首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
(PTXs) are polyether macrolides found in certain dinoflagellates, sponges and shellfish, and have been associated with diarrhetic shellfish poisoning. In addition to their in vivo toxicity, some PTXs are potently cytotoxic in human cancer cell lines. Recent studies have demonstrated that disruption of the actin cytoskeleton may be a key function of these compounds, although no clarification of their mechanism of action at a molecular level was available. We have obtained an X-ray crystal structure of PTX-2 bound to actin, which, in combination with analyses of the effect of PTX-2 on purified actin filament dynamics, provides a molecular explanation for its effects on actin. PTX-2 formed a 1:1 complex with actin and engaged a novel site between subdomains 1 and 3. Based on models of the actin filament, PTX binding would disrupt key lateral contacts between the PTX-bound actin monomer and the lower lateral actin monomer within the filament, thereby capping the barbed-end. The location of this binding position within the interior of the filament indicates that it may not be accessible once polymerization has occurred, a hypothesis supported by our observation that PTX-2 caused filament capping without inducing filament severing. This mode of action is unique, as other actin filament destabilizing toxins appear to exclusively disrupt longitudinal monomer contacts, allowing many of them to sever filaments in addition to capping them. Examination of the PTX-binding site on actin provides a rationalization for the structure-activity relationships observed in vivo and in vitro, and may provide a basis for predicting toxicity of PTX analogues.  相似文献   

3.
Upon contact with intestinal epithelial cells, Salmonella enterica serovar spp. inject a set of bacterial proteins into host cells via the bacterial SPI-1 type III secretion system. SopE, SopE2 and SopB, activate CDC42 and Rac to initiate actin cytoskeleton rearrangements. SipA and SipC, two Salmonella actin-binding proteins, directly modulate host actin dynamics to facilitate bacterial uptake. SptP promotes the recovery of the actin cytoskeleton rearrangements by antagonizing CDC42 and Rac. Therefore, Salmonella-induced reversible actin cytoskeleton rearrangements are the result of two coordinated steps: (i) stimulation of host signal transduction to indirectly promote actin rearrangements and (ii) direct modulation of actin dynamics.  相似文献   

4.
In this study we analyze the participation of the PKC1-MAPK cell integrity pathway in cellular responses to oxidative stress in Saccharomyces cerevisiae. Evidence is presented demonstrating that only Pkc1 and the upstream elements of the cell integrity pathway are essential for cell survival upon treatment with two oxidizing agents, diamide and hydrogen peroxide. Mtl1 is characterized for the first time as a cell-wall sensor of oxidative stress. We also show that the actin cytoskeleton is a cellular target for oxidative stress. Both diamide and hydrogen peroxide provoke a marked depolarization of the actin cytoskeleton, being Mtl1, Rom2 and Pkc1 functions all required to restore the correct actin organization. Diamide induces the formation of disulfide bonds in newly secreted cell-wall proteins. This mainly provokes structural changes in the cell outer layer, which activate the PKC1-MAPK pathway and hence the protein kinase Slt2. Our results led us to the conclusion that Pkc1 activity is required to overcome the effects of oxidative stress by: (i) enhancing the machinery required to repair the altered cell wall and (ii) restoring actin cytoskeleton polarity by promoting actin cable formation.  相似文献   

5.
6.
Actin is the major constituent of the cytoskeleton of almost all the eukaryotic cells. In vitro experiments have indicated that oxidant-stressed nonmuscle mammalian cells undergo remarkable changes in their morphology and in the structure of the actin cytoskeleton, often resulting in plasma membrane blebbing. Although the microfilament network is one of the earliest targets of oxidative stress, the mechanism by which oxidants change both the structure and the spatial organization of actin filaments is still a matter of debate and far from being fully elucidated. Starting from the 2-fold role of oxidants as injurious by-products of cellular metabolism and essential participants in cell signaling and regulation, this review attempts to gather the most relevant information related to (i) the activation of mitogen-activated protein (MAP) kinase stress-activated protein kinase-2/p38 (SAPK2/p38) which, via MAP kinase-activated protein (MAPKAP) kinase 2/3, leads to the phosphorylation of the actin polymerization (F-actin) modulator 25/27 kDa heat shock protein (HSP25/27), whose phosphorylation is causally related to the regulation of microfilament dynamics following oxidative stress; (ii) the alteration of the redox state of actin or some actin regulatory proteins. The actin cytoskeleton response to oxidants is discussed on the basis of the growing body of evidence indicating the actin system as the most sensitive constituent of the cytoskeleton to the oxidant attack.  相似文献   

7.
扇贝毒素pectenotoxins(PTXs)研究进展   总被引:2,自引:0,他引:2  
刘仁沿  梁玉波 《生态学报》2010,30(19):5355-5370
扇贝毒素(pectenotoxins,PTXs)是一类聚醚大环内酯结构的脂溶性海洋生物毒素,是由海洋甲藻中的鳍藻属Dinophysisspp.的几个种产生的,1984年首次从日本的养殖扇贝Patinopecten yessoensis中发现鉴定,具有很高的小鼠腹腔注射致死毒性。近年发现的地理区域不断扩大,我国尚属空白。就这一毒素的结构、来源生物、毒性、携带生物、地理分布、降解代谢及风险评估等研究现状作一系统综述,并分析展望了今后我国藻毒素研究的重点方向。  相似文献   

8.
Lee YS  Ouyang YB  Giffard RG 《FEBS letters》2006,580(20):4865-4871
The Na(+)-driven Cl(-)/HCO(3)(-) exchanger (NCBE) plays an important role in the regulation of intracellular pH (pH(i)). We previously identified two variants of NCBE from rat brain of which the variant with a carboxyterminal PSD-95/Dlg/ZO-1 (PDZ) motif (rb2NCBE) colocalized with the actin cytoskeleton. Increased rb2NCBE activity by PKA inhibition and reduction by forskolin and cAMP agonist suggest PKA regulation of NCBE. Disruption of actin filaments also decreased rb2NCBE activity. EBP50 and FLAG-rb2NCBE were reciprocally co-immunoprecipitated from rb2NCBE transfected cells. It is concluded that NCBE activity is inhibited by PKA and depends on the integrity of the actin cytoskeleton within a multiprotein complex at the plasma membrane.  相似文献   

9.
We undertook a study of the mechanism by which rhesus monkey rotavirus (RRV) impairs the expression and enzyme activity of brush border-associated sucrase isomaltase (SI) in cultured, human, fully differentiated, intestinal Caco-2 cells. We provide evidence that the RRV-induced defects in the expression and enzyme activity of SI are not related to the previously observed, RRV-induced, Ca2+ -dependent, disassembly of the F-actin cytoskeleton. This conclusion is based on the facts that: (i) the intracellular Ca2+ blocker, BAPTA/AM, which antagonizes the RRV-induced increase in [Ca2+](i), fails to inhibit the RRV-induced decrease in SI expression and enzyme activity; and (ii) Jasplakinolide (JAS) treatment, known to stabilize actin filaments, had no effect on the RRV-induced decrease in SI expression. Results reported here demonstrate that the RRV-induced impairment in the expression and enzyme activity of brush border-associated SI results from a hitherto unknown mechanism involving PKA signalling. This conclusion is based on the observations that (i) intracellular cAMP was increased in RRV-infected cells and (ii) treatment of RRV-infected cells with PKA blockers resulted in the reappearance of apical SI expression, accompanied by the restoration of the enzyme activity at the brush border. In addition, in RRV-infected cells a twofold increase of phosphorylated form of cytokeratin 18 was observed after immunopurification and Western Blot analysis, which was antagonized by exposing the RRV-infected cells to the PKA blockers.  相似文献   

10.
Ras proteins are conserved from yeasts to mammals and implicated in regulation of the actin cytoskeleton. The flightless-1 (fli-1) gene of Drosophila melanogaster and its homologs in Caenorhabditis elegans and humans encode proteins (FLI-1) comprising a fusion of a leucine-rich repeats (LRRs) domain and a gelsolin-like domain. This LRRs domain is highly homologous to those of three proteins involved in Ras-mediated signaling; Saccharomyces cerevisiae adenylyl cyclase, C. elegans SUR-8, and mammalian RSP-1. Here we report that the LRRs domain of C. elegans FLI-1 (Ce-FLI-1) associates directly with Ras (Kd = 11 nM) and, when overexpressed, suppresses the heat shock sensitive phenotype of yeast cells bearing the activated RAS2 gene (RAS2(Val-19)). Further, the gelsolin-like domain of Ce-FLI-1 is shown to possess a Ca2+-independent G-actin-binding activity as well as F-actin-binding and -severing activities. FLI-1 may be involved in regulation of the actin cytoskeleton through Ras.  相似文献   

11.
Chronic gastric infection with the Gram-negative bacterium Helicobacter pylori is a major contributing factor in the development of duodenal ulcers and is believed to be a significant risk factor in the development of gastric tumors. The VacA cytotoxin of H. pylori is a 90-kDa secreted protein that forms trans-membrane ion channels. In epithelial cells, VacA activity is associated with the rapid formation of acidic vacuoles enriched for late endosomal and lysosomal markers. Rac1 is a member of the Rho family of small GTP-binding proteins that regulate reorganization of the actin cytoskeleton and intracellular signal transduction and are being shown increasingly to play a role in membrane trafficking events. In this study we report that: (i) green fluorescent-tagged Rac1 localizes around the perimeter of the vacuoles induced by VacA; (ii) expression of dominant negative Rac1 in epithelial cells inhibits vacuole formation; (iii) expression of constitutively active Rac1 potentiates the activity of VacA. Taken together, these data demonstrate a role for Rac1 in the regulation of VacA activity.  相似文献   

12.
In previous work, we demonstrated that C3G suppresses Ras oncogenic transformation by a mechanism involving inhibition of ERK phosphorylation. Here we present evidences indicating that this suppression mechanism is mediated, at least in part, by serine/threonine phosphatases of the PP2A family. Thus: (i) ectopic expression of C3G or C3GDeltaCat (mutant lacking the GEF activity) increases specific ERK-associated PP2A phosphatase activities; (ii) C3G and PP2A interact, as demonstrated by immunofluorescence and co-immunoprecipitation experiments; (iii) association between PP2A and MEK or ERK increases in C3G overexpressing cells; (iv) phosphorylated-inactive PP2A level decreases in C3G expressing clones and, most importantly, (v) okadaic acid reverts the inhibitory effect of C3G on ERK phosphorylation. Moreover, C3G interacts with Ksr-1, a scaffold protein of the Ras-ERK pathway that also associates with PP2A. The fraction of C3G involved in transformation suppression is restricted to the subcortical actin cytoskeleton where it interacts with actin. Furthermore, the association between C3G and PP2A remains stable even after cytoskeleton disruption with cytochalasin D, suggesting that the three proteins form a complex at this subcellular compartment. Finally, C3G- and C3GDeltaCat-mediated inhibition of ERK phosphorylation is reverted by incubation with cytochalasin D. We hypothesize that C3G triggers PP2A activation and binding to MEK and ERK at the subcortical actin cytoskeleton, thus favouring ERK dephosphorylation.  相似文献   

13.
The biochemical mechanism by which the human tumorous imaginal disc1(S) (hTid-1(S)) interferes with actin cytoskeleton organization in keratinocytes of human skin epidermis was investigated. We found that hTid-1, specifically hTid-1(S), interacts with MK5, a p38-regulated/activated protein kinase, and inhibits the protein kinase activity of MK5 that phosphorylates heat shock protein HSP27 in cultured HeLa cells. Thus, hTid-1(S) expression inhibits the phosphorylation of HSP27 known to play important roles in F-actin polymerization and actin cytoskeleton organization. The interplay between MK5/HSP27 signaling and hTid-1(S) expression was supported by the inhibition of HSP27 phosphorylation and MK5 activity in HeLa cells in response to hypoxia during which hTid-1(S) expression was down-regulated. We also found that overexpression of hTid-1(S) results in the inhibition of HSP27 phosphorylation, F-actin polymerization, and actin cytoskeleton organization in transduced HaCaT keratinocytes. This study further proposes that the loss of hTid-1(S) expression in the basal layer of skin epidermis correlates with the enhanced HSP27 phosphorylation, keratinocyte hyperproliferation, and excess actin cytoskeleton organization in lesional psoriatic skin.  相似文献   

14.
The Na(+)/H(+) exchanger NHE3 isoform mediates the entry of Na(+) into epithelial cells of the kidney and gastrointestinal tract. Hormones and pharmacological agents that activate cAMP-dependent protein kinase A (PKA) are potent inhibitors of native and ectopically expressed NHE3 in epithelial and Chinese hamster ovary AP-1 cells, respectively. Previous studies have shown that acute inhibition is coupled to direct phosphorylation of the exchanger, but this only partly accounts for the observed effects. In this report, we show that inhibition of NHE3 activity by forskolin, an activator of adenylate cyclase, occurs without changes in surface expression of the exchanger but is associated with altered cytoskeletal structure. This effect resembles that obtained with cytochalasin D or latrunculin B, actin disrupting agents that also inhibit NHE3. Such similarities prompted us to further investigate the relationship between PKA-induced inhibition of the exchanger and changes in the actin cytoskeleton. Inhibition of NHE3 by cytochalasin D does not require PKA, because the inhibitory effect is preserved in a mutant NHE3 that is not phosphorylated by PKA and in cells pretreated with the PKA inhibitor H89. In contrast, involvement of actin in the effect of cAMP on the exchanger is supported by the following observations: (i) jasplakinolide, an F-actin stabilizer, prevents the inhibition caused by forskolin, and (ii) constitutively active forms of RhoA and Rho kinase interfere with actin disruption by forskolin and also decrease inhibition of the transporter. These results suggest that reorganization of the cytoskeleton by PKA is involved in mediating inhibition of NHE3.  相似文献   

15.
WASP‐family proteins are known to promote assembly of branched actin networks by stimulating the filament‐nucleating activity of the Arp2/3 complex. Here, we show that WASP‐family proteins also function as polymerases that accelerate elongation of uncapped actin filaments. When clustered on a surface, WASP‐family proteins can drive branched actin networks to grow much faster than they could by direct incorporation of soluble monomers. This polymerase activity arises from the coordinated action of two regulatory sequences: (i) a WASP homology 2 (WH2) domain that binds actin, and (ii) a proline‐rich sequence that binds profilin–actin complexes. In the absence of profilin, WH2 domains are sufficient to accelerate filament elongation, but in the presence of profilin, proline‐rich sequences are required to support polymerase activity by (i) bringing polymerization‐competent actin monomers in proximity to growing filament ends, and (ii) promoting shuttling of actin monomers from profilin–actin complexes onto nearby WH2 domains. Unoccupied WH2 domains transiently associate with free filament ends, preventing their growth and dynamically tethering the branched actin network to the WASP‐family proteins that create it. Collaboration between WH2 and proline‐rich sequences thus strikes a balance between filament growth and tethering. Our work expands the number of critical roles that WASP‐family proteins play in the assembly of branched actin networks to at least three: (i) promoting dendritic nucleation; (ii) linking actin networks to membranes; and (iii) accelerating filament elongation.  相似文献   

16.
Actin system of eukaryotic cells creates the driving force for alteration of the phagocytic cytoplasmatic membrane shape, which is needed for cell movement in the space and for microorganism capturing. Manipulation by actin cytoskeleton mediated through specialized bacterial products can promote proliferation of bacteria in the host. Published reports indicate that bacterial regulation of the actin system activity can be carried out by two modes: 1) by bacterial interactions with surface receptors regulating the cytoskeleton status and 2) by introduction of bacterial products targeted to the cytoskeleton components into the cells. Intracellular pathogens (Legionella) possess ligands which interact with eukaryotic receptors and type IV secretion system fit for translocation of heretofore unknown effector molecules into the cytoplasm. This can result in stimulation of actin polymerization activity and accelerated phagocytosis of the bacteria with rapid multiplication in tissues. By contrast, representatives of extracellular pathogens (Clostridium) produce substances penetrating inside the eukaryotic cells and destroying the actin network, thus making capturing and intracellular digestion of these microorganisms impossible.  相似文献   

17.
Mast cells reorganize their actin cytoskeleton in response to cytosolic calcium signals while in parallel secreting histamine and other inflammatory mediators. The effect of calcium on actin is mediated in large part through calmodulin. EGFP-tagged calmodulin is concentrated in the actin-rich cortex of RBL-2H3 mast cells. Transfection with small interfering RNA directed against the actin and calmodulin-binding protein IQGAP1 dramatically reduced expression of the latter protein and reduced or eliminated the concentration of calmodulin at the actin-rich cortex. Both actin reorganization and secretion were enhanced in IQGAP1 knockdown cells. Our results suggest a model in which calmodulin is targeted to and sequestered at the actin cytoskeleton by IQGAP1. Upon cell stimulation and the subsequent [Ca2+]i increase, it is immediately available to activate local downstream targets.  相似文献   

18.
Phosphatidic acid, the product of phospholipase D catalysed phosphatidylcholine hydrolysis is an important signalling molecule that has been implicated in regulation of actin cytoskeleton remodelling and secretion from mast cells. We show that human PLD1b (hPLD1b) is an actin-binding protein and the N-terminus is predominantly involved in this interaction. Protein kinase C (PKC) is a major upstream regulator of PLD activity and PKC phosphorylation sites have been identified within the N-terminus of PLD1b at serine 2 and threonine 147. Over-expression of wild type hPLD1b in mast cells showed that antigen stimulation significantly enhanced co-localisation of PLD1b with actin structures. Mutation of serine 2 to alanine abolished antigen-induced co-localisation whereas mutation of threonine 147 had less dramatic effects on co-localisation. The absence of co-localisation of PLD1b (S2A) with actin coincides with a significant decrease in PLD activity in cells expressing the PLD1b (S2A) mutant. In resting RBL-2H3 cells, mutation of serine 2 to aspartate resulted in constitutive co-localisation of PLD with the actin cytoskeleton, coincident with restored PLD activity. These results reveal that serine 2 is an important regulatory site involved in controlling PLD enzyme activity and the interaction between PLD and actin.  相似文献   

19.
For the beta(2)-adrenergic receptor (beta(2)AR), published evidence suggests that an intact actin cytoskeleton is required for the endocytosis of receptors and their proper sorting to the rapid recycling pathway. We have characterized the role of the actin cytoskeleton in the regulation of beta(2)AR trafficking in human embryonic kidney 293 (HEK293) cells using two distinct actin filament disrupting compounds, cytochalasin D and latrunculin B (LB). In cells pretreated with either drug, beta(2)AR internalization into transferrin-positive vesicles was not altered but both agents significantly decreased the rate at which beta(2)ARs recycled to the cell surface. In LB-treated cells, nonrecycled beta(2)ARs were localized to early embryonic antigen 1-positive endosomes and also accumulated in the recycling endosome (RE), but only a small fraction of receptors localized to LAMP-positive late endosomes and lysosomes. Treatment with LB also markedly enhanced the inhibitory effect of rab11 overexpression on receptor recycling. Dissociating receptors from actin by expression of the myosin Vb tail fragment resulted in missorting of beta(2)ARs to the RE, while the expression of various CART fragments or the depletion of actinin-4 had no detectable effect on beta(2)AR sorting. These results indicate that the actin cytoskeleton is required for the efficient recycling of beta(2)ARs, a process that likely is dependent on myosin Vb.  相似文献   

20.
The actin cytoskeleton has been found to be required for mitogen-stimulated cells to passage through the cell cycle checkpoint. Here we show that selective disruption of the actin cytoskeleton by dihydrocytochalasin B (H(2)CB) blocked the mitogenic effect in normal Swiss 3T3 cells, leading to cell cycle arrest at mid to late G(1) phase. Cells treated with H(2)CB remain tightly attached to the substratum and respond to mitogen-induced MAP kinase activation. Upon cytoskeleton disruption, however, growth factors fail to induce hyperphosphorylation of the retinoblastoma protein (pRb) and the pRb-related p107. While cyclin D1 induction and cdk4-associated kinase activity are not affected, induction of cyclin E expression and activation of cyclin E-cdk2 complexes are greatly inhibited in growth-stimulated cells treated with H(2)CB. The inhibition of cyclin E expression appears to be mediated at least in part at the RNA level and the inhibition of cdk2 kinase activity is also attributed to the decrease in cdk2 phosphorylation and proper subcellular localization. The expression patterns of cdk inhibitors p21 and p27 are similar in both untreated and H(2)CB-treated cells upon serum stimulation. In addition, the changes in subcellular localization of pRb and p107 appear to be linked to their phosphorylation states and disruption of normal actin structure affects nuclear migration of p107 during G(1)-to-S progression. Taken together, our results suggest that the actin cytoskeleton-dependent G(1) arrest is linked to the cyclin-cdk pathway. We hypothesize that normal actin structure may be important for proper localization of certain G(1) regulators, consequently modulating specific cyclin and kinase expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号