共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
Following acute infection in mucosal epithelium, bovine herpes virus 1 (BHV-1) establishes lifelong latency in sensory neurons within trigeminal ganglia. The latency-related RNA (LR-RNA) is abundantly expressed in sensory neurons of latently infected calves. Expression of LR proteins is necessary for the latency reactivation cycle because a mutant virus that does not express LR proteins is unable to reactivate from latency after dexamethasone treatment. LR-RNA sequences also inhibit bICP0 expression, productive infection, and cell growth. However, it is unclear how LR-RNA mediates these functions. In this study, we identified a 463-bp region within the LR gene (the XbaI-PstI [XP] fragment) that inhibited bICP0 protein and RNA expression in transiently transfected mouse neuroblastoma cells. Small noncoding RNAs (sncRNAs) encoded within the XP fragment (20 to 90 nucleotides in length) were detected in transiently transfected mouse neuroblastoma cells. Two families of sncRNAs were cloned from this region, and each family was predicted to contain a mature microRNA (miRNA). Both miRNAs were predicted to base pair with bICP0 mRNA sequences, suggesting that they reduce bICP0 levels. To test this prediction, sequences encompassing the respective sncRNAs and mature miRNAs were synthesized and cloned into a small interfering RNA expression vector. Both sncRNA families and their respective miRNAs inhibited bICP0 protein expression in mouse neuroblastoma cells and productive infection in bovine cells. In trigeminal ganglia of latently infected calves, an sncRNA that migrated between nucleotides 20 and 25 hybridized to the XP fragment. During dexamethasone-induced reactivation from latency, XP-specific sncRNA levels were reduced, suggesting that these sncRNAs support the establishment and maintenance of lifelong latency in cattle.Bovine herpes virus 1 (BHV-1) infection leads to respiratory and genital disorders, abortion, conjunctivitis, and/or multisystemic infection in small calves (19-21, 23). Consequently, BHV-1 infections are a significant economic loss to the cattle industry. As with other Alphaherpesvirinae subfamily members, the primary site for a BHV-1 latent infection is sensory ganglionic neurons (19, 20, 23). Virus reactivation from latency can occur after stress, suggesting that corticosteroids play a role in this process.During latency, viral gene expression is restricted to the latency-related (LR) gene and open reading frame E (ORF-E) (13, 23, 35, 36). The LR gene contains two open reading frames (ORF1 and ORF2) and two reading frames (RF-B and RF-C) (24). A fraction of LR-RNA is polyadenylated and alternatively spliced in trigeminal ganglia (TG), suggesting that more than one protein is expressed (4, 5, 12). A peptide antibody directed against ORF2 recognizes a protein encoded by the LR gene (12, 17, 18). LR protein expression is necessary for the latency reactivation cycle because a mutant BHV-1 strain with three stop codons at the N terminus of ORF2 does not reactivate from latency (14, 33). Furthermore, the LR mutant virus has diminished clinical symptoms and reduced shedding of infectious virus from the eye, TG, and tonsil (14, 15, 33). Finally, the LR mutant virus induces higher levels of apoptosis in TG neurons, in part because a protein encoded by the LR gene (ORF2) inhibits apoptosis (3, 14, 15, 26, 40). Three LR proteins, including ORF2, have reduced or no expression in cells infected with the LR mutant virus (18, 27).Although proteins encoded by the LR gene are necessary for the latency reactivation cycle, non-protein coding functions within LR-RNA have also been identified. For example, the intact LR gene inhibits the ability of bICP0 to stimulate productive infection in a dose-dependent manner (1, 9). Insertion of three in-frame stop codons at the amino terminus of the first ORF within the LR gene (ORF2) inhibited bICP0 repression with an efficiency similar to that of the wild-type (wt) LR gene, suggesting that expression of an LR protein is not required (9). Since the LR gene is antisense to bICP0 coding sequences, we assumed that LR-RNA hybridized to bICP0 RNA sequences and interfered with bICP0 expression. However, we were unable to obtain data suggesting that antisense repression was the major reason why the LR gene inhibited bICP0 expression. LR gene products also inhibit mammalian cell growth (8, 38), and the cell growth-inhibitory function of the LR gene maps to a 463-bp XbaI-PstI (XP) fragment (8). Sequences within the XP region have the potential to form stem-loop secondary structures, suggesting that there are small noncoding RNAs (sncRNAs) expressed from the XP region.In this study, we demonstrated that the XP fragment efficiently inhibits bICP0 protein levels and, to a lesser extent, bICP0 RNA levels. Northern blot analysis using the XP fragment as a probe detected sncRNAs migrating between 20 and 90 nucleotides (nt). Two families of sncRNAs with the same 5′ terminus but different 3′ termini were cloned from this region. Members of these two families of sncRNAs inhibited bICP0 expression with an efficiency similar to that of the XP fragment. Each family of sncRNAs has the potential to generate a mature microRNA (miRNA). Sequences encompassing the mature miRNA also inhibited bICP0 expression in transiently transfected cells. Although the miRNA sequences have the potential to base pair with bICP0 mRNA, the miRNA sequences do not overlap bICP0 RNA sequences. Finally, LR-specific sncRNAs and miRNAs inhibited productive infection approximately 2-fold, suggesting that LR-specific sncRNAs support the establishment and maintenance of lifelong latency in cattle. 相似文献
3.
K15 Protein of Kaposi’s Sarcoma-Associated Herpesvirus Is Latently Expressed and Binds to HAX-1, a Protein with Antiapoptotic Function 总被引:2,自引:0,他引:2 下载免费PDF全文
Tyson V. Sharp Hsei-Wei Wang Andrew Koumi Daniel Hollyman Yoshio Endo Hongtao Ye Ming-Qing Du Chris Boshoff 《Journal of virology》2002,76(2):802-816
The Kaposi's sarcoma-associated herpesvirus (KSHV) (or human herpesvirus 8) open reading frame (ORF) K15 encodes a putative integral transmembrane protein in the same genomic location as latent membrane protein 2A of Epstein-Barr virus. Ectopic expression of K15 in cell lines revealed the presence of several different forms ranging in size from full length, approximately 50 kDa, to 17 kDa. Of these different species the 35- and 23-kDa forms were predominant. Mutational analysis of the initiator AUG indicated that translation initiation from this first AUG is required for K15 expression. Computational analysis indicates that the different forms detected may arise due to proteolytic cleavage at internal signal peptide sites. We show that K15 is latently expressed in KSHV-positive primary effusion lymphoma cell lines and in multicentric Castleman's disease. Using a yeast two-hybrid screen we identified HAX-1 (HS1 associated protein X-1) as a binding partner to the C terminus of K15 and show that K15 interacts with cellular HAX-1 in vitro and in vivo. Furthermore, HAX-1 colocalizes with K15 in the endoplasmic reticulum and mitochondria. The function of HAX-1 is unknown, although the similarity of its sequence to those of Nip3 and Bcl-2 infers a role in the regulation of apoptosis. We show here that HAX-1 can form homodimers in vivo and is a potent inhibitor of apoptosis and therefore represents a new apoptosis regulatory protein. The putative functions of K15 with respect to its interaction with HAX-1 are discussed. 相似文献
4.
5.
Leticia Frizzo da Silva Insun Kook Alan Doster Clinton Jones 《Journal of virology》2013,87(20):11214-11222
6.
Barkha Ratta Brijesh Singh Yadav Mayank Pokhriyal Meeta Saxena Bhaskar Sharma 《Current microbiology》2014,68(1):127-131
Bovine herpesvirus 1 (BHV1) and bovine viral diarrhea virus 2 (BVD2) are endemic in India although no mixed infection with these viruses has been reported from India. We report first mixed infection of these viruses in cattle during routine screening with a microarray chip. 62 of the 69 probes of BHV1 and 42 of the 57 BVD2 probes in the chip gave positive signals for the virus. The virus infections were subsequently confirmed by RT-PCR. We also discuss the implications of these findings. 相似文献
7.
8.
Daniel Pérez-Nú?ez Eduardo García-Urdiales Marta Martínez-Bonet María L. Nogal Susana Barroso Yolanda Revilla Ricardo Madrid 《PloS one》2015,10(4)
African swine fever virus (ASFV) CD2v protein is believed to be involved in virulence enhancement, viral hemadsorption, and pathogenesis, although the molecular mechanisms of the function of this viral protein are still not fully understood. Here we describe that CD2v localized around viral factories during ASFV infection, suggesting a role in the generation and/or dynamics of these viral structures and hence in disturbing cellular traffic. We show that CD2v targeted the regulatory trans-Golgi network (TGN) protein complex AP-1, a key element in cellular traffic. This interaction was disrupted by brefeldin A even though the location of CD2v around the viral factory remained unchanged. CD2v-AP-1 binding was independent of CD2v glycosylation and occurred on the carboxy-terminal part of CD2v, where a canonical di-Leu motif previously reported to mediate AP-1 binding in eukaryotic cells, was identified. This motif was shown to be functionally interchangeable with the di-Leu motif present in HIV-Nef protein in an AP-1 binding assay. However, we demonstrated that it was not involved either in CD2v cellular distribution or in CD2v-AP-1 binding. Taken together, these findings shed light on CD2v function during ASFV infection by identifying AP-1 as a cellular factor targeted by CD2v and hence elucidate the cellular pathways used by the virus to enhance infectivity. 相似文献
9.
10.
11.
12.
《Cell cycle (Georgetown, Tex.)》2013,12(3):304-314
In the frog, Xenopus laevis, the Cip/Kip-type cyclin-dependent kinase (CDK) inhibitor, Xic1, inhibits DNA replication in interphase egg extracts through the binding of CDK2-cyclins and Proliferating Cell Nuclear Antigen (PCNA). During DNA polymerase switching in the replicating Xenopus egg extract, Xic1 is targeted for ubiquitination and degradation when localized to chromatin through its binding to PCNA. To date, the machinery responsible for Xic1 ubiquitination is unknown and although it is predicted that the E3 called SCF may mediate Xic1 ubiquitination, characterization of the SCF in Xenopus is lacking. In this study, we describe the identification and characterization of Xenopus Skp2 (xSkp2) and the role of xSkp2 in the ubiquitination of Xic1. Our results indicate that the expression of xSkp2 appears to be developmentally regulated with low protein levels found in the egg and increased levels found in the developing embryo. We also demonstrate that when ectopically expressed, a xSkp2 F-box deletion mutant inhibits the initiation of DNA replication suggesting a role for the SCF in the onset of S phase in Xenopus egg extracts. We further show that xSkp2 binds to C-terminal residues of Xic1 and when co-expressed with Skp1, promotes the proteolysis of Xic1 in the egg extract. Moreover, the xSkp2 F-box deletion mutant inhibits the DNA-dependent ubiquitination and proteolysis of Xic1 when added to the interphase egg extract. Importantly, our studies demonstrate that SCFxSkp2 supports the ubiquitination of Xic1 in a reconstituted in vitro ubiquitination assay and that this Xic1 ubiquitination does not require either CDK2-cyclins or Cks1. These studies provide the first characterization of the SCF in Xenopus and its role in the ubiquitination of CDK inhibitor, Xic1, during DNA replication initiation. 相似文献
13.
14.
15.
16.
17.
To initiate infection, herpesviruses must navigate to and transport their genomes across the nuclear pore. VP1-2 is a large structural protein of the virion that is conserved in all herpesviruses and plays multiple essential roles in virus replication, including roles in early entry. VP1-2 contains an N-terminal basic motif which functions as an efficient nuclear localization signal (NLS). In this study, we constructed a mutant HSV strain, K.VP1-2ΔNLS, which contains a 7-residue deletion of the core NLS at position 475. This mutant fails to spread in normal cells but can be propagated in complementing cell lines. Electron microscopy (EM) analysis of infection in noncomplementing cells demonstrated capsid assembly, cytoplasmic envelopment, and the formation of extracellular enveloped virions. Furthermore, extracellular virions isolated from noncomplementing cells had similar profiles and abundances of structural proteins. Virions containing VP1-2ΔNLS were able to enter and be transported within cells. However, further progress of infection was prevented, with at least a 500- to 1,000-fold reduction in the efficiency of initiating gene expression compared to that in the revertant. Ultrastructural and immunofluorescence analyses revealed that the K.VP1-2ΔNLS mutant was blocked at the microtubule organizing center or immediately upstream of nuclear pore docking and prior to gene expression. These results indicate that the VP1-2 NLS is not required for the known assembly functions of the protein but is a key requirement for the early routing to the nuclear pore that is necessary for successful infection. Given its conservation, we propose that this motif may also be critical for entry of other classes of herpesviruses. 相似文献
18.
19.