrier defective in the accumulation of a number of galactosides [Wilson, Kusch & Kashket (1970) Biochem. Biophys. Res. Commun. 40, 1409-1414]. Previous studies proposed that the lower accumulation in the mutant be due to a faulty coupling of H+ and galactoside fluxes via the carrier. Immunochemical characterization of the carriers in membranes from mutant and parent strains with an antibody directed against the C-terminal decapeptide of the wild-type carrier leads to the conclusion that the mutant carrier is similar to the wild-type in terms of apparent Mr, C-terminal sequence, and level of incorporation into the membrane. The pH-dependence of galactoside transport was compared in the mutant and the parent. At pH 8.0-9.0, mutant and parent behave similarly with respect to the accumulation of beta-D-galactosyl 1-thio-beta-D-galactoside and to the ability to grow on the carrier substrate melibiose. At pH 6.0, both the maximal velocity for active transport and the level of accumulation of beta-D-galactosyl-1-thio-beta-D-galactoside are lower in the mutant. The mutant also is unable to grow on melibiose at pH 5.5. However, at pH 6.0 and low galactoside concentrations, the symport stoichiometry is 0.90 H+ per galactoside in the mutant as compared with 1.07 in the parent. These observations suggest that symport is normal in the mutant and that the lower rate of transport in the mutant is responsible for the phenotype. At higher galactoside concentrations, accumulation is determined not only thermodynamically but also kinetically, contrary to a simple interpretation of the chemiosmotic theory. Therefore lower rates of active transport can mimic the effect of uncoupling H+ and galactoside symport. Examination of countertransport in poisoned cells at pH 6.0 reveals that the rate constants for the reorientation of the loaded and unloaded carrier are altered in the mutant. The reorientation of the unloaded carrier is slower in the mutant. However, the reorientation of the galactoside-H+-carrier complex is slower for substrates like melibiose, but faster for substrates like lactose. These findings suggest that lactose-like and melibiose-like substrates interact with the carrier in slightly different ways.  相似文献   

11.
In the current study, lactose permease mutants were isolated which exhibited an enhanced recognition for maltose (an alpha-glucoside) but a diminished recognition for thiodigalactoside, TDG (a beta-galactoside). Maltose/TDGR mutants were obtained from four different parental strains encoding either a wild-type permease (pTE18), a mutant lactose permease which recognizes maltose (pB15) or mutant lactose permeases which recognize maltose but are resistant to inhibition by cellobiose (pTG and pBA). A total of 27 independent mutants were isolated: 12 from pTE18, 10 from pB15, 3 from pTG, and 2 from pBA. DNA sequencing of the 27 mutants revealed that the mutants contain single base pair substitutions within the lac Y gene which result in single amino acid substitutions within the lactose permease. All of the mutants obtained from pTE18, pTG, and pBA involved a change of Tyr-236 to histidine, phenylalanine, or asparagine. From pB15, three different types of mutants were obtained: Tyr-236 to histidine, Ile-303 to phenylalanine, or His-322 to asparagine. When assayed for [14C]maltose transport, the maltose/TDGR mutants were seen to transport maltose significantly faster than the wild type. Furthermore, although TDG was shown to inhibit the uptake of maltose in the four parental strains, all of the mutant strains exhibited a dramatic resistance to TDG inhibition. Most of the maltose/TDGR mutants were also shown to be very defective in the transport of lactose. However, certain mutants (i.e., Asn-322) exhibited moderate lactose transport activity. Finally, it was observed that all of the mutant strains were unable to facilitate the uphill accumulation of beta-methylthiogalactopyranoside. The locations of the amino acid substitutions are discussed with regard to their possible role in sugar recognition.  相似文献   

12.
The lac permease of Escherichia coli was modified by site-directed mutagenesis such that Arg-302 in putative helix IX was replaced with Leu. In addition, Ser-300 (helix IX) was replaced with Ala, and Lys-319 in putative helix X was replaced with Leu. Permease with Leu at position 302 manifests properties that are similar to those of permease with Arg in place of His-322 [Püttner, I. B., Sarkar, H. K., Poonian, M. S., & Kaback, H. R. (1986) Biochemistry 25, 4483]. Thus, permease with Leu-302 is markedly defective in active lactose transport, efflux, exchange, and counterflow but catalyzes downhill influx of lactose at high substrate concentrations without H+ translocation. In contrast, permease molecules with Ala at position 300 or Leu at position 319 catalyze lactose/H+ symport in a manner indistinguishable from that of wild-type permease. By molecular modeling, Arg-302 may be positioned in helix IX so that it faces the postulated His-322/Glu-325 ion pair in helix X. In this manner, the guanidino group in Arg-302 may interact with the imidazole of His-322 and thereby play a role in the H+ relay suggested to be involved in lactose/H+ symport [Carrasco, N., Antes, L. M., Poonian, M. S., & Kaback, H. R. (1986) Biochemistry 25, 4486].  相似文献   

13.
A peptide motif, GXXX(D/E)(R/K)XG(R/K)(R/K), has been conserved in a large group of evolutionarily related membrane proteins that transport small molecules across the membrane. Within the superfamily, this motif is located in two cytoplasmic loops that connect transmembrane segments 2 and 3 and transmembrane segments 8 and 9. In a previous study concerning the loop 2-3 motif of the lactose permease (A. E. Jessen-Marshall, N. J. Paul, and R. J. Brooker, J. Biol. Chem. 270:16251-16257, 1995), it was shown that the first-position glycine and the fifth-position aspartate are critical for transport activity since a variety of site-directed mutations greatly diminished the rate of transport. In the current study, a similar approach was used to investigate the functional significance of the conserved residues in the loop 8-9 motif. In the wild-type lactose permease, however, this motif has been evolutionarily modified so that the first-position glycine (an alpha-helix breaker) has been changed to proline (also a helix breaker); the fifth position has been changed to an asparagine; and one of the basic residues has been altered. In this investigation, we made a total of 28 single and 7 double mutants within the loop 8-9 motif to explore the functional importance of this loop. With regard to transport activity, amino acid substitutions within the loop 8-9 motif tend to be fairly well tolerated. Most substitutions produced permeases with normal or mildly defective transport activities. However, three substitutions at the first position (i.e., position 280) resulted in defective lactose transport. Kinetic analysis of position 280 mutants indicated that the defect decreased the Vmax for lactose uptake. Besides substitutions at position 280, a Gly-288-to-Thr mutant had the interesting property that the kinetic parameters for lactose uptake were normal yet the rates of lactose efflux and exchange were approximately 10-fold faster than wild-type rates. The results of this study suggest that loop 8-9 may facilitate conformational changes that translocate lactose.  相似文献   

14.
The Escherichia coli lactose carrier is an energy-transducing H+/galactoside cotransport protein which strictly couples sugar and proton transport in 1:1 stoichiometry. Here we describe five lactose carrier mutants which catalyze "uncoupled" sugar-independent H+ transport. Symptoms similar to uncoupling by a proton ionophore have been observed in cells expressing these mutant carriers. The mutations occur at two separate loci, encoding substitutions either for alanine 177 (valine) or tyrosine 236 (histidine, asparagine, phenylalanine, or serine). Compared to the parent, cells expressing the valine 177 carrier grew slowly on minimal media with glucose as carbon source. When washed cells were incubated in the absence of added sugars the mutant showed a reduced protonmotive force compared with the parent. Addition of either thiodigalactoside or alpha-p-nitrophenylgalactoside reduced the defect in protonmotive force. Sugar-independent H+ entry rate into cells expressing either the normal carrier or the Val-177 mutant were measured directly using the pH electrode. Following sudden acidification of the external medium (by either oxygen-pulse or acid-pulse) protons entered more rapidly into cells expressing the Val-177 carrier. This novel sugar-independent mode of H+ transport probably depends on an acquired capacity of the Val-177 carrier to bind the transported proton with higher than normal affinity in a transition state involving the binary carrier/H+ complex.  相似文献   

15.
lac permease with Ala in place of Glu325 was solubilized from the membrane, purified, and reconstituted into proteoliposomes. The reconstituted molecule is completely unable to catalyze lactose/H+ symport but catalyzes exchange and counterflow at least as well as wild-type permease. In addition, Ala325 permease catalyzes downhill lactose influx without concomitant H+ translocation and binds p-nitrophenyl alpha-D-galactopyranoside with a KD only slightly higher than that of wild-type permease. Studies with right-side-out membrane vesicles demonstrate that replacement of Glu325 with Gln, His, Val, Cys, or Trp results in behavior similar to that observed with Ala in place of Glu325. On the other hand, permease with Asp in place of Glu325 catalyzes lactose/H+ symport about 20% as well as wild-type permease. The results indicate that an acidic residue at position 325 is essential for lactose/H+ symport and that hydrogen bonding at this position is insufficient. Taken together with previous results and those presented in the following paper [Lee, J. A., Püttner, I. B., & Kaback, H. R. (1989) Biochemistry (third paper of three in this issue)], the findings are consistent with the idea that Arg302, His322, and Glu325 may be components of a H+ relay system that plays an important role in the coupled translocation of lactose and H+.  相似文献   

16.
The lac Y genes from two Escherichia coli mutants, MAB20 and AA22, have been cloned in a multicopy plasmid by a novel 'sucrose marker exchange' method. Characterization showed that the plasmids express a lactose carrier with poor affinity for lactose. Neither mutant carried out concentrative uptake with methyl beta-D-galactopyranoside, lactose, or melibiose as the substrate. Nor did the mutants catalyze counterflow or exchange with methyl beta-D-galactopyranoside. Both mutants did, however, retain the capacity to carry out facilitated diffusion with lactose or melibiose. DNA sequencing revealed that MAB20 (histidine-322 to tyrosine) and AA22 (serine-306 to leucine) have amino acid substitutions within the putative 'charge-relay' domain thought to be responsible for proton transport. Galactoside-dependent H+ transport was readily measured in both mutants. We conclude, therefore, that the presence of a histidine residue at position 322 of the lactose carrier is not obligatory for H+ transport per se.  相似文献   

17.
Green AL  Brooker RJ 《Biochemistry》2001,40(40):12220-12229
Previous work on the lactose permease of Escherichia coli has shown that mutations along a face of predicted transmembrane segment 2 (TMS-2) play a critical role in conformational changes associated with lactose transport [Green, A. L., Anderson, E. J., and Brooker, R. J. (2000) J. Biol. Chem. 275, 23240-23246]. In the current study, mutagenesis was conducted along the side of predicted TMS-8 that contains the first amino acid in the conserved loop 8/9 motif. Several substitutions at positions 261, 265, 272, and 276 were markedly defective for downhill lactose transport although these mutants were well expressed. Substitutions along the entire side of TMS-8 containing the first amino acid in the loop 8/9 motif displayed defects in uphill lactose transport. Again, substitutions at positions 261, 265, 268, 272, and 276 were the most defective, with several of these mutants showing no lactose accumulation against a gradient. According to helical wheel plots, Phe-261, Thr-265, Gly-268, Asn-272, and Met-276 form a continuous stripe along one face of TMS-8. These results are discussed according to our hypothetical model, in which the two halves of the protein form a rotationally symmetrical dimer. In support of this model, alignment of predicted TMS-2 and TMS-8 shows an agreement between the amino acid residues in these transmembrane segments that are critical for lactose transport activities.  相似文献   

18.
In the present study, Cys-176 and Cys-234 in the lactose carrier have been modified to serine residues via site-specific mutagenesis. The resultant mutants have been characterized with regard to galactoside transport activity and sulfhydryl reagent sensitivity. The mutant proteins (in which Cys-176 or Cys-234 had been replaced with serine) are able to effectively transport galactosides, although the transport rates for lactose and methyl-beta-D-galactopyranoside are slightly reduced compared to the normal lactose carrier. In addition, both mutants are less sensitive than the wild-type to high concentrations of two different sulfhydryl reagents, N-ethylmaleimide and p-hydroxymercuribenzoate. Overall, the data are consistent with the idea that Cys-176 and Cys-234 are close to the substrate recognition site. However, neither residue appears to be essential for galactoside transport by providing an ionizable group near the active site or by forming a disulfide bond.  相似文献   

19.
Spontaneous mutants harboring the lacY gene on an F'-factor were isolated. Those mutants that failed to grow on 5 mM lactose minimal media plates were chosen for further study. The mutants showed striking mutations in the lactose carrier as well as in sugar selection properties during transport assays. DNA sequencing of the lacY gene of the mutants revealed the following mutations: M-1-I, R-144-W, G-370-C and a deletion of residues 387-392, located in helix 12 of the carrier. Transport studies indicated that ONPG transport ranged between 8 and 25% of normal for the M-1-I, G-370-C and D387-392 mutants and 51% of normal for the R-144-W mutant. The downhill transport of lactose was 2-fold greater than for melibiose in cells harboring the M-1-I mutation and 3-fold higher for cells with the G-370-C mutation. On the other hand, cells with the D387-392-deletion mutation showed no lactose downhill transport, but 47% melibiose transport. Accumulation of TMG, a lactose analog, was 3-fold higher than the accumulation of melibiose in cells with the G-370-C mutation. On the other hand, in cells with the D387-392 mutation, TMG accumulation was completely defective, whereas melibiose accumulation was 50-fold higher than that of TMG, indicating that one or more of these residues in helix 12 of the carrier play a role in the active transport of b-galactoside, but not a-galactoside sugars. Initial lactose downhill transport rates were too unreliable to obtain trustworthy kinetic data. TMG and melibiose accumulation activities were present, but severely reduced in the mutant containing the R144W mutation, confirming that Arg-144 is important for active transport. All transport data were normalized for expression levels. The results indicate that the affected residues play a role in dictating sugar specificity and transport in the lactose carrier. The results here are novel in that they represent mutations in unique locations along the lactose carrier protein. For example, the M-1-I mutation was located at the N-terminal cytoplasmic tail of the carrier. Furthermore, G-370-C was located in the periplasmic loop between helices 11 and 12, suggesting a role for residues in this loop in mediating sugar selection.  相似文献   

20.
The lactose transport protein (LacS) of Streptococcus thermophilus is a chimeric protein consisting of an amino-terminal carrier domain and a carboxyl-terminal phosphoenolpyruvate:sugar phosphotransferase system (PTS) IIA protein domain. The histidine residues of LacS were changed individually into glutamine or arginine residues. Of the 11 histidine residues present in LacS, only the His-376 substitution in the carrier domain significantly affected sugar transport. The region around His-376 was found to exhibit sequence similarity to the region around His-322 of the lactose transport protein (LacY) of Escherichia coli, which has been implicated in sugar binding and in coupling of sugar and H+ transport. The H376Q mutation resulted in a reduced rate of uptake and altered affinity for lactose (beta-galactoside), melibiose (alpha-galactoside), and the lactose analog methyl-beta-D-thiogalactopyranoside. Similarly, the extent of accumulation of the galactosides by cells expressing LacS(H376Q) was highly reduced in comparison to cells bearing the wild-type protein. Nonequilibrium exchange of lactose and methyl-beta-D-thiogalactopyranoside by the H376Q mutant was approximately 2-fold reduced in comparison to the activity of the wild-type transport protein. The data indicate that His-376 is involved in sugar recognition and is important, but not essential, for the cotransport of protons and galactosides. The carboxyl-terminal domain of LacS contains 2 histidine residues (His-537 and His-552) that are conserved in seven homologous IIA protein(s) (domains) of PTSs. P-enolpyruvate-dependent phosphorylation of wild-type LacS, but not of the mutant H552Q, was demonstrated using purified Enzyme I and HPr, the general energy coupling proteins of the PTS, and inside-out membrane vesicles isolated from E. coli in which the lactose transport gene was expressed. The His-537 and His-552 mutations did not affect transport activity when the corresponding genes were expressed in E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号