首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary We searched the complete 39,936 base DNA sequence of bacteriophage T7 for nonrandomness that might be attributed to natural selection. Codon usage in the 50 genes of T7 is nonrandom, both over the whole code and among groups of synonymous codons. There is a great excess of purineany base-pyrimidine (RNY) codons. Codon usage varies between genes, but from the pooled data for the whole genome (12,145 codons) certain putative selective constraints can be identified. Codon usage appears to be influenced by host tRNA abundance (particularly in highly expressed genes), tRNA-mRNA interactions (one such interaction being perhaps responsible for maintaining the excess of RNY codons) and a lack of short palindromes. This last constraint is probably due to selection against host restriction enzyme recognition sites; this is the first report of an effect of this kind on codon usage. Selection against susceptibility to mutational damage does not appear to have been involved.  相似文献   

2.
Does the 'non-coding' strand code?   总被引:3,自引:2,他引:1       下载免费PDF全文
The hypothesis that DNA strands complementary to the coding strand contain in phase coding sequences has been investigated. Statistical analysis of the 50 genes of bacteriophage T7 shows no significant correlation between patterns of codon usage on the coding and non-coding strands. In Bacillus and yeast genes the correlation observed is not different from that expected with random synonymous codon usage, while a high correlation seen in 52 E. coli genes can be explained in terms of an excess of RNY codons. A deficiency of UUA, CUA and UCA codons (complementary to termination) seems to be restricted to the E. coli genes, and may be due to low abundance of the relevant cognate tRNA species. Thus the analysis shows that the non-coding strand has the properties expected of a sequence complementary to a coding strand, with no indications that it encodes, or may have encoded, proteins.  相似文献   

3.
Codon usage in a sample of 28 genes from the pathogenic yeast Candida albicans has been analysed using multivariate statistical analysis. A major trend among genes, correlated with gene expression level, was identified. We have focussed on the extent and nature of divergence between C.albicans and the closely related yeast Saccharomyces cerevisiae. It was recently suggested that significant differences exist between the subsets of preferred codons in these two species [Brown et al. (1991) Nucleic Acids Res. 19, 4293]. Overall, the genes of C.albicans are more A + T-rich, reflecting the lower genomic G + C content of that species, and presumably resulting from a different pattern of mutational bias. However, in both species highly expressed genes preferentially use the same subset of 'optimal' codons. A suggestion that the low frequency of NCG codons in both yeast species results from selection against the presence of codons that are potentially highly mutable is discounted. Codon usage in C.albicans, as in other unicellular species, can be interpreted as the result of a balance between the processes of mutational bias and translational selection. Codon usage in two related Candida species, C.maltosa and C.tropicalis, is briefly discussed.  相似文献   

4.
Studies on codon usage in Entamoeba histolytica   总被引:13,自引:0,他引:13  
Codon usage bias of Entamoeba histolytica, a protozoan parasite, was investigated using the available DNA sequence data. Entamoeba histolytica having AT rich genome, is expected to have A and/or T at the third position of codons. Overall codon usage data analysis indicates that A and/or T ending codons are strongly biased in the coding region of this organism. However, multivariate statistical analysis suggests that there is a single major trend in codon usage variation among the genes. The genes which are supposed to be highly expressed are clustered at one end, while the majority of the putatively lowly expressed genes are clustered at the other end. The codon usage pattern is distinctly different in these two sets of genes. C ending codons are significantly higher in the putatively highly expressed genes suggesting that C ending codons are translationally optimal in this organism. In the putatively lowly expressed genes A and/or T ending codons are predominant, which suggests that compositional constraints are playing the major role in shaping codon usage variation among the lowly expressed genes. These results suggest that both mutational bias and translational selection are operational in the codon usage variation in this organism.  相似文献   

5.
Analysis of codon usage pattern is important to understand the genetic and evolutionary characteristics of genomes. We have used bioinformatic approaches to analyze the codon usage bias (CUB) of the genes located in human Y chromosome. Codon bias index (CBI) indicated that the overall extent of codon usage bias was low. The relative synonymous codon usage (RSCU) analysis suggested that approximately half of the codons out of 59 synonymous codons were most frequently used, and possessed a T or G at the third codon position. The codon usage pattern was different in different genes as revealed from correspondence analysis (COA). A significant correlation between effective number of codons (ENC) and various GC contents suggests that both mutation pressure and natural selection affect the codon usage pattern of genes located in human Y chromosome. In addition, Y-linked genes have significant difference in GC contents at the second and third codon positions, expression level, and codon usage pattern of some codons like the SPANX genes in X chromosome.  相似文献   

6.
J.C. Shepherd notes that codons of the type RNY (R = purine, N = any nucleotide base, Y = pyrimidine) predominate over RNR in the genes for proteins. He has hypothesized that RNY codons are the relics of “a primitive code” composed of repeating RNY triplets. He found that RNY codons predominated in fourfold RNN codon sets (family boxes). These family boxes code for valine, threonine, alanine, and glycine. We argue that the proposed “comma-less” code composed of RNY never existed, and that, in any case, survival of such a code would have long since been erased by mutations. The excess of RNY codons in family boxes is probably attributable to preference for the corresponding tRNAs.  相似文献   

7.
Codon usage in mitochondrial genome of the six different plants was analyzed to find general patterns of codon usage in plant mitochondrial genomes. The neutrality analysis indicated that the codon usage patterns of mitochondrial genes were more conserved in GC content and no correlation between GC12 and GC3. T and A ending codons were detected as the preferred codons in plant mitochondrial genomes. The Parity Rule 2 plot analysis showed that T was used more frequently than A. The ENC-plot showed that although a majority of the points with low ENC values were lying below the expected curve, a few genes lied on the expected curve. Correspondence analysis of relative synonymous codon usage yielded a first axis that explained only a partial amount of variation of codon usage. These findings suggest that natural selection is likely to be playing a large role in codon usage bias in plant mitochondrial genomes, but not only natural selection but also other several factors are likely to be involved in determining the selective constraints on codon bias in plant mitochondrial genomes. Meantime, 1 codon (P. patens), 6 codons (Z. mays), 9 codons (T. aestivum), 15 codons (A. thaliana), 15 codons (M. polymorpha) and 15 codons (N. tabacum) were defined as the preferred codons of the six plant mitochondrial genomes.  相似文献   

8.
Codon usage patterns in the slime mould Dictyostelium discoideum have been re-examined (a total of 58 genes have been analysed). Considering the extreme A + T-richness of this genome (G + C = 22%), there is a surprising degree of codon usage variation among genes. For example, G + C content at silent sites varies from less than 10% to greater than 30%. It was previously suggested [Warrick, H.M. and Spudich, J.A. (1988) Nucleic Acids Res. 16: 6617-6635] that highly expressed genes contain fewer 'optimal' codons than genes expressed at lower levels. However, it appears that the optimal codons were misidentified. Multivariate statistical analysis shows that the greatest variation among genes is in relative usage of a particular subset of codons (about one per amino acid), many of which are C-ending. We have identified these as optimal codons, since (i) their frequency is positively correlated with gene expression level, and (ii) there is a strong mutation bias in this genome towards A and T nucleotides. Thus, codon usage in D. discoideum can be explained by a balance between the forces of mutational bias and translational selection.  相似文献   

9.
Codon usage in higher plants, green algae, and cyanobacteria   总被引:3,自引:1,他引:2  
Codon usage is the selective and nonrandom use of synonymous codons by an organism to encode the amino acids in the genes for its proteins. During the last few years, a large number of plant genes have been cloned and sequenced, which now permits a meaningful comparison of codon usage in higher plants, algae, and cyanobacteria. For the nuclear and organellar genes of these organisms, a small set of preferred codons are used for encoding proteins. Codon usage is different for each genome type with the variation mainly occurring in choices between codons ending in cytidine (C) or guanosine (G) versus those ending in adenosine (A) or uridine (U). For organellar genomes, chloroplastic and mitochrondrial proteins are encoded mainly with codons ending in A or U. In most cyanobacteria and the nuclei of green algae, proteins are encoded preferentially with codons ending in C or G. Although only a few nuclear genes of higher plants have been sequenced, a clear distinction between Magnoliopsida (dicot) and Liliopsida (monocot) codon usage is evident. Dicot genes use a set of 44 preferred codons with a slight preference for codons ending in A or U. Monocot codon usage is more restricted with an average of 38 codons preferred, which are predominantly those ending in C or G. But two classes of genes can be recognized in monocots. One set of monocot genes uses codons similar to those in dicots, while the other genes are highly biased toward codons ending in C or G with a pattern similar to nuclear genes of green algae. Codon usage is discussed in relation to evolution of plants and prospects for intergenic transfer of particular genes.  相似文献   

10.
It is well known that an amino acid can be encoded by more than one codon, called synonymous codons. The preferential use of one particular codon for coding an amino acid is referred to as codon usage bias (CUB). A quantitative analytical method, CUB and a related tool, Codon Adaptative Index have been applied to comparatively study whole genomes of a few pathogenic Trypanosomatid species. This quantitative attempt is of direct help in the comparison of qualitative features like mutational and translational selection. Pathogens of the Leishmania and Trypanosoma genus cause debilitating disease and suffering in human beings and animals. Of these, whole genome sequences are available for only five species. The complete coding sequences (CDS), highly expressed, essential and low expressed genes have all been studied for their CUB signature. The codon usage bias of essential genes and highly expressed genes show distribution similar to codon usage bias of all CDSs in Trypanosomatids. Translational selection is the dominant force selecting the preferred codon, and selection due to mutation is negligible. In contrast to an earlier study done on these pathogens, it is found in this work that CUB and CAI may be used to distinguish the Trypanosomatid genomes at the sub-genus level. Further, CUB may effectively be used as a signature of the species differentiation by using Principal Component Analysis (PCA).

Abbreviations

CUB - Codon Usage Bias, CAI - Codon Adaptative Index, CDS - Coding sequences, t-RNA - Transfer RNA, PCA - Principal Component Analysis.  相似文献   

11.
Divergence in codon usage of Lactobacillus species.   总被引:3,自引:0,他引:3       下载免费PDF全文
We have analyzed codon usage patterns of 70 sequenced genes from different Lactobacillus species. Codon usage in lactobacilli is highly biased. Both inter-species and intra-species heterogeneity of codon usage bias was observed. Codon usage in L. acidophilus is similar to that in L. helveticus, but dissimilar to that in L. bulgaricus, L. casei, L. pentosus and L. plantarum. Codon usage in the latter three organisms is not significantly different, but is different from that in L. bulgaricus. Inter-species differences in codon usage can, at least in part, be explained by differences in mutational drift. L. bulgaricus shows GC drift, whereas all other species show AT drift. L. acidophilus and L. helveticus rarely use NNG in family-box (a set of synonymous) codons, in contrast to all other species. This result may be explained by assuming that L. acidophilus and L. helveticus, but not other species examined, use a single tRNA species for translation of family-box codons. Differences in expression level of genes are positively correlated with codon usage bias. Highly expressed genes show highly biased codon usage, whereas weakly expressed genes show much less biased codon usage. Codon usage patterns at the 5'-end of Lactobacillus genes is not significantly different from that of entire genes. The GC content of codons 2-6 is significantly reduced compared with that of the remainder of the gene. The possible implications of a reduced GC content for the control of translation efficiency are discussed.  相似文献   

12.
Synonymous codon usage bias is a broadly observed phenomenon in bacteria, plants, and invertebrates and may result from selection. However, the role of selective pressures in shaping codon bias is still controversial in vertebrates, particularly for mammals. The myosin heavy-chain (MyHC) gene family comprises multiple isoforms of the major force-producing contractile protein in cardiac and skeletal muscles. Slow and fast genes are tandemly arrayed on separate chromosomes, and have distinct patterns of functionality and expression in muscle. We analyze both full-length MyHC genes (~5400?bp) and a larger collection of partial sequences at the 3' end (~500?bp). The MyHC isoforms are an interesting system in which to study codon usage bias because of their length, expression, and critical importance to organismal mobility. Codon bias and GC content differs among MyHC genes with regards to functional type, isoform, and position within the gene. Codon bias even varies by isoform within a species. We find evidence in favor of both chromosomal influences on nucleotide composition and selection against nonsense errors (SANE) acting on codon usage in MyHC genes. Intragenic variation in codon bias and elongation rate is significant, with a strong trend for increasing codon bias and elongation rate towards the 3' end of the gene, although the trend is dependent upon the degeneracy class of the codons. Therefore, patterns of codon usage in MyHC genes are consistent with models supporting SANE as a major force shaping codon usage.  相似文献   

13.
SK Behura  DW Severson 《PloS one》2012,7(8):e43111

Background

Codon bias is a phenomenon of non-uniform usage of codons whereas codon context generally refers to sequential pair of codons in a gene. Although genome sequencing of multiple species of dipteran and hymenopteran insects have been completed only a few of these species have been analyzed for codon usage bias.

Methods and Principal Findings

Here, we use bioinformatics approaches to analyze codon usage bias and codon context patterns in a genome-wide manner among 15 dipteran and 7 hymenopteran insect species. Results show that GAA is the most frequent codon in the dipteran species whereas GAG is the most frequent codon in the hymenopteran species. Data reveals that codons ending with C or G are frequently used in the dipteran genomes whereas codons ending with A or T are frequently used in the hymenopteran genomes. Synonymous codon usage orders (SCUO) vary within genomes in a pattern that seems to be distinct for each species. Based on comparison of 30 one-to-one orthologous genes among 17 species, the fruit fly Drosophila willistoni shows the least codon usage bias whereas the honey bee (Apis mellifera) shows the highest bias. Analysis of codon context patterns of these insects shows that specific codons are frequently used as the 3′- and 5′-context of start and stop codons, respectively.

Conclusions

Codon bias pattern is distinct between dipteran and hymenopteran insects. While codon bias is favored by high GC content of dipteran genomes, high AT content of genes favors biased usage of synonymous codons in the hymenopteran insects. Also, codon context patterns vary among these species largely according to their phylogeny.  相似文献   

14.
Heger A  Ponting CP 《Genetics》2007,177(3):1337-1348
Codon usage bias in Drosophila melanogaster genes has been attributed to negative selection of those codons whose cellular tRNA abundance restricts rates of mRNA translation. Previous studies, which involved limited numbers of genes, can now be compared against analyses of the entire gene complements of 12 Drosophila species whose genome sequences have become available. Using large numbers (6138) of orthologs represented in all 12 species, we establish that the codon preferences of more closely related species are better correlated. Differences between codon usage biases are attributed, in part, to changes in mutational biases. These biases are apparent from the strong correlation (r = 0.92, P < 0.001) among these genomes' intronic G + C contents and exonic G + C contents at degenerate third codon positions. To perform a cross-species comparison of selection on codon usage, while accounting for changes in mutational biases, we calibrated each genome in turn using the codon usage bias indices of highly expressed ribosomal protein genes. The strength of translational selection was predicted to have varied between species largely according to their phylogeny, with the D. melanogaster group species exhibiting the strongest degree of selection.  相似文献   

15.
Codon usage bias varies considerably among genomes and even within the genes of the same genome.In eukaryotic organisms,energy production in the form of oxidative phosphorylation(OXPHOS)is the only process under control of both nuclear and mitochondrial genomes.Although factors affecting codon usage in a single genome have been studied,this has not occurred when both interactional genomes are involved.Consequently, we investigated whether or not other factors influence codon usage of coevolved genes.We used Drosophila melanogaster as a model organism.Our χ2 test on the number of codons of nuclear and mitochondrial genes involved in the OXPHOS system was significantly different (χ2=7945.16,P<0.01).A plot of effective number of codons against GC3s content of nuclear genes showed that few genes lie on the expected curve,indicating that codon usage was random.Correspondence analysis indicated a significant correlation between axis 1 and codon adaptation index(R=0.947,P<0.01)in every nuclear gene sequence.Thus,codon usage bias of nuclear genes appeared to be affected by translational selection.Correlation between axis 1 coordinates and GC content(R=0.814.P<0.01)indicated that the codon usage of nuclear genes was also affected by GC composition.Analysis of mitochondrial genes did not reveal a significant correlation between axis 1 and any parameter.Statistical analyses indicated that codon usages of both nDNA and mtDNA were subjected to context-dependent mutations.  相似文献   

16.
Adaptive codon usage provides evidence of natural selection in one of its most subtle forms: a fitness benefit of one synonymous codon relative to another. Codon usage bias is evident in the coding sequences of a broad array of taxa, reflecting selection for translational efficiency and/or accuracy as well as mutational biases. Here, we quantify the magnitude of selection acting on alternative codons in genes of the nematode Caenorhabditis remanei, an outcrossing relative of the model organism C. elegans, by fitting the expected mutation-selection-drift equilibrium frequency distribution of preferred and unpreferred codon variants to the empirical distribution. This method estimates the intensity of selection on synonymous codons in genes with high codon bias as N(e)s = 0.17, a value significantly greater than zero. In addition, we demonstrate for the first time that estimates of ongoing selection on codon usage among genes, inferred from nucleotide polymorphism data, correlate strongly with long-term patterns of codon usage bias, as measured by the frequency of optimal codons in a gene. From the pattern of polymorphisms in introns, we also infer that these findings do not result from the operation of biased gene conversion toward G or C nucleotides. We therefore conclude that coincident patterns of current and ancient selection are responsible for shaping biased codon usage in the C. remanei genome.  相似文献   

17.
Gupta SK  Ghosh TC 《Gene》2001,273(1):63-70
Codon usage biases of all DNA sequences (length greater than or equal to 300 bp) from the complete genome of Pseudomonas aeruginosa have been analyzed. As P. aeruginosa is a GC-rich organism, G and/or C are expected to predominate in their codons. Overall codon usage data analysis indicates that indeed codons ending in G and/or C are predominant in this organism. But multivariate statistical analysis indicates that there is a single major trend in the codon usage variation among the genes in this organism, which has a strong negative correlation with the expressivities of the genes. The majority of the lowly expressed genes are scattered towards the positive end of the major axis whereas the highly expressed genes are clustered towards the negative end. This is the first report where the prokaryotic organism having highly skewed base composition is dictated mainly by translational selection, though some other factors such as the lengths of the genes as well as the hydrophobicity of genes also influence the codon usage variation among the genes in this organism in a minor way.  相似文献   

18.
Patterns of codon usage bias in three dicot and four monocot plant species   总被引:9,自引:0,他引:9  
Codon usage in nuclear genes of four monocot and three dicot species was analyzed to find general patterns in codon choice of plant species. Codon bias was correlated with GC content at the third codon position. GC contents were higher in monocot species than in dicot species at all codon positions. The high GC contents of monocot species might be the result of relatively strong mutational bias that occurred in the lineage of the Poaceae species. In both dicot and monocot species, the effective number of codons (ENCs) for most genes was similar to that for the expected ENCs based on the GC content at the third codon positions. G and C ending codons were detected as the "preferred" codons in monocot species, as in Drosophila. Also, many "preferred" codons are the same in dicot species. Pyrimidine (C and T) is used more frequently than purine (G and A) in four-fold degenerate codon groups.  相似文献   

19.
该研究以2株野生沙枣(Elaeagnus angustifolia Linn.)嫩枝经温室水培后的嫩叶为材料,采用CTAB法分别提取总DNA,并利用第二代测序技术进行总DNA从头测序,组装后得到2株沙枣叶绿体基因组全序列,并详细分析了其蛋白质编码基因密码子使用的偏好性及其原因,为沙枣叶绿体基因工程和分子系统进化等研究奠定基础。结果显示:(1)组装得到沙枣叶绿体基因组序列全长150 546 bp,由长度为81 113 bp的长单拷贝(LSC)区域和25 494 bp的短单拷贝(SSC)区域,以及1对分隔开它们的长18 445 bp的反向重复序列(IRS)组成;注释共得到132个基因,包括86个蛋白编码基因、38个tRNA基因和8个rRNA基因。(2)沙枣叶绿体基因组蛋白编码基因密码子的第三位碱基GC含量(GC_3)为28.47%,明显低于整个叶绿体基因组GC含量(37%),也低于第一位(GC_1)和第二位(GC_2)碱基的GC含量,说明密码子对AT碱基结尾有偏好性;其中, UCU、CCU、UGU、GCU、CUU、GAU、UCA和UAA为最优密码子。(3)同义密码子相对使用频率(RSCU)分析发现,影响密码子使用模式的因素并不单一,密码子的偏好性受到突变、选择及其他因素的共同影响,并且自然选择表达引起的序列差异比突变对密码子偏好性的影响要显著;中性绘图分析、有效密码子数(ENC-plot)分析和奇偶偏好性(PR2-plot)分析表明,沙枣叶绿体基因组使用密码子的偏性受选择的影响更大。(4)通过最大似然法、最大简约法和贝叶斯方法对胡颓子科6个物种和1个枣的叶绿体基因序列构建系统发育树,与它们使用密码子偏性聚类的结果一致,表明叶绿体基因组使用密码子偏性与物种的亲缘关系相关。  相似文献   

20.
Codon usage and gene expression.   总被引:36,自引:16,他引:20       下载免费PDF全文
L Holm 《Nucleic acids research》1986,14(7):3075-3087
The hypothesis that codon usage regulates gene expression at the level of translation is tested. Codon usage of Escherichia coli and phage lambda is compared by correspondence analysis, and the basis of this hypothesis is examined by connecting codon and tRNA distributions to polypeptide elongation kinetics. Both approaches indicate that if codon usage was random tRNA limitation would only affect the rarest tRNA species. General discrimination against their cognate codons indicates that polypeptide elongation rates are maintained constant. Thus, differences in expression of E. coli genes are not a consequence of their variable codon usage. The preference of codons recognized by the most abundant tRNAs in E. coli genes encoding abundant proteins is explained by a constraint on the cost of proof-reading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号