首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two central features of leukocyte chemosensory movement behavior demand fundamental theoretical understanding. In uniform concentrations of chemoattractant, these cells exhibit a persistent random walk, with a characteristic “persistence time” between significant changes in direction. In chemoattractant concentration gradients, they demonstrate a biased random walk, with an “orientation bias” characterizing the fraction of cells moving up the gradient. A coherent picture of cell-movement responses to chemoattractant requires that both the persistence time and the orientation bias be explained within a unifying framework. In this paper we offer the possibility that “noise” in the cellular signal perception/response mechanism can simultaneously account for these two key phenomena. In particular, we report on a stochastic mathematical model for cell locomotion based on kinetic fluctuations in chemoattractant receptor binding. This model proves to be capable of stimulating cell paths similar to those observed experimentally for two cell types examined to date: neutrophils and alveolar macrophages, under conditions of uniform chemoattractant concentrations as well as chemoattractant concentration gradients. Further, this model can quantitatively predict both cell persistence time and dependence of orientation bias on gradient size. The model also successfully predicts that an increase in persistence time is associated with a decrease in orientation for typical system parameter values, as is observed for alveolar macrophages in comparison to neutrophils. Thus, the concept of signal “noise” can quantitatively unify the major characteristics of leukocyte random motility and chemotaxis. The same level of noise large enough to account for the observed frequency of turning in uniform environments is simultaneously small enough to allow for the observed degree of directional bias in gradients. This suggests that chemosensory cell movement behavior may be based on a “usefully” imperfect integrated signal response system, which allows both random and directed searches under appropriate conditions.  相似文献   

2.
Binding of ligand to its receptor is a stochastic process that exhibits fluctuations in time and space. In chemotaxis, this leads to a noisy input signal. Therefore, in a gradient of chemoattractant, the cell may occasionally experience a "wrong" gradient of occupied receptors. We obtained a simple equation for P(pos), the probability that half of the cell closest to the source of chemoattractant has higher receptor occupancy than the opposite half of the cell. P(pos) depends on four factors, the gradient property delC/sq. root of C, the receptor characteristic R(t)/K(D), a time-averaging constant I, and nonreceptor noise sigma(B). We measured chemotaxis of Dictyostelium cells to known shallow gradients of cAMP and obtained direct estimates for these constants. Furthermore, we observed that in shallow gradients, the measured chemotaxis index is correlated with P(pos), which suggests that chemotaxis in shallow gradients is a pure biased random walk. From the observed chemotaxis and derived time-averaging constant, we deduce that the gradient transducing second messenger has a lifetime of 2-8 s and a diffusion rate constant of approximately 1 microm(2)/s. Potential candidates for such second messengers are discussed.  相似文献   

3.
Mammalian white blood cells are known to bias the direction of their movement along concentration gradients of specific chemical stimuli, a phenomenon called chemotaxis. Chemotaxis of leukocyte cells is central to the acute inflammatory response in living organisms and other critical physiological functions. On a molecular level, these cells sense the stimuli termed chemotactic factor (CF) through specific cell surface receptors that bind CF molecules. This triggers a complex signal transduction process involving intracellular biochemical pathways and biophysical events, eventually leading to the observable chemotactic response. Several investigators have shown theoretically that statistical fluctuations in receptor binding lead to “noisy” intracellular signals, which may explain the observed imperfect chemotactic response to a CF gradient. The most recent dynamic model (Tranquillo and Lauffenburger,J. Math. Biol. 25, 229–262. 1987) couples a scheme for intracellular signal transduction and cell motility response with fluctuations in receptor binding. However, this model employs several assumptions regarding receptor dynamics that are now known to be oversimplifications. We extend the earlier model by accounting for several known and speculated chemotactic receptor dynamics, namely, transient G-protein signaling, cytoskeletal association, and receptor internalization and recycling, including statistical fluctuations in the numbers of receptors among the various states. Published studies are used to estimate associated constants and ensure the predicted receptor distribution is accurate. Model analysis indicates that directional persistence in uniform CF concentrations is enhanced by increasing rate constants for receptor cytoskeletal inactivation, ternary complex dissociation, and binary complex dissociation, and by decreasing rate constants for receptor internalization and recycling. For most rate constants, we have detected an optimal range that maximizes orientation bias in CF gradients. We have also examined different desensitization and receptor recycling mechanisms that yield experimentally documented orientation behavior. These yield novel insights into the relationship between receptor dynamics and leukocyte chemosensory movement behavior.  相似文献   

4.
The mechanism of chemotaxis is one of the most interesting issues in modern cell biology. Recent work shows that shallow chemoattractant gradients do not induce the generation of pseudopods, as has been predicted in many models. This poses the question of how else cells can steer towards chemoattractants. Here we use a new computational algorithm to analyze the extension of pseudopods by Dictyostelium cells. We show that a shallow gradient of cAMP induces a small bias in the direction of pseudopod extension, without significantly affecting parameters such as pseudopod frequency or size. Persistent movement, caused by alternating left/right splitting of existing pseudopodia, amplifies the effects of this bias by up to 5-fold. Known players in chemotactic pathways play contrasting parts in this mechanism; PLA2 and cGMP signal to the cytoskeleton to regulate the splitting process, while PI 3-kinase and soluble guanylyl cyclase mediate the directional bias. The coordinated regulation of pseudopod generation, orientation and persistence by multiple signaling pathways allows eukaryotic cells to detect extremely shallow gradients.  相似文献   

5.
Mechanical compliance is emerging as an important environmental cue that can influence certain cell behaviors, such as morphology and motility. Recent in vitro studies have shown that cells preferentially migrate from less stiff to more stiff substrates; however, much of this phenomenon, termed durotaxis, remains ill-defined. To address this problem, we studied the morphology and motility of vascular smooth muscle cells on well-defined stiffness gradients. Baselines for cell spreading, polarization, and random motility on uniform gels with moduli ranging from 5 to 80 kPa were found to increase with increasing stiffness. Subsequent analysis of the behavior of vascular smooth muscle cells on gradient substrata (0-4 kPa/100 μm, with absolute moduli of 1-80 kPa) demonstrated that the morphology on gradient gels correlated with the absolute modulus. In contrast, durotaxis (evaluated quantitatively as the tactic index for a biased persistent random walk) and cell orientation with respect to the gradient both increased with increasing magnitude of gradient, but were independent of the absolute modulus. These observations provide a foundation for establishing quantitative relationships between gradients in substrate stiffness and cell response. Moreover, these results reveal common features of phenomenological cell response to chemotactic and durotactic gradients, motivating further mechanistic studies of how cells integrate and respond to multiple complex signals.  相似文献   

6.
7.
The active migration of blood and tissue cells is important in a number of physiological processes including inflammation, wound healing, embryogenesis, and tumor cell metastasis. These cells move by transmitting cytoplasmic force through membrane receptors which are bound specifically to adhesion ligands in the surrounding substratum. Recently, much research has focused on the influence of the composition of extracellular matrix and the distribution of its components on the speed and direction of cell migration. It is commonly believed that the magnitude of the adhesion influences cell speed and/or random turning behavior, whereas a gradient of adhesion may bias the net direction of the cell movement, a phenomenon known as haptotaxis. The mechanisms underlying these responses are presently not understood.A stochastic model is presented to provide a mechanistic understanding of how the magnitude and distribution of adhesion ligands in the substratum influence cell movement. The receptor-mediated cell migration is modeled as an interrelation of random processes on distinct time scales. Adhesion receptors undergo rapid binding and transport, resulting in a stochastic spatial distribution of bound receptors fluctuating about some mean distribution. This results in a fluctuating spatio-temporal pattern of forces on the cell, which in turn affects the speed and turning behavior on a longer time scale. The model equations are a system of nonlinear stochastic differential equations (SDE's) which govern the time evolution of the spatial distribution of bound and free receptors, and the orientation and position of the cell. These SDE's are integrated numerically to simulate the behavior of the model cell on both a uniform substratum, and on a gradient of adhesion ligand concentration.Furthermore, analysis of the governing SDE system and corresponding Fokker-Planck equation (FPE) yields analytical expressions for indices which characterize cell movement on multiple time scales in terms of cell cytomechanical, morphological, and receptor binding and transport parameters. For a uniform adhesion ligand concentration, this analysis provides expressions for traditional cell movement indices such as mean speed, directional persistence time, and random motility coefficient. In a small gradient of adhesion, a perturbation analysis of the FPE yields a constitutive cell flux expression which includes a drift term for haptotactic directional cell migration. The haptotactic drift contains terms identified as contributions from directional orientation bias (taxis).  相似文献   

8.
The mechanism of eukaryotic chemotaxis remains unclear despite intensive study. The most frequently described mechanism acts through attractants causing actin polymerization, in turn leading to pseudopod formation and cell movement. We recently proposed an alternative mechanism, supported by several lines of data, in which pseudopods are made by a self-generated cycle. If chemoattractants are present, they modulate the cycle rather than directly causing actin polymerization. The aim of this work is to test the explanatory and predictive powers of such pseudopod-based models to predict the complex behaviour of cells in chemotaxis. We have now tested the effectiveness of this mechanism using a computational model of cell movement and chemotaxis based on pseudopod autocatalysis. The model reproduces a surprisingly wide range of existing data about cell movement and chemotaxis. It simulates cell polarization and persistence without stimuli and selection of accurate pseudopods when chemoattractant gradients are present. It predicts both bias of pseudopod position in low chemoattractant gradients and--unexpectedly--lateral pseudopod initiation in high gradients. To test the predictive ability of the model, we looked for untested and novel predictions. One prediction from the model is that the angle between successive pseudopods at the front of the cell will increase in proportion to the difference between the cell's direction and the direction of the gradient. We measured the angles between pseudopods in chemotaxing Dictyostelium cells under different conditions and found the results agreed with the model extremely well. Our model and data together suggest that in rapidly moving cells like Dictyostelium and neutrophils an intrinsic pseudopod cycle lies at the heart of cell motility. This implies that the mechanism behind chemotaxis relies on modification of intrinsic pseudopod behaviour, more than generation of new pseudopods or actin polymerization by chemoattractants.  相似文献   

9.
The stochastic nature of cell surface receptor-ligand binding is known to limit the accuracy of detection of chemoattractant gradients by leukocytes, thus limiting the orientation ability that is crucial to the chemotactic response in host defense. The probabilistic cell orientation model of Lauffenburger is extended here to assess the consequences of recently discovered receptor phenomena: "down-regulation" of total surface receptor number, spatial asymmetry of surface receptors, and existence of a higher-affinity receptor subpopulation. In general, a reduction in orientation accuracy is predicted by inclusion of these phenomena. An orientation signal based on a simple model of chemosensory adaptation (i.e., a spatial difference in relative receptor occupancy) is found to be functionally different from the signal suggested by an experimental correlation (i.e., a spatial difference in absolute receptor occupancy). However, in the context of receptor "signal noise," the signal based on adaptation yields predictions in better qualitative agreement with the experimental orientation data of Zigmond. From this cell orientation model we can estimate the effective time-averaging period required for noise diminution to a level allowing orientation predictions to match observed levels. This time-averaging period presumably reflects the time constant for receptor signal transduction and locomotory response.  相似文献   

10.
Directed cell migration is critical for normal development, immune responses, and wound healing and plays a prominent role in tumor metastasis. In eukaryotes, cell orientation is biased by an external chemoattractant gradient through a spatial contrast in chemoattractant receptor-mediated signal transduction processes that differentially affect cytoskeletal dynamics at the cell front and rear. Mechanisms of spatial gradient sensing and chemotaxis have been studied extensively in the social amoeba Dictyostelium discoideum and mammalian leukocytes (neutrophils), which are similar in their remarkable sensitivity to shallow gradients and robustness of response over a broad range of chemoattractant concentration. Recently, we have quantitatively characterized a different gradient sensing system, that of platelet-derived growth factor-stimulated fibroblasts, an important component of dermal wound healing. The marked differences between this system and the others have led us to speculate on the diversity of gradient sensing mechanisms and their biological implications.  相似文献   

11.
Many amoeboid cells move by extending pseudopods. Here I present a new stochastic model for chemotaxis that is based on pseudopod extensions by Dictyostelium cells. In the absence of external cues, pseudopod extension is highly ordered with two types of pseudopods: de novo formation of a pseudopod at the cell body in random directions, and alternating right/left splitting of an existing pseudopod that leads to a persistent zig-zag trajectory. We measured the directional probabilities of the extension of splitting and de novo pseudopods in chemoattractant gradients with different steepness. Very shallow cAMP gradients can bias the direction of splitting pseudopods, but the bias is not perfect. Orientation of de novo pseudopods require much steeper cAMP gradients and can be more precise. These measured probabilities of pseudopod directions were used to obtain an analytical model for chemotaxis of cell populations. Measured chemotaxis of wild-type cells and mutants with specific defects in these stochastic pseudopod properties are similar to predictions of the model. These results show that combining splitting and de novo pseudopods is a very effective way for cells to obtain very high sensitivity to stable gradient and still be responsive to changes in the direction of the gradient.  相似文献   

12.
Escherichia coli is a motile bacterium that moves up a chemoattractant gradient by performing a biased random walk composed of alternating runs and tumbles. This paper presents calculations of the chemotactic drift velocity v d (the mean velocity up the chemoattractant gradient) of an E. coli cell performing chemotaxis in a uniform, steady shear flow, with a weak chemoattractant gradient at right angles to the flow. Extending earlier models, a combined analytic and numerical approach is used to assess the effect of several complications, namely (i) a cell cannot detect a chemoattractant gradient directly but rather makes temporal comparisons of chemoattractant concentration, (ii) the tumbles exhibit persistence of direction, meaning that the swimming directions before and after a tumble are correlated, (iii) the cell suffers random re-orientations due to rotational Brownian motion, and (iv) the non-spherical shape of the cell affects the way that it is rotated by the shear flow. These complications influence the dependence of v d on the shear rate γ. When they are all included, it is found that (a) shear disrupts chemotaxis and shear rates beyond γ≈2 s−1 render chemotaxis ineffective, (b) in terms of maximizing drift velocity, persistence of direction is advantageous in a quiescent fluid but disadvantageous in a shear flow, and (c) a more elongated body shape is advantageous in performing chemotaxis in a shear flow. J.T. Locsei is supported by an Oliver Gatty Studentship from the University of Cambridge.  相似文献   

13.
Chemotaxis, the directed motion of a cell toward a chemical source, plays a key role in many essential biological processes. Here, we derive a statistical model that quantitatively describes the chemotactic motion of eukaryotic cells in a chemical gradient. Our model is based on observations of the chemotactic motion of the social ameba Dictyostelium discoideum, a model organism for eukaryotic chemotaxis. A large number of cell trajectories in stationary, linear chemoattractant gradients is measured, using microfluidic tools in combination with automated cell tracking. We describe the directional motion as the interplay between deterministic and stochastic contributions based on a Langevin equation. The functional form of this equation is directly extracted from experimental data by angle-resolved conditional averages. It contains quadratic deterministic damping and multiplicative noise. In the presence of an external gradient, the deterministic part shows a clear angular dependence that takes the form of a force pointing in gradient direction. With increasing gradient steepness, this force passes through a maximum that coincides with maxima in both speed and directionality of the cells. The stochastic part, on the other hand, does not depend on the orientation of the directional cue and remains independent of the gradient magnitude. Numerical simulations of our probabilistic model yield quantitative agreement with the experimental distribution functions. Thus our model captures well the dynamics of chemotactic cells and can serve to quantify differences and similarities of different chemotactic eukaryotes. Finally, on the basis of our model, we can characterize the heterogeneity within a population of chemotactic cells.  相似文献   

14.
Many kinds of peritrichous bacteria that repeat runs and tumbles by using multiple flagella exhibit chemotaxis by sensing a difference in the concentration of the attractant or repellent between two adjacent time points. If a cell senses that the concentration of an attractant has increased, their flagellar motors decrease the switching frequency from counterclockwise to clockwise direction of rotation, which causes a longer run in swimming up the concentration gradient than swimming down. We investigated the turn angle in tumbles of peritrichous bacteria swimming across the concentration gradient of a chemoattractant because the change in the switching frequency in the rotational direction may affect the way tumbles. We tracked several hundreds of runs and tumbles of single cells of Salmonella enterica serovar Typhimurium in the concentration gradient of L-serine and found that the turn angle depends on the concentration gradient that the cell senses just before the tumble. The turn angle is biased toward a smaller value when the cells swim up the concentration gradient, whereas the distribution of the angle is almost uniform (random direction) when the cells swim down the gradient. The effect of the observed bias in the turn angle on the degree of chemotaxis was investigated by random walk simulation. In the concentration field where attractants diffuse concentrically from the point source, we found that this angular distribution clearly affects the reduction of the mean-square displacement of the cell that has started at the attractant source, that is, the bias in the turn angle distribution contributes to chemotaxis in peritrichous bacteria.  相似文献   

15.
Escherichia coli is a motile bacterium that moves up a chemoattractant gradient by performing a biased random walk composed of alternating runs and tumbles. Previous models of run and tumble chemotaxis neglect one or more features of the motion, namely (a) a cell cannot directly detect a chemoattractant gradient but rather makes temporal comparisons of chemoattractant concentration, (b) rather than being entirely random, tumbles exhibit persistence of direction, meaning that the new direction after a tumble is more likely to be in the forward hemisphere, and (c) rotational Brownian motion makes it impossible for an E. coli cell to swim in a straight line during a run. This paper presents an analytic calculation of the chemotactic drift velocity taking account of (a), (b) and (c), for weak chemotaxis. The analytic results are verified by Monte Carlo simulation. The results reveal a synergy between temporal comparisons and persistence that enhances the drift velocity, while rotational Brownian motion reduces the drift velocity. This work was supported by an Oliver Gatty Studentship from the University of Cambridge.  相似文献   

16.
Modeling microbial chemotaxis in a diffusion gradient chamber   总被引:1,自引:0,他引:1  
The diffusion gradient chamber (DGC) has proven to be a useful experimental tool for studying population-level microbial growth and chemotaxis. A mathematical model capable of reproducing the population-level patterns formed as a result of cellular growth and chemotaxis in the DGC has been developed. The model consists of coupled partial differential balance equations for cells, chemoattractants, and a nutrient, which are solved simultaneously by the alternating direction implicit method. Modeling simulation results were compared with population-level migration patterns of Escherichia coli growing on glycerol and responding to a gradient of the chemoattractant aspartate for two different initial conditions. To accurately reproduce the experimental results, a second chemoattractant equation was necessary. The second chemoattractant has been identified as oxygen by directly measuring oxygen gradients in the DGC. Important trends observed experimentally and reproduced by the model include the formation of a chemotactic wave, a reduction in the wave velocity as it encounters higher chemoattractant concentrations, and chemotaxis in response to two different chemoattractants simultaneously. The model was also used to study the relative magnitude of cell fluxes due to random motility and chemotaxis, and the suppression of chemotaxis due to receptor saturation. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 191-205, 1997.  相似文献   

17.
Chemotaxing cells, such as Dictyostelium and mammalian neutrophils, sense shallow chemoattractant gradients and respond with highly polarized changes in cell morphology and motility. Uniform chemoattractant stimulation induces the transient translocations of several downstream signaling components, including phosphoinositide 3-kinase (PI3K), tensin homology protein (PTEN), and phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3). In contrast, static spatial chemoattractant gradients elicit the persistent, amplified localization of these molecules. We have proposed a model in which the response to chemoattractant is regulated by a balance of a local excitation and a global inhibition, both of which are controlled by receptor occupancy. This model can account for both the transient and spatial responses to chemoattractants, but alone does not amplify the external gradient. In this article, we develop a model in which parallel local excitation, global inhibition mechanisms control the membrane binding of PI3K and PTEN. Together, the action of these enzymes induces an amplified PI(3,4,5)P3 response that agrees quantitatively with experimentally obtained plekstrin homology-green fluorescent protein distributions in latrunculin-treated cells. We compare the model's performance with that of several mutants in which one or both of the enzymes are disrupted. The model accounts for the observed response to multiple, simultaneous chemoattractant cues and can recreate the cellular response to combinations of temporal and spatial stimuli. Finally, we use the model to predict the response of a cell where only a fraction is stimulated by a saturating dose of chemoattractant.  相似文献   

18.
Local chemical gradients can have a significant impact on bacterial population distributions within subsurface environments by evoking chemotactic responses. These local gradients may be created by consumption of a slowly diffusing nutrient, generation of a local food source from cell lysis, or dissolution of nonaqueous phase liquids trapped within the interstices of a soil matrix. We used a random walk simulation algorithm to study the effect of a local microscopic gradient on the swimming behavior of bacteria in a porous medium. The model porous medium was constructed using molecular dynamics simulations applied to a fluid of equal-sized spheres. The chemoattractant gradient was approximated with spherical symmetry, and the parameters for the swimming behavior of soil bacterium Pseudomonas putida were based on literature values. Two different mechanisms for bacterial chemotaxis, one in which the bacteria responded to both positive and negative gradients, and the other in which they responded only to positive gradients, were compared. The results of the computer simulations showed that chemotaxis can increase migration through a porous medium in response to microscopic-scale gradients. The simulation results also suggested that a more significant role of chemotaxis may be to increase the residence time of the bacteria in the vicinity of an attractant source.  相似文献   

19.
Chemotaxis, directed cell migration in a gradient of chemoattractant, is an important biological phenomenon that plays pivotal roles in cancer metastasis. Newly developed microfluidic chemotaxis chambers (MCC) were used to study chemotaxis of metastatic breast cancer cells, MDA-MB-231, in EGF gradients of well-defined profiles. Migration behaviors of MDA-MB-231 cells in uniform concentrations of EGF (0, 25, 50, and 100 ng/ml) and EGF (0-25, 0-50, and 0-100 ng/ml) with linear and nonlinear polynomial profiles were investigated. MDA-MB-231 cells exhibited increased speed and directionality upon stimulation with uniform concentrations of EGF. The cells were viable and motile for over 24 h, confirming the compatibility of MCC with cancer cells. Linear concentration gradients of different ranges were not effective in inducing chemotactic movement as compared to nonlinear gradients. MDA-MB-231 cells migrating in EGF gradient of 0-50 ng/ml nonlinear polynomial profile exhibited marked directional movement toward higher EGF concentration. This result suggests that MDA-MB-231 cancer cell chemotaxis depends on the shape of gradient profile as well as on the range of EGF concentrations.  相似文献   

20.
Analysis of cell movement   总被引:5,自引:0,他引:5  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号