首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
李梅  曾凡荣 《微生物学通报》2008,35(7):1107-1112
链霉菌中存在大量的细胞色素P450,它们在链霉菌次生代谢产物的生物合成和外来化学物质代谢过程中发挥了重要作用.本文综述了链霉菌中发现的细胞色素P450及其功能的研究进展,分析了存在的问题和研究应用前景.  相似文献   

2.
利用生物信息学的方法,分析天蓝色链霉菌Streptomyces coelicolor中几丁质酶C(Chi C)的一些基本性质,并针对链霉菌属菌种的几个几丁质酶基因做了进化树,进而验证了天蓝色链霉菌中至少8种几丁质酶的分类;同时对天蓝色链霉菌Streptomyces coelicolor中几丁质酶C(Chi C)蛋白的高级结构作出了预测,得到其编码的属于18家族的蛋白质高级结构图谱。  相似文献   

3.
细胞色素P450作为单加氧酶的主要成员,能够在多种化合物中引入氧分子,催化包括羟化在内的多种反应。在级联的氧化还原反应中,需特定的电子传递链将氧原子中的电子传递至P450单加氧酶的亚铁红素结构中,并最终催化底物氧化,而电子传递体系的低效性往往成为整个反应的限速步骤。本文在介绍P450单加氧酶电子传递链基本结构的基础上,着重阐述对于细胞色素P450酶系中电子传递链未知或者内源性电子传递效率较低的情况下,利用DNA重组技术构建高效的电子传递链从而提高P450单加氧酶的催化效率相关研究进展,主要从细菌及真核细胞线粒体电子传递链(ClassⅠ)及真核生物细胞色素C还原酶CPR(ClassⅡ),天然融合电子传递链及人工融合蛋白电子传递链的构建及其应用展开。  相似文献   

4.
金霉素链霉菌启动基因在大肠杆菌中的克隆及表达   总被引:2,自引:1,他引:1  
利用质粒pGA46作为载体,将金霉素链霉菌染色体DNA的Sau3A酶切片段插入pGA-46的BglII位点,获得氯霉素抗性、四环素抗性的重组质粒。DNA同源性分析表明,重组质粒中外源序列来自金霉素链霉菌DNA。重组质粒的限制性酶切产物电泳分析,可以重新找到载体DNA片段。将链霉菌的插入序列移入另一载体pBR322中,仍可表现启动基因的功能。用限制性内切酶酶切及核酸酶BAL-31酶切等方法,已将链霉菌的插入序列降至200bp以下,仍保留启动基因功能。  相似文献   

5.
利用Sephadex G25 凝胶过滤和磷酸纤维素层析相结合的方法,将庆丰链霉菌Q3所产生的细菌素——庆丰链霉菌素进行了提纯。这种细菌素是一种分子量为4737的蛋白性质物质,对热、紫外线和所试用的有机溶剂稳定,最适pH处于7.0—9.0。嗜热菌蛋白酶和链霉蛋白酶P可以完全破坏其活性,蛋白酶K能部分减低其活性,但所试验的其它蛋白水解酶类,以及DNA酶和RNA酶均无损其活性。根据庆丰链霉菌素对所测定的革兰氏阳性和阴性菌的生长影响,呈现抑制生长和促进生长,有一部分介于中间类型。  相似文献   

6.
对一株从土壤中分离的纤溶酶产生菌链霉菌C-3662的形态、培养、生理生化和化学分类特征进行了研究,发现其与泛温链霉菌(Streptomyces eurythermus Corbaz et al.1968)的特征很相符。通过对链霉菌C-3662的16SrDNA序列进行测定与比对,发现它与泛温链霉菌的16SrDNA序列也有高达98.19%的同源性。根据多相分类原则,认为链霉菌C-3662属于泛温链霉菌。对链霉菌C-3662的发酵培养基组成等的研究表明,合适的发酵培养基中应含有氮源黄豆饼粉2.0%、碳源淀粉1.0%和葡萄糖2.5%以及少量的无机盐类和硫酸镁。链霉菌C-3662的发酵过程研究表明,纤溶酶是菌丝体生长停止之后才大量产生。  相似文献   

7.
朱宇  冯迟  谭华荣  田宇清 《微生物学报》2013,53(10):1031-1042
摘要:【目的】构建用于阻遏链霉菌隐性次级代谢基因簇表达的负调控因子筛选的报告系统。【方法】通过“REDIRECT (Rapid Efficient Directed Recombination Time Saving)”技术结合链霉菌温和噬菌体BT1整合酶的体内位点特异性重组技术,对链霉菌中多基因进行无痕敲除。以链霉菌隐性次级代谢基因簇中受阻遏的启动子驱动链霉菌中保守的inoA 构建报告质粒,针对阻遏次级代谢基因簇表达的负调控基因的突变进行检测,以验证报告系统的可行性。【结果】本研究首先通过对天蓝色链霉菌的肌醇从头合成途径关键酶基因inoA,及合成黄色聚酮类隐性抗生素(yellow cryptic polyketide,yCPK)的途径特异性负调控基因scbR2依次进行了无痕敲除,以构建进一步筛选所用的受体菌,再以scbR2阻遏的cpkO启动子控制inoA 的表达构建了报告质粒pIJ8660::PcpkO::inoA。结果显示沉默的cpkO 启动子在突变的受体菌中被激活并使inoA得到了表达,可以使inoA的光秃型突变表型在不添加肌醇的培养基上恢复到产孢的野生型表型。【结论】inoA可以作为新的链霉菌普遍适用的报告基因,可方便地通过表型变化的观察进行筛选,同时可针对性对负调控基因的突变进行检测,可应用于链霉菌隐性抗生素激活的研究。  相似文献   

8.
12 %的蔗糖浓度、 0 5 %甘氨酸、溶菌酶酶解 1h,是金色链霉菌原生质体制备的较优条件。采用麸皮再生培养基替代R2YE再生培养基 ,原生质体再生率、生长及筛选效果得到明显改善。P buffer介导的质粒转化效率高于T buffer,33%的PEG1 0 0 0是质粒转化金色链霉菌原生质的最适浓度。  相似文献   

9.
一种产生纤溶酶的链霉菌C-3662的鉴定及发酵研究   总被引:8,自引:0,他引:8  
对一株从土壤中分离的纤溶酶产生菌链霉菌C-3662的形态、培养、生理生化和化学分类特征进行了研究,发现其与泛温链霉菌(Streptomyces eurythermus Corbaz et al. 1968)的特征很相符。通过对链霉菌C-3662的16S rDNA序列进行测定与比对,发现它与泛温链霉菌的16S rDNA序列也有高达98.19%的同源性。根据多相分类原则,认为链霉菌C-3662属于泛温链霉菌。对链霉菌C-3662的发酵培养基组成等的研究表明,合适的发酵培养基中应含有氮源黄豆饼粉2.0%、碳源淀粉1.0%和葡萄糖2.5%以及少量的无机盐类如硫酸镁。链霉菌C3662的发酵过程研究表明,纤溶酶是在菌丝体生长停止之后才大量产生。  相似文献   

10.
胰蛋白酶作为一种重要的丝氨酸蛋白酶被广泛应用于食品、医药和皮革等工业领域.本文成功实现了灰色链霉菌来源的胰蛋白编码基因在变铅青链霉菌中的高效活性表达,并对其酶学性质进行分析比较.以灰色链霉菌ATCC10137基因组为模板,获得胰蛋白酶编码基因sprT并克隆至表达质粒pIJ86,成功构建了重组链霉菌工程菌TK24/pIJ86-sprT.以R2YE和SELF为发酵培养基,最高酶活分别达9.21 U/mL和8.61 U/mL.酶学性质分析表明,和牛胰蛋白酶(BT)相比,重组链霉菌胰蛋白酶(rSGT)的耐酸能力强,具有较广的pH;且rSGT对酰胺键具有更高的特异性;此外,Zn2+和有机溶剂分别对rSGT的酯酶活力和酰胺酶活力具有促进作用;本研究结果为rSGT的性质改造以及工业应用提供了依据.  相似文献   

11.
Many organisms do not contain the necessary biochemical armoury to carry out the initial oxidative attack of many pollutant chemicals. In the present study, Acinetobacter sp. strain BD413 has been genetically engineered to express the cytochrome P450 xenobiotic-metabolising enzyme CYP105D1 from Streptomyces griseus that has in its repertoire a diverse array of organic pollutants. Further, it is shown that the transformed Acinetobacter calcoaceticus strain BD413 can grow on pollutants unlike control bacteria not expressing cytochrome P450 and that was reflected in release of radiolabel with growth on radiolabelled chlortoluron. We show that cytochrome P450 can enhance the biodegrading repertoire of A. calcoaceticus and discuss the application of such results to bioremediation strategies.  相似文献   

12.
Tautomycetin (TMC), originally isolated from Streptomyces griseochromogenes, has been reported to possess biological functions including T cell-specific immunosuppressive and anticancer activities through a mechanism of differential inhibition of protein phosphatases such as PP1, PP2A, and SHP2. Independently isolated Streptomyces sp. CK4412 was also reported to produce a structurally identical TMC compound. Previously, we isolated and characterized the entire TMC biosynthetic gene cluster from Streptomyces sp. CK4412. In silico database comparison revealed a 1,359-bp tmcR as a putative bacterial Cytochrome P450 hydroxylase gene in the TMC biosynthetic gene cluster. Through targeted gene disruption and complementation, the tmcR mutant was confirmed to produce a C5-deoxy-TMC, the same analogue produced by the S. griseochromogenes ttnI mutant, implying that TmcR behaves as a regiospecific C5-oxygenase in the TMC biosynthetic pathway in Streptomyces sp. CK4412. In particular, the C5-deoxy-TMC from the tmcR mutant exhibited 3.2-fold higher inhibition activity toward SHP2 with significantly reduced inhibition activities toward PP1, and human Vero and lung cancer cells. These results suggested that C5 regiospecific modification of the TMC polyketide moiety may result in a drug development target for use in preferentially enhancing immunosuppressive activity while minimizing its undesirable biological activities.  相似文献   

13.
J Sasaki  A Mikami  K Mizoue    S Omura 《Applied microbiology》1991,57(10):2841-2846
To enzymatically synthesize vitamin D derivatives, we screened about 300 Streptomyces sp. strains. Streptomyces sclerotialus FERM BP-1370 and Streptomyces roseoporus FERM BP-1574 were found to have the ability to convert 25-hydroxyvitamin D3 and 1 alpha-hydroxyvitamin D3, respectively, to 1 alpha, 25-dihydroxyvitamin D3. The average rates of 1 alpha hydroxylation of 25-hydroxyvitamin D3 were 6.9 micrograms liter-1 min-1 with FERM BP-1370 and 7.0 micrograms liter-1 min-1 with FERM BP-1574. The specific cytochrome P-450 inhibitors carbon monoxide, SKF-525-A, and metyrapone inhibited the hydroxylation of 1 alpha- and 25-hydroxyvitamin D3 to 1 alpha, 25-dihydroxyvitamin D3 by FERM BP-1370 and FERM BP-1574. The cytochromes P-450 of these strains were detected by reduced CO difference spectra in the whole-cell suspensions. The appearance of cytochrome P-450 suggests that the cytochromes P-450 of FERM BP-1370 and FERM BP-1574 carry out the hydroxylation of 25- and 1 alpha-hydroxyvitamin D3 to 1 alpha, 25-dihydroxyvitamin D3.  相似文献   

14.
To enzymatically synthesize vitamin D derivatives, we screened about 300 Streptomyces sp. strains. Streptomyces sclerotialus FERM BP-1370 and Streptomyces roseoporus FERM BP-1574 were found to have the ability to convert 25-hydroxyvitamin D3 and 1 alpha-hydroxyvitamin D3, respectively, to 1 alpha, 25-dihydroxyvitamin D3. The average rates of 1 alpha hydroxylation of 25-hydroxyvitamin D3 were 6.9 micrograms liter-1 min-1 with FERM BP-1370 and 7.0 micrograms liter-1 min-1 with FERM BP-1574. The specific cytochrome P-450 inhibitors carbon monoxide, SKF-525-A, and metyrapone inhibited the hydroxylation of 1 alpha- and 25-hydroxyvitamin D3 to 1 alpha, 25-dihydroxyvitamin D3 by FERM BP-1370 and FERM BP-1574. The cytochromes P-450 of these strains were detected by reduced CO difference spectra in the whole-cell suspensions. The appearance of cytochrome P-450 suggests that the cytochromes P-450 of FERM BP-1370 and FERM BP-1574 carry out the hydroxylation of 25- and 1 alpha-hydroxyvitamin D3 to 1 alpha, 25-dihydroxyvitamin D3.  相似文献   

15.
Evolutionary links between cytochrome P450 monooxygenases, a superfamily of extraordinarily divergent heme-thiolate proteins catalyzing a wide array of NADPH/NADH- and O(2)-dependent reactions, are becoming better understood because of availability of an increasing number of fully sequenced genomes. Among other reactions, P450s catalyze the site-specific oxidation of the precursors to macrolide antibiotics in the genus Streptomyces introducing regiochemical diversity into the macrolide ring system, thereby significantly increasing antibiotic activity. Developing effective uses for Streptomyces enzymes in biosynthetic processes and bioremediation requires identification and engineering of additional monooxygenases with activities toward a diverse array of small molecules. To elucidate the molecular basis for substrate specificity of oxidative enzymes toward macrolide antibiotics, the x-ray structure of CYP154C1 from Streptomyces coelicolor A3(2) was determined (Protein Data Bank code ). Relocation of certain common P450 secondary structure elements, along with a novel structural feature involving an additional beta-strand transforming the five-stranded beta-sheet into a six-stranded variant, creates an open cleft-shaped substrate-binding site between the two P450 domains. High sequence similarity to macrolide monooxygenases from other microbial species translates into catalytic activity of CYP154C1 toward both 12- and 14-membered ring macrolactones in vitro.  相似文献   

16.
Streptomyces and other bacterial actinomycete species produce many important natural products, including the majority of known antibiotics, and cytochrome P450 (P450) enzymes catalyze important biosynthetic steps. Relatively few electron transport pathways to P450s have been characterized in bacteria, particularly streptomycete species. One of the 18 P450s in Streptomyces coelicolor A3(2), P450 105D5, was found to bind fatty acids tightly and form hydroxylated products when electrons were delivered from heterologous systems. The six ferredoxin (Fdx) and four flavoprotein Fdx reductase (FDR) proteins coded by genes in S. coelicolor were expressed in Escherichia coli, purified, and used to characterize the electron transfer pathway. Of the many possibilities, the primary pathway was NADH --> FDR1 --> Fdx4 --> P450 105D5. The genes coding for FDR1, Fdx4, and P450 105D5 are located close together in the S. coelicolor genome. Several fatty acids examined were substrates, including those found in S. coelicolor extracts, and all yielded several products. Mass spectra of the products of lauric acid imply the 8-, 9-, 10-, and 11-hydroxy derivatives. Hydroxylated fatty acids were also detected in vivo in S. coelicolor. Rates of electron transfer between the proteins were measured; all steps were faster than overall hydroxylation and consistent with rates of NADH oxidation. Substrate binding, product release, and oxygen binding were relatively fast in the catalytic cycle; high kinetic deuterium isotope effects for all four lauric acid hydroxylations indicated that the rate of C-H bond breaking is rate-limiting in every case. Thus, an electron transfer pathway to a functional Streptomyces P450 has been established.  相似文献   

17.
L-Phenylalanine and L-tyrosine were completely catabolized through homogentisate by Streptomyces setonii 75Vi2 but only partially degraded by Streptomyces badius 252, Streptomyces sioyaensis P5, Streptomyces viridosporus T7A, and Streptomyces sp. strain V7. Intermediates of catabolism were confirmed by thin-layer, gas, and high-pressure liquid chromatography. Homogentisate 1,2-dioxygenase was present in all cell extracts.  相似文献   

18.
L-Phenylalanine and L-tyrosine were completely catabolized through homogentisate by Streptomyces setonii 75Vi2 but only partially degraded by Streptomyces badius 252, Streptomyces sioyaensis P5, Streptomyces viridosporus T7A, and Streptomyces sp. strain V7. Intermediates of catabolism were confirmed by thin-layer, gas, and high-pressure liquid chromatography. Homogentisate 1,2-dioxygenase was present in all cell extracts.  相似文献   

19.
We recently determined the function of the gene product of Streptomyces sp. strain C5 doxA, a cytochrome P-450-like protein, to be daunorubicin C-14 hydroxylase (M. L. Dickens and W. R. Strohl, J. Bacteriol. 178: 3389-3395, 1996). In the present study, we show that DoxA also catalyzes the hydroxylation of 13-deoxycarminomycin and 13-deoxydaunorubicin to 13-dihydrocarminomycin and 13-dihydrodaunorubicin, respectively, as well as oxidizing the 13-dihydro-anthracyclines to their respective 13-keto forms. The Streptomyces sp. strain C5 dauP gene product also was shown unequivocally to remove the carbomethoxy group of the epsilon-rhodomycinone-glycoside (rhodomycin D) to form 10-carboxy-13-deoxycarminomycin. Additionally, Streptomyces sp. strain C5 DauK was found to methylate the anthracyclines rhodomycin D, 10-carboxy-13-deoxycarminomycin, and 13-deoxy-carminomycin, at the 4-hydroxyl position, indicating a broader substrate specificity than was previously known. The products of Streptomyces sp. strain C5 doxA, dauK, and dauP were sufficient and necessary to confer on Streptomyces lividans TK24 the ability to convert rhodomycin D, the first glycoside in daunorubicin and doxorubicin biosynthesis, to doxorubicin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号