首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Y Guo  WW Xu  J Song  W Deng  DQ Liu  HT Zhang 《PloS one》2012,7(7):e40179
Nef functions as an immunosuppressive factor critical for HIV-1 replication, survival and development of AIDS following HIV-1 infection. What effects Nef exerts on differentiation and maturation of monocytes towards dendritic cells (DCs) remains greatly controversial. In this study, we used THP-1 (human monocytic leukemia cell line) as monocytic DC precursors to investigate how overexpression of HIV-1 Nef influences the processes of differentiation and maturation of dendritic cells. In striking contrast to negative controls, our results showed that morphological and phenotypical changes (CD11c, CD14, CD40, CD80, CD83, CD86, and HLA-DR) occurred on recombinant THP-1 expressing HIV-1 Nef (short for Nef) upon co-stimulation of GM-CSF/IL-4 or GM-CSF/IL-4/TNF-α/ionomycin. Moreover, CD4, CCR5, and CXCR4 were also down-regulated on Nef. It might be hypothesized that Nef prevents superinfection and signal transduction in HIV-1 infected monocytes. Collectively, our study demonstrates that long-lasting expression of Nef at high levels indeed retards differentiation and maturation of dendritic cells in terms of phenotype and morphology. We are hopeful that potentially, stable expression of intracellular Nef in vivo may function as a subtle mode to support long-lasting HIV-1 existence.  相似文献   

2.
During HIV-1 infection, dendritic cells (DC) facilitate dissemination of HIV-1 while trying to trigger adaptive antiviral immune responses. We examined whether increased HIV-1 capture in DC matured with LPS results in more efficient Ag presentation to HIV-1-specific CD4(+) and CD8(+) T cells. To block the DC-mediated trans-infection of HIV-1 and maximize Ag loading, we also evaluated a noninfectious integrase-deficient HIV-1 isolate, HIV(NL4-3ΔIN). We showed that higher viral capture of DC did not guarantee better Ag presentation or T cell activation. Greater HIV(NL4-3) uptake by fully LPS-matured DC resulted in higher viral transmission to target cells but poorer stimulation of HIV-1-specific CD4(+) and CD8(+) T cells. Conversely, maturation of DC with LPS during, but not before, viral loading enhanced both HLA-I and HLA-II HIV-1-derived Ag presentation. In contrast, DC maturation with the clinical-grade mixture consisting of IL-1β, TNF-α, IL-6, and PGE(2) during viral uptake only stimulated HIV-1-specific CD8(+) T cells. Hence, DC maturation state, activation stimulus, and time lag between DC maturation and Ag loading impact HIV-1 capture and virus Ag presentation. Our results demonstrate a dissociation between the capacity to capture HIV-1 and to present viral Ags. Integrase-deficient HIV(NL4-3ΔIN) was also efficiently captured and presented by DC through the HLA-I and HLA-II pathways but in the absence of viral dissemination. HIV(NL4-3ΔIN) seems to be an attractive candidate to be explored. These results provide new insights into DC biology and have implications in the optimization of DC-based immunotherapy against HIV-1 infection.  相似文献   

3.
The lentiviral protein Nef plays a major role in the pathogenesis of human immunodeficiency virus type I (HIV-1) infection. Although the exact mechanisms of its actions are not fully understood, Nef has been shown to be essential for the maintenance of high-titer viral replication and disease pathogenesis in in vivo models of simian immunodeficiency virus infection of monkeys. Nef has also been suggested to play a pivotal role in the depletion of T cells by promoting apoptosis in bystander cells. In this context, we investigated the ability of extracellular and endogenously expressed HIV-1 Nef to induce apoptosis in primary human brain microvascular endothelial cells (MVECs). Human brain MVECs were exposed to baculovirus-expressed HIV-1 Nef protein, an HIV-1-based vector expressing Nef, spleen necrosis virus (SNV)-Nef virus (i.e., SNV vector expressing HIV-1 Nef as a transgene), and the HIV-1 strain ADA and its Nef deletion mutant, ADADeltaNef. We observed that ADA Nef, the HIV-1 vector expressing Nef, and SNV-Nef were able to induce apoptosis in a dose-dependent manner. The mutant virus with a deletion in Nef was able to induce apoptosis in MVECs to modest levels, but the effects were not as pronounced as with the wild-type HIV-1 strain, ADA, the HIV-1-based vector expressing Nef, or SNV-Nef viruses. We also demonstrated that relatively high concentrations of exogenous HIV-1 Nef protein were able to induce apoptosis in MVECs. Gene microarray analyses showed increases in the expression of several specific proapoptotic genes. Western blot analyses revealed that the various caspases involved with Nef-induced apoptosis are processed into cleavage products, which occur only during programmed cell death. The results of this study demonstrate that Nef likely contributes to the neuroinvasion and neuropathogenesis of HIV-1, through its effects on select cellular processes, including various apoptotic cascades.  相似文献   

4.
Interaction of the human immunodeficiency virus type 1 (HIV-1) Nef protein with p21-activated kinase 2 (PAK2) has been proposed to play a role in T-cell activation, viral replication, apoptosis, and progression to AIDS. However, these hypotheses were based on results obtained using Nef mutants impaired in multiple functions. Recently, it was reported that Nef residue F191 is specifically involved in PAK2 binding. However, only a limited number of Nef activities were investigated in these studies. To further evaluate the role of F191 in Nef function and to elucidate the biological relevance of Nef-PAK2 interaction, we performed a comprehensive analysis of HIV-1 Nef mutants carrying F191H and F191R mutations. We found that the F191H mutation reduces and the F191R mutation disrupts the association of Nef with PAK2. Both mutants upregulated the major histocompatibility complex II (MHC-II)-associated invariant chain and downregulated CD4, MHC-I, and CD28, although with reduced efficiency for the latter. Furthermore, the F191H/R changes neither affected the levels of interleukin-2 receptor expression and apoptosis of HIV-1-infected primary T cells nor reduced Nef-mediated induction of NFAT. Unexpectedly, the F191H change markedly reduced and the F191R mutation disrupted the ability of Nef to enhance virion infectivity in P4-CCR5 indicator cells but not in TZM-bl cells or peripheral blood mononuclear cells. Most importantly, all HIV-1 Nef mutants replicated efficiently and caused CD4+ T-cell depletion in ex vivo-infected human lymphoid tissue. Altogether, our data show that the interaction of Nef with PAK2 does not play a major role in T-cell activation, viral replication, and apoptosis.  相似文献   

5.
The accessory human immunodeficiency virus type 1 (HIV-1) protein Nef activates the autophosphorylation activity of p21-activated kinase 2 (PAK2). Merlin, a cellular substrate of PAK2, is homologous to the ezrin-radixin-moesin family and plays a critical role in Rac signaling. To assess the possible impact on host cell metabolism of Nef-induced PAK2 activation, we investigated the phosphorylation of merlin in Nef expressing cells. Here we report that Nef induces merlin phosphorylation in multiple cell lines independently of protein kinase A. This intracellular phosphorylation of merlin directly correlates with in vitro assay of the autophosphorylation activity of Nef-activated PAK2. Importantly, merlin phosphorylation induced by Nef was also observed in human primary T cells. The finding that Nef induces phosphorylation of the key signaling molecule merlin suggests several possible roles for PAK2 activation in HIV pathogenesis.  相似文献   

6.
7.
St Gelais C  Coleman CM  Wang JH  Wu L 《PloS one》2012,7(3):e34521
HIV-1 Nef enhances dendritic cell (DC)-mediated viral transmission to CD4(+) T cells, but the underlying mechanism is not fully understood. It is also unknown whether HIV-1 infected DCs play a role in activating CD4(+) T cells and enhancing DC-mediated viral transmission. Here we investigated the role of HIV-1 Nef in DC-mediated viral transmission and HIV-1 infection of primary CD4(+) T cells using wild-type HIV-1 and Nef-mutated viruses. We show that HIV-1 Nef facilitated DC-mediated viral transmission to activated CD4(+) T cells. HIV-1 expressing wild-type Nef enhanced the activation and proliferation of primary resting CD4(+) T cells. However, when co-cultured with HIV-1-infected autologous DCs, there was no significant trend for infection- or Nef-dependent proliferation of resting CD4(+) T cells. Our results suggest an important role of Nef in DC-mediated transmission of HIV-1 to activated CD4(+) T cells and in the activation and proliferation of resting CD4(+) T cells, which likely contribute to viral pathogenesis.  相似文献   

8.
A well conserved feature of human immunodeficiency virus, type 1 (HIV-1) and simian immunodeficiency virus (SIV) Nef is the interaction with and activation of the human p21-activated kinase 2 (PAK2). The conservation of this interaction in other species and its significance for Nef pathogenesis in vivo are poorly documented. In the present study, we measured these parameters in Nef-expressing thymocytes, macrophages, and dendritic cells of a transgenic (Tg) mouse model of AIDS (CD4C/HIV). We found that Nef binds to and activates PAK2, but not PAK1 and -3, in these three cell subsets. Nef associates with only a small fraction of PAK2. The Nef-PAK2 complex also comprises beta-PIX-COOL. The impact of the Nef-PAK2 association on disease development was also analyzed in Tg mice expressing 10 different Nef mutant alleles. CD4C/HIV Tg mice expressing Nef alleles defective in Nef-PAK2 association (P69A, P72A/P75A, R105A/R106A, Delta56-66, or G2A (myristoylation site)) failed to develop disease of the non-lymphoid organs (kidneys and lungs). Among these, only Tg mice expressing Nef(P69A) and Nef(G2A) showed some depletion of CD4(+) T cells, although a down-regulation of the CD4 surface protein was documented in all these Tg lines, except those expressing Nef(Delta56-66). Among other Tg mice expressing Nef mutants having conserved the Nef-PAK2 association (RD35AA, D174K, P147A/P150A, Delta8-17, and Delta25-65), only Tg mice expressing Nef(Delta8-17) develop kidney and lung diseases, but all showed partial CD4(+) T cell depletion despite some being defective for CD4 down-regulation (RD35AA and D174K). Therefore, Nef can activate murine PAK2 and associate with a small fraction of it, as in human cells. Such activation and binding of PAK2 is clearly not sufficient but may be required to induce a multiorgan AIDS-like disease in Tg mice.  相似文献   

9.
We have recently identified the Nef-associated serine-threonine kinase (NAK) as the p21-activated kinase 2 (PAK2). Here we have taken advantage of the possibility to manipulate the functional properties of NAK by transfecting PAK2 cDNA or its mutant derivatives in order to further characterize the Nef-NAK complex. To exclude the possibility that some Nef variants might interact with PAK1 instead of PAK2, we also examined the identity of NAK complexed with divergent human immunodeficiency virus type 1 HIV-1 Nef proteins. All tested Nef proteins, including SF2, NL4-3, BH10, and HAN-2, associated with PAK2 but not with PAK1. By exchanging different regions between these two PAK proteins, the selective ability of PAK2 to associate with Nef could be mapped to the carboxy-terminal part of its regulatory domain. Binding of PAK2 with the adapter protein Nck or beta-PIX was found to be dispensable for the assembly of the Nef-PAK2 complex, whereas an intact Cdc42-Rac1 interactive binding motif was required. Most importantly, we found that NAK represented a distinct subpopulation of the total cellular PAK2 characterized by a high specific kinase activity. Thus, although only a small fraction of cellular PAK2 could be found in complex with Nef, NAK represented a major part of cellular PAK2 activity.  相似文献   

10.
Nef, a multifunctional HIV protein, activates the Vav/Rac/p21-activated kinase (PAK) signaling pathway. Given the potential role of this pathway in the activation of the phagocyte NADPH oxidase, we have investigated the effect of the HIV-1 Nef protein on the phagocyte respiratory burst. Microglia (cell line and primary culture) were transduced with lentiviral expression vectors. Expression of Nef did not activate the NADPH oxidase by itself but led to a massive enhancement of the responses to a variety of stimuli (Ca(2+) ionophore, formyl peptide, endotoxin). These effects were not caused by up-regulation of phagocyte NADPH oxidase subunits. Nef mutants lacking motifs involved in the interaction with Vav and PAK failed to reproduce the effects of wild type Nef, suggesting a role for the Vav/Rac/PAK signaling pathway. The following results suggest a key role for Rac in the priming effect of Nef. (i) Inactivation of Rac by Clostridium difficile toxin B abolished the Nef effect. (ii) The fraction of activated Rac1 was increased in Nef-transduced cells, and (iii) the dominant positive Rac1(V12) mutant mimicked the effect of Nef. These results are to our knowledge the first analysis of the effect of Rac activation on the NADPH oxidase in intact phagocytes. Rac activation is not sufficient to stimulate the phagocyte NADPH oxidase; however, it markedly enhances the NADPH oxidase response to other stimuli.  相似文献   

11.
Recently, it has been demonstrated that the human immunodeficiency virus type 1 (HIV-1) Nef from laboratory strains down-modulates cell surface expression of mature major histocompatibility complex class II (MHC-II) molecules, while up-regulating surface expression of the invariant chain (Ii) associated with immature MHC-II (P. Stumptner-Cuvelette, S. Morchoisne, M. Dugast, S. Le Gall, G. Raposo, O. Schwartz, and P. Benaroch, Proc. Natl. Acad. Sci. USA 98:12144-12149, 2001). These Nef functions could contribute to impaired CD4(+)-T-helper-cell responses found in HIV-1-infected patients with progressive disease. However, it is currently unknown whether nef alleles derived from HIV-1-infected individuals or from other primate lentiviruses also modulate MHC-II and Ii. In the present study, we demonstrate that both activities are conserved among primary HIV-1 nef alleles, as well as among HIV-2 and simian immunodeficiency virus (SIV) nef alleles. Down-modulation of mature MHC-II required high levels of Nef expression. In contrast, surface expression of Ii was already strongly increased at low to medium levels of Nef expression. Notably, nef genes derived from two of four HIV-1-infected long-term nonprogressors did not up-regulate Ii, whereas nef alleles derived from 10 individuals with progressive disease were active in this assay. Unlike other in vitro Nef functions, the average activity of Nef in modulating MHC-II and Ii surface expression did not change significantly during the course of infection. Mutational analysis confirmed that MHC-II down- and Ii up-regulation are functionally separable from each other and from other Nef functions and identified acidic residues, located at the base of the flexible C-proximal loop of Nef, that are critical for increased Ii expression. Overall, our results suggest that the ability of Nef to interfere with MHC-II antigen presentation might play a role in AIDS pathogenesis.  相似文献   

12.
Human immunodeficiency virus type 1 (HIV-1) Nef enhances virus replication in both primary T lymphocytes and monocyte-derived macrophages. This enhancement phenotype has been linked to the ability of Nef to modulate the activity of cellular kinases. We find that despite the reported high-affinity interaction between Nef and the Src kinase Hck in vitro, a Nef-Hck interaction in the context of HIV-1-infected primary macrophages is not detectable. However, Nef binding and activation of the PAK-related kinase and phosphorylation of its substrate could be readily detected in both infected primary T lymphocytes and macrophages. Furthermore, we show that this substrate is a complex composed of the recently characterized PAK interacting partner PIX (PAK-interacting guanine nucleotide exchange factor) and its tightly associated p95 protein. PAK and PIX-p95 appear to be differentially activated and phosphorylated depending on the intracellular environment in which nef is expressed. These results identify the PIX-p95 complex as a novel effector of Nef in primary cells and suggest that the regulation of the PAK signaling pathway may differ in T cells and macrophages.  相似文献   

13.
The Nef protein alters T cell receptor (TCR) signaling in T cells and is critical for the pathogenesis of AIDS. We used a transient expression assay in a human CD4+ T cell line to analyze the interaction of Nef with the TCR machinery. We show that, in addition to down-regulating CD4 expression on the cell surface, Nef blocks a receptor-proximal event in CD3 signaling. Analysis of a large number of mutant Nef proteins demonstrated that the effects of Nef on CD4 expression and on CD3 signaling are separable. The ability of Nef to block CD3 signaling was selectively abolished by mutations in the central part of the Nef protein and in particular by those known to disrupt the SH3 binding surface in the structured core of Nef. In contrast, the ability of Nef to down-regulate CD4 expression was selectively abolished by two clusters of mutations, one in the N-terminal and one in the C-terminal region of Nef. These two regions correspond to the two flexible loops in Nef as predicted by solution NMR analysis. We show that this general functional organization is conserved between the Nef proteins of the human and simian immunodeficiency viruses (HIV-1 and SIV). Our data demonstrate that Nef has at least two independent mechanisms to alter TCR function and thus may interfere with a range of T cell responses.  相似文献   

14.
HIV-1-infected cells are partially resistant to anti-HIV cytotoxic T lymphocytes (CTLs) due to the effects of the HIV Nef protein on antigen presentation by major histocompatibility complex class I (MHC-I), and evidence has been accumulating that this function of Nef is important in vivo. HIV Nef disrupts the normal expression of MHC-I by stabilizing a protein-protein interaction between the clathrin adaptor protein AP-1 and the MHC-I cytoplasmic tail. There is also evidence that Nef activates a phosphatidylinositol 3 kinase (PI3K)-dependent GTPase, ADP ribosylation factor 6 (ARF-6), to stimulate MHC-I internalization. However, the relative importance of these two pathways is unclear. Here we report that a GTPase required for AP-1 activity (ARF-1) was needed for Nef to disrupt MHC-I surface levels, whereas no significant requirement for ARF-6 was observed in Nef-expressing T cell lines and in HIV-infected primary T cells. An ARF-1 inhibitor blocked the ability of Nef to recruit AP-1 to the MHC-I cytoplasmic tail, and a dominant active ARF-1 mutant stabilized the Nef-MHC-I-AP-1 complex. These data support a model in which Nef and ARF-1 stabilize an interaction between MHC-I and AP-1 to disrupt the presentation of HIV-1 epitopes to CTLs.  相似文献   

15.
Background : The negative factor (Nef) of human and simian immunodeficiency viruses (HIV-1, HIV-2 and SIV) is required for high levels of viremia and progression to AIDS. Additionally, Nef leads to cellular activation, increased viral infectivity and decreased expression of CD4 on the cell surface. Previously, we and others demonstrated that Nef associates with a cellular serine kinase (NAK) activity. Recently, it was demonstrated that NAK bears structural and functional similarity to p21-activated kinases (PAKs).Results : In this study, we demonstrate that Nef not only binds to but also activates NAK via the small GTPases CDC42 and Rac1. First, the dominant-negative PAK (PAKR), via its GTPase-binding domain, and dominant-negative GTPases (CDC42Hs-N17 and Rac1-N17) block the ability of Nef to associate with and activate NAK. Second, constitutively active small GTPases (CDC42Hs-V12 and Rac1-V12) potentiate the effects of Nef. Third, interactions between Nef and NAK result in several cellular effector functions, such as activation of the serum-response pathway. And finally, PAKR, CDC42Hs-N17 and Rac1-N17 decrease levels of HIV-1 production to those of virus from which the nef gene is deleted.Conclusions : By activating NAK via small GTPases and their downstream effectors, Nef interacts with regulatory pathways required for cell growth, cytoskeletal rearrangement and endocytosis. Thus, NAK could participate in the budding of new virions, the modification of viral proteins and the increased endocytosis of surface molecules such as CD4. Moreover, blocking the activity of these GTPases could lead to new therapeutic interventions against AIDS.  相似文献   

16.
The human immunodeficiency virus type 1 (HIV-1) Nef protein is an important determinant of AIDS pathogenesis. We have previously reported that HIV-1 Nef is responsible for the induction of a severe AIDS-like disease in CD4C/HIV transgenic (Tg) mice. To understand the molecular mechanisms of this Nef-induced disease, we generated Tg mice expressing a mutated Nef protein in which the SH3 ligand-binding domain (P(72)XXP(75)XXP(78)) was mutated to A(72)XXA(75)XXQ(78). This mutation completely abolished the pathogenic potential of Nef, although a partial downregulation of the CD4 cell surface expression was still observed in these Tg mice. We also studied whether Hck, one of the effectors previously found to bind to this PXXP motif of Nef, was involved in disease development. Breeding of Tg mice expressing wild-type Nef on an hck(-/-) (knockout) background did not abolish any of the pathological phenotypes. However, the latency of disease development was prolonged. These data indicate that an intact PXXP domain is essential for inducing an AIDS-like disease in CD4C/HIV Tg mice and suggest that interaction of a cellular effector(s) with this domain is required for the induction of this multiorgan disease. Our findings indicate that Hck is an important, but not an essential, effector of Nef and suggest that another factor(s), yet to be identified, may be more critical for disease development.  相似文献   

17.
We have previously reported that Nef specifically interacts with a small but highly active subpopulation of p21-activated kinase 2 (PAK2). Here we show that this is due to a transient association of Nef with a PAK2 activation complex within a detergent-insoluble membrane compartment containing the lipid raft marker GM1. The low abundance of this Nef-associated kinase (NAK) complex was found to be due to an autoregulatory mechanism. Although activation of PAK2 was required for assembly of the NAK complex, catalytic activity of PAK2 also promoted dissociation of this complex. Testing different constitutively active PAK2 mutants indicated that the conformation associated with p21-mediated activation rather than kinase activity per se was required for PAK2 to become NAK. Although association with PAK2 is one of the most conserved properties of Nef, we found that the ability to stimulate PAK2 activity differed markedly among divergent Nef alleles, suggesting that PAK2 association and activation are distinct functions of Nef. However, mutations introduced into the p21-binding domain of PAK2 revealed that p21-GTPases are involved in both of these Nef functions and, in addition to promoting PAK2 activation, also help to physically stabilize the NAK complex.  相似文献   

18.
IFN-gamma is considered to be a Th1 cytokine with immunomodulatory effects on a variety of immune cells. In this study, we determined whether dendritic cell (DC) function was aberrant in IFN-gamma knockout (GKO) mice. The results demonstrated that IFN-gamma deficiency did not interfere with bone marrow-derived DC development and maturation in vitro. However, functional analysis showed that bone marrow-derived DC from GKO mice had altered cytokine secretion, allostimulatory and Ag presentation capacity, chemokine receptor expression, and in vitro chemotaxis. LPS induced the recruitment of DC from different organs into the spleen; epicutaneously sensitized DC with hapten (FITC) accumulated in the draining lymph nodes and CD11c(+) DC levels in the draining lymph nodes from autoantigen (interphotoreceptor retinoid-binding protein) immunized mice were enhanced in GKO mice as compared with wild-type mice. After treatment of GKO mice with i.p. IFN-gamma injection restored IFN-gamma levels in vivo, DC migration decreased in response to LPS or FITC. IFN-gamma altered the adaptive immune responses in vivo, since T cell priming and IL-2 production were increased in interphotoreceptor retinoid-binding protein-immunized GKO mice. Furthermore, in IFN-gamma-treated GKO mice, experimental autoimmune uveitis score enhancement and T cell activation were eliminated. Taken together, IFN-gamma appears to play a negative regulatory role on in vivo DC function, resulting in suppression of Ag-specific T cell priming.  相似文献   

19.
20.
Dendritic cells (DCs) potently stimulate the cell-cell transmission of human immunodeficiency virus type 1 (HIV-1). However, the mechanisms that underlie DC transmission of HIV-1 to CD4+ T cells are not fully understood. DC-SIGN, a C-type lectin, efficiently promotes HIV-1 trans infection. DC-SIGN is expressed in monocyte-derived DCs (MDDCs), macrophage subsets, activated B lymphocytes, and various mucosal tissues. MDDC-mediated HIV-1 transmission to CD4+ T cells involves DC-SIGN-dependent and -independent mechanisms. DC-SIGN transmission of HIV-1 depends on the donor cell type. HIV-1 Nef can upregulate DC-SIGN expression and promote DC-T-cell clustering and HIV-1 spread. Nef also downregulates CD4 expression; however, the effect of the CD4 downmodulation on DC-mediated HIV-1 transmission has not been examined. Here, we report that CD4 expression levels correlate with inefficient HIV-1 transmission by monocytic cells expressing DC-SIGN. Expression of CD4 on Raji B cells strongly impaired DC-SIGN-mediated HIV-1 transmission to T cells. By contrast, enhanced HIV-1 transmission was observed when CD4 molecules on MDDCs and DC-SIGN-CD4-expressing cell lines were blocked with specific antibodies. Coexpression of CD4 and DC-SIGN in Raji cells promoted the internalization and intracellular retention of HIV-1. Interestingly, internalized HIV-1 particles were sorted and confined to late endosomal compartments that were positive for CD63 and CD81. Furthermore, in HIV-1-infected MDDCs, significant downregulation of CD4 by Nef expression correlated with enhanced viral transmission. These results suggest that CD4, which is present at various levels in DC-SIGN-positive primary cells, is a key regulator of HIV-1 transmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号