首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intracellular drug delivery is an important rout to reverse drug resistance of tumor cells. In this study, the linoleic acid (LA)-grafted chitosan oligosaccharide (CSO) was synthesized to construct a micellar delivery system for intracellular delivery. The synthesized linoleic acid-grafted chitosan oligosaccharide (CSO-LA) with 10.3% graft ratio of LA could form micelles in aqueous with 86.69 μg/ml critical micellar concentration (CMC). The CSO-LA micelle had 46.2±3.6 nm number average diameter and 36.0±3.3 mV zeta potential. Taking doxorubicin base (DOX) as a model drug, the drug-loaded CSO-LA micelles (CSO-LA/DOX) was then prepared. The drug encapsulation efficiencies of CSO-LA/DOX were as high as 80%, and the drug loading capacity could be improved by increasing the charged DOX. Using MCF-7, Doxorubicin·HCl resistant MCF-7 (MCF-7/ADR), K562 and Doxorubicin·HCl resistant K562 (K562/ADR) cells as model drug sensitive and drug resistant tumor cells, the experiments demonstrated the CSO-LA had excellent cellular uptake ability by either drug sensitive tumor cells or drug resistance tumor cells. The CSO-LA micelles could deliver DOX into tumor cells, and the DOX in cells was increased with incubation time. As a result, the cytotoxicities of DOX encapsulated in CSO-LA micelles against drug resistance tumor cells were improved significantly, comparing to that of Doxorubicin·HCl solution.  相似文献   

2.
Paclitaxel (PTX) is the first-line treatment drug for breast cancer. However, drug resistance after a course of treatment and low selectivity restricted its clinical utility sometimes. In this study, we successfully bound PTX and vorinostat (SAHA) to form co-prodrugs based on the synergistic anticancer effects. The PTX-SAHA co-prodrugs were conjugated by glycine (1a) and succinic acid (1b) respectively and the former has shown better activity in cytotoxicity, cell cycle arrest and western-blot experiments. Therefore, 1a was further prepared to nanomicelles with mPEG2000-PLA1750 as the carrier by using thin film method. PTX-SAHA co-prodrug nanomicelles were spherical with a particle size of 20–100?nm. In vitro drug release test showed 1a nanomicelles had sustained release effect, which could reduce the resistance of PTX. In vitro cytotoxicity was evaluated by SRB assay in HCT-116 cells, MCF-7 cells and drug-resistant MCF-7/ADR cells. The results showed 1a nanomicelles had comparable or even better cytotoxicity than PTX especially in the MCF-7/ADR cells. All the results suggested that PTX-SAHA co-prodrug nanomicelles were promising treatment for PTX resistance cancer.  相似文献   

3.
BackgroundBreast cancer is a leading cause of death in women and with an increasing worldwide incidence. Doxorubicin, as a first-line anthracycline-based drug is conventional used on breast cancer clinical chemotherapy. However, the drug resistances limited the curative effect of the doxorubicin therapy in breast cancer patients, but the molecular mechanism determinants of breast cancer resistance to doxorubicin chemotherapy are not fully understood. In order to explore the association between metadherin (MTDH) and doxorubicin sensitivity, the differential expressions of MTDH in breast cancer cell lines and the sensitivity to doxorubicin of breast cancer cell lines were investigated.MethodsThe mRNA and protein expression of MTDH were determined by real-time PCR and Western blot in breast cancer cells such as MDA-MB-231, MCF-7, MDA-MB-435S, MCF-7/ADR cells. Once MTDH gene was knocked down by siRNA in MCF-7/ADR cells and overexpressed by MTDH plasmid transfection in MDA-MB-231 cells, the cell growth and therapeutic sensitivity of doxorubicin were evaluated using MTT and the Cell cycle assay and apoptosis rate was determined by flow cytometry.ResultsMCF-7/ADR cells revealed highly expressed MTDH and MDA-MB-231 cells had the lowest expression of MTDH. After MTDH gene was knocked down, the cell proliferation was inhibited, and the inhibitory rate of cell growth and apoptosis rate were enhanced, and the cell cycle arrest during the G0/G1 phase in the presence of doxorubicin treatment. On the other hand, the opposite results were observed in MDA-MB-231 cells with overexpressed MTDH gene.ConclusionMTDH gene plays a promoting role in the proliferation of breast cancer cells and its high expression may be associated with doxorubicin sensitivity of breast cancer.  相似文献   

4.
BackgroundBreast cancer is the major cause of cancer-related deaths in females world-wide. Doxorubicin-based therapy has limited efficacy in breast cancer due to drug resistance, which has been shown to be associated with the epithelial-to-mesenchymal transition (EMT). However, the molecular mechanisms linking the EMT and drug resistance in breast cancer cells remain unclear. Dual specificity phosphatase 4 (DUSP4), a member of the dual specificity phosphatase family, is associated with cellular proliferation and differentiation; however, its role in breast cancer progression is controversial.MethodsWe used cell viability assays, Western blotting and immunofluorescent staining, combined with siRNA interference, to evaluate chemoresistance and the EMT in MCF-7 and adriamycin-resistant MCF-7/ADR breast cancer cells, and investigate the underlying mechanisms.ResultsKnockdown of DUSP4 significantly increased the chemosensitivity of MCF-7 and MCF-7/ADR breast cancer cells to doxorubicin, and MCF-7/ADR cells which expressed high levels of DUSP4 had a mesenchymal phenotype. Furthermore, knockdown of DUSP4 reversed the EMT in MCF-7/ADR cells, as demonstrated by upregulation of epithelial biomarkers and downregulation of mesenchymal biomarkers, and also increased the chemosensitivity of MCF-7/ADR cells to doxorubicin.ConclusionsDUSP4 might represent a potential drug target for inhibiting drug resistance and regulating the process of the EMT during the treatment of breast cancer.  相似文献   

5.
为了探讨低频脉冲电场对人乳腺癌多药耐药细胞系MCF-7/ADR耐药性的逆转作用及机制,采用MTT比色法检测MCF-7/ADR的耐药指数和耐药性的逆转倍数,荧光显微镜观察脉冲电场对MCF-7/ADR细胞内DiOC2(3)(P-gp的特异性荧光底物)积累和外排的影响。结果发现,在低频脉冲电场不影响MCF-7/ADR细胞生长的情况下,不同时间的电场作用均能逆转MCF-7/A的多药耐药,对高三尖杉酯碱(HHT)耐药性的逆转倍数在1.429~1.848之间,对长春新碱(VCR)耐药性的逆转倍数在1.473~2.090之间,45min电场作用的逆转效果最好,其次是30min电场作用。药物积累和外排实验结果表明,脉冲电场作用45min能使细胞内的DiOC2(3)积累明显增加,而30min电场作用能显著抑制DiOC2(3)的外排。促进药物积累和抑制其外排可能是脉冲电场逆转多药耐药的机制之一。  相似文献   

6.
To investigate the role of microRNAs in the development of chemoresistance and related epithelial–mesenchymal transition (EMT), we examined the effect of miR-489 in adriamycin (ADM)-resistant human breast cancer cells (MCF-7/ADM). MiR-489 was significantly suppressed in MCF-7/ADM cells compared with chemosensitive parental control MCF-7/WT cells. Forced-expression of miR-489 reversed chemoresistance. Furthermore, Smad3 was identified as the target of miR-489 and is highly expressed in MCF-7/ADM cells. Forced expression of miR-489 both inhibited Smad3 expression and Smad3 related EMT properties. Finally, the interactions between Smad3, miR-489 and EMT were confirmed in chemoresistant tumor xenografts and clinical samples, indicating their potential implication for treatment of chemoresistance.  相似文献   

7.
Breast cancer is the most frequent malignancy in women and drug resistance is the major obstacle for its successful chemotherapy. In the present study, we analyzed the involvement of an oncofetal gene, sal-like 4 (SALL4), in the tumor proliferation and drug resistance of human breast cancer. Our study showed that SALL4 was up-regulated in the drug resistant breast cancer cell line, MCF-7/ADR, compared to the other five cell lines. We established the lentiviral system expressing short hairpin RNA to knockdown SALL4 in MCF-7/ADR cells. Down-regulation of SALL4 inhibited the proliferation of MCF-7/ADR cells and induced the G1 phase arrest in cell cycle, accompanied by an obvious reduction of the expression of cyclinD1 and CDK4. Besides, down-regulating SALL4 can re-sensitize MCF-7/ADR to doxorubicin hydrochloride (ADMh) and had potent synergy with ADMh in MCF-7/ADR cells. Depletion of SALL4 led to a decrease in IC50 for ADMh and an inhibitory effect on the ability to form colonies in MCF-7/ADR cells. With SALL4 knockdown, ADMh accumulation rate of MCF-7/ADR cells was increased, while the expression of BCRP and c-myc was significantly decreased. Furthermore, silencing SALL4 also suppressed the growth of the xenograft tumors and reversed their resistance to ADMh in vivo. SALL4 knockdown inhibits the growth of the drug resistant breast cancer due to cell cycle arrest and reverses tumor chemo-resistance through down-regulating the membrane transporter, BCPR. Thus, SALL4 has potential as a novel target for the treatment of breast cancer.  相似文献   

8.
We have investigated the effect of glucose deprivation treatment on the activation of mitogen activated protein kinases (MAPKs) in the drug-sensitive human breast carcinoma cells (MCF-7) and its drug resistant variant (MCF-7/ADR) cells. Western blots and in-gel kinase assays showed that glucose free medium was a strong stimulus for the activation of MAPK in MCF-7/ADR cells. No activation was seen in MCF-7 cells. MAPK was activated within 3 min of being in glucose free medium and it remained activated for over 1 h in MCF-7/ADR cells. After being returned to complete medium, 1 h was required for the MAPK to become deactivated. To investigate whether alternative sources of ATP could inhibit glucose deprivation induced MAPK activation, we added glutamine and glutamate to glucose deprived medium. The addition of glutamine did not reverse glucose deprivation induced MAPK activation in MCF-7/ADR cells. The addition of glutamate, however, decreased the MAPK activation and the length of time of activation. We observed an increase greater than three fold in MEK, Raf, Ras, and PKC activity with glucose deprivation in MCF-7/ADR cells. This suggests that glucose deprivation-induced MAPK activation is mediated through this signal transduction pathway.  相似文献   

9.
Cancer multidrug resistance (MDR) is a major impediment to effective chemotherapy in human cancer, in which P-glycoprotein and Multidrug Resistance-Associated protein figure prominently. Design and exploitation of novel clinical MDR inhibitors is greatly hindered by a lack of understanding of drug efflux dynamics in drug-sensitive and resistant cells. The aim of our study was to provide a microelectrode method for measuring the multidrug transporter mediated efflux of doxorubicin as well as a corresponding data analysis method for quantifying the efflux kinetic parameters. We performed experiments using carbon fiber microelectrode to detect doxorubicin efflux from a monolayer of human breast cancer MCF-7 cells and derived MDR cells (MCF-7/ADR), established a material transport model and proposed a novel inverse method to quantitatively characterize the diffusion dynamics. The kinetic parameters of doxorubicin efflux from MCF-7 and MCF-7/ADR cells in the presence or absence of MDR inhibitors were estimated. Our investigations showed the average initial doxorubicin efflux rate of MCF-7/ADR that was 5.2 times faster than of MCF-7. After treatment by tetramethylpyrazine or verapamil, the drug efflux rate of the MCF-7/ADR cells was reduced by about half that of those without inhibitors. The novel methodology presented suggests new and expanded applications for computer-aided reconstruction of the drug efflux process, microelectrode design, and high-throughput drug screening.  相似文献   

10.
A series of novel amyl ester tethered dihydroartemisinin-isatin hybrids 4a–d and 5a–h were designed, synthesized, and evaluated as anti-breast cancer agents. The synthesized hybrids were preliminarily screened against estrogen receptor-positive (MCF-7 and MCF-7/ADR) and triple-negative (MDA-MB-231 and) breast cancer cell lines. Three hybrids 4a , d and 5e not only were more potent than artemisinin and adriamycin against drug-resistant MCF-7/ADR and MDA-MB-231/ADR breast cancer cell lines, but also displayed non-cytotoxicity towards normal MCF-10 A breast cells, and the SI values were >4.15, indicating their excellent selectivity and safety profiles. Thus, hybrids 4a , d and 5e could act as potential anti-breast cancer candidates and were worthy of further preclinical evaluations. Moreover, the structure–activity relationships which may facilitate further rational design of more effective candidates were also enriched.  相似文献   

11.
Miller I  Eberini I  Gianazza E 《Proteomics》2008,8(23-24):5053-5073
This compilation accounts the efforts made to characterize the proteomes of lung tissues in health and disease and to recognize proteomic patterns of diseased states in the patient's biological fluids/secretions and lavage fluids. A massive amount of primary data could not lead yet to the identification of diagnostic proteomic signatures. The variability of proteomic findings associated with lung diseases suggests that a useful diagnostic index may eventually result only from the composite predictive values of a large panel of protein markers.  相似文献   

12.
Wang YC  Wang F  Sun TM  Wang J 《Bioconjugate chemistry》2011,22(10):1939-1945
Multidrug resistance (MDR) is a major impediment to the success of cancer chemotherapy. The intracellular accumulation of drug and the intracellular release of drug molecules from the carrier could be the most important barriers for nanoscale carriers in overcoming MDR. We demonstrated that the redox-responsive micellar nanodrug carrier assembled from the single disulfide bond-bridged block polymer of poly(ε-caprolactone) and poly(ethyl ethylene phosphate) (PCL-SS-PEEP) achieved more drug accumulation and retention in MDR cancer cells. Such drug carrier rapidly released the incorporated doxorubicin (DOX) in response to the intracellular reductive environment. It therefore significantly enhanced the cytotoxicity of DOX to MDR cancer cells. It was demonstrated that nanoparticular drug carrier with either poly(ethylene glycol) or poly(ethyl ethylene phosphate) (PEEP) shell increased the influx but decreased the efflux of DOX by the multidrug resistant MCF-7/ADR breast cancer cells, in comparison with the direct incubation of MCF-7/ADR cells with DOX, which led to high cellular retention of DOX. Nevertheless, nanoparticles bearing PEEP shell exhibited higher affinity to the cancer cells. The shell detachment of the PCL-SS-PEEP nanoparticles caused by the reduction of intracellular glutathione significantly accelerated the drug release in MCF-7/ADR cells, demonstrated by the flow cytometric analyses, which was beneficial to the entry of DOX into the nuclei of MCF-7/ADR cells. It therefore enhanced the efficiency in overcoming MDR of cancer cells, which renders the redox-responsive nanoparticles promising in cancer therapy.  相似文献   

13.
Multidrug resistance (MDR) is a major impediment to successful cancer chemotherapy. Co-delivery of novel MDR-reversing agents and anticancer drugs to cancer cells holds great promise for cancer treatment. MicroRNA-21 (miR-21) overexpression is associated with the development and progression of MDR in breast cancer, and it is emerging as a novel and promising MDR-reversing target. In this study, a multifunctional nanocomplex, composed of polyethylenimine (PEI)/poly(sodium 4-styrenesulfonates) (PSS)/graphene oxide (GO) and termed PPG, was prepared using the layer-by-layer assembly method to evaluate the reversal effects of PPG as a carrier for adriamycin (ADR) along with miR-21 targeted siRNA (anti-miR-21) in cancer drug resistance. ADR was firstly loaded onto the PPG surface (PPGADR) by physical mixing and anti-miR-21 was sequentially loaded onto PPGADR through electric absorption to form anti-miR-21PPGADR. Cell experiments showed that PPG significantly enhanced the accumulation of ADR in MCF-7/ADR cells (an ADR resistant breast cancer cell line) and exhibited much higher cytotoxicity than free ADR, suggesting that PPG could effectively reverse ADR resistance of MCF-7/ADR. Furthermore, the enhanced therapeutic efficacy of PPG could be correlated with effective silencing of miR-21 and with increased accumulation of ADR in drug-resistant tumor cells. The endocytosis study confirmed that PPG could effectively carry drug molecules into cells via the caveolae and clathrin-mediated endocytosis pathways. These results suggest that this PPG could be a potential and efficient non-viral vector for reversing MDR, and the strategy of combining anticancer drugs with miRNA therapy to overcome MDR could be an attractive approach in cancer treatment.  相似文献   

14.
Eukaryotic translation initiation factor 2 alpha (eIF2α), which is a component of the eukaryotic translation initiation complex, functions in cell death and survival under various stress conditions. In this study, we investigated the roles of eIF2α phosphorylation in cell death using the breast cancer cell lines MCF-7 and MCF-7/ADR. MCF-7/ADR cells are MCF-7-driven cells that have acquired resistance to doxorubicin (ADR). Treatment of doxorubicin reduced the viability and induced apoptosis in both cell lines, although susceptibility to the drug was very different. Treatment with doxorubicin induced phosphorylation of eIF2α in MCF-7 cells but not in MCF-7/ADR cells. Basal expression levels of Growth Arrest and DNA Damage 34 (GADD34), a regulator of eIF2α, were higher in MCF-7/ADR cells compared to MCF-7 cells. Indeed, treatment with salubrinal, an inhibitor of GADD34, resulted in the upregulation of eIF2α phosphorylation and enhanced doxorubicin-mediated apoptosis in MCF-7/ADR cells. However, MCF-7 cells did not show such synergic effects. These results suggest that dephosphorylation of eIF2α by GADD34 plays an important role in doxorubicin resistance in MCF-7/ADR cells.  相似文献   

15.
2DG causes cytotoxicity in cancer cells by disrupting thiol metabolism while Doxorubicin (DOX) induces cytotoxicity in tumor cells by generating reactive oxygen species (ROS). Here we examined the combined cytotoxic action of 2DG and DOX in rapidly dividing T47D breast cancer cells vs. slowly growing MCF-7 breast cancer cells. T47D cells exposed to the combination of 2DG/DOX significantly decreased cell survival compared to controls, while 2DG/DOX had no effect on MCF-7 cells. 2DG/DOX also disrupted the oxidant status of T47D treated cells, decreased intracellular total glutathione and increased glutathione disulfide (%GSSG) compared to MCF-7 cells. Lipid peroxidation increased in T47D cells treated with 2DG and/or DOX, but not in MCF-7 cells. T47D cells were significantly protected by NAC, indicating that the combined treatment exerts its action by increasing ROS production and disrupting antioxidant stores. When we inhibited glutathione synthesis with BSO, T47D cells became more sensitive to 2DG/DOX-induced cytotoxicity, but NAC significantly reversed this cytotoxic effect. Finally, 2DG/DOX, and BSO significantly increased the %GSSG in T47D cells, an effect which was also reversed by NAC. Our results suggest that exposure of rapidly dividing breast cancer cells to 2DG/DOX enhances cytotoxicity via oxidative stress and via disruptions to thiol metabolism.  相似文献   

16.
介绍了人乳腺癌细胞(药物敏感株MCF-7/S及耐药株MCF-7/R)在化疗药物阿霉素(adriamycin,ADR)处理下,细胞外pH和H 流动方向和速率的变化.为此,建立了一种基于非损伤微测技术(non-invasive micro-test technique,NMT)的药物抗性研究方法(drug resistance study method,DRSM),该方法可用于研究器官/组织/细胞外离子/分子活性与肿瘤细胞耐药性之间的相互关系.结果显示存在一个持续的并以固有振荡形式出现的胞外H 流现象.此外,耐药株净H 流在加ADR前趋近于零,而敏感株净H 流呈明显内流.敏感株和耐药株加ADR后净H 均呈外流,但耐药株的净H 外流速率要高于敏感株5倍.与净H 流动速率结果相一致的是胞外的pH也产生了相应的变化.因此,实验为胞外H 活性与肿瘤耐药性的相互关联提供了直接证据.  相似文献   

17.
18.
为了深入探讨乳腺癌治疗耐药的发生机制并寻找乳腺癌治疗耐药的潜在治疗手段,我们以乳腺癌MCF-7和耐阿霉素MCF-7/ADR细胞为研究对象,研究RNA甲基化酶WTAP对其迁移的影响。MTT试验发现阿霉素对MCF-7细胞活力的抑制作用大于对MCF-7/ADR细胞的抑制作用。qPCR和western-blot试验发现WTAP在耐阿霉素细胞MCF-7/ADR中高表达,同时transwell试验发现在MCF-7细胞中增加WTAP的表达对MCF-7细胞的迁移没有影响,而在MCF-7/ADR细胞中敲低WTAP的表达会抑制MCF-7/ADR细胞的迁移。western-blot试验进一步证明了这一作用是通过抑制上皮间质转化(EMT)来发挥的。这一发现有助于为乳腺癌的临床治疗提供新的理论依据并为乳腺癌的治疗提供新的策略。  相似文献   

19.

Background

Ovarian cancer is one of the most lethal malignancies in women, as it is frequently detected at an advanced stage, and cancers often become refractory to chemotherapy. Evidence suggests that dysregulation of pro-apoptotic genes plays a key role in the onset of chemoresistance. The secreted Frizzled-Related Protein (sFRP) family is pro-apoptotic and also a negative modulator of the Wnt signalling cascade. Studies have demonstrated that the re-expression of sFRPs, in particular sFRP4, is associated with a better prognosis, and that experimentally induced expression results in cell death.

Results

In vitro experimental models determined that sFRP4 was differentially expressed in chemosensitive (A2780) and chemoresistant (A2780 ADR and A2780 Cis) ovarian cell lines, with chemosensitive cells expressing significantly higher levels of sFRP4. Transfection of the chemoresistant cell lines with sFRP4 significantly increased their sensitivity to chemotherapy. Conversely, silencing of sFRP4 expression in the chemosensitive cell line resulted in a corresponding increase in chemoresistance. Comparison of sFRP4 expression in tumour biopsies revealed a positive trend between sFRP4 expression and tumour grade, with mucinous cyst adenocarcinomas exhibiting significantly decreased sFRP4 levels compared to mucinous borderline tumours.

Conclusions

This study indicates a role for sFRP4 as a predictive marker of chemosensitivity in ovarian cancer and suggests that this pathway may be worth exploiting for novel therapies.  相似文献   

20.
《BBA》2022,1863(8):148915
Although the development of chemoresistance is multifactorial, active chemotherapeutic efflux driven by upregulations in ATP binding cassette (ABC) transporters are commonplace. Chemotherapeutic efflux pumps, like ABCB1, couple drug efflux to ATP hydrolysis and thus potentially elevate cellular demand for ATP resynthesis. Elevations in both mitochondrial content and cellular respiration are common phenotypes accompanying many models of cancer cell chemoresistance, including those dependent on ABCB1. The present study set out to characterize potential mitochondrial remodeling commensurate with ABCB1-dependent chemoresistance, as well as investigate the impact of ABCB1 activity on mitochondrial respiratory kinetics. To do this, comprehensive bioenergetic phenotyping was performed across ABCB1-dependent chemoresistant cell models and compared to chemosensitive controls. In doxorubicin (DOX) resistant ovarian cancer cells, the combination of both increased mitochondrial content and enhanced respiratory complex I (CI) boosted intrinsic oxidative phosphorylation (OXPHOS) power output. With respect to ABCB1, acute ABCB1 inhibition partially normalized intact basal mitochondrial respiration between chemosensitive and chemoresistant cells, suggesting that active ABCB1 contributes to mitochondrial remodeling in favor of enhanced OXPHOS. Interestingly, while enhanced OXPHOS power output supported ABCB1 drug efflux when DOX was present, in the absence of chemotherapeutic stress, enhanced OXPHOS power output was associated with reduced tumorigenicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号