首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Large numbers of kidney epithelial cells were cultured successfully from isolated dog proximal tubule segments. Cells in primary culture and in first passage retained the cystine-dibasic amino acid co-transporter system which is found in vivo and in freshly isolated proximal tubule segments. In contrast to other cultured cells, the cystine-glutamate anti-porter was absent in primary cultures. However, this anti-porter system seemed to be developing in cells in first passage. The intracellular ratio of cysteine:reduced glutathione (CSH:GSH) was maintained at 1∶36 in both primary cultures and in low passage cells. Incubation of cells in primary culture for 5 min at 37°C with 0.025 mM [35S]l-cystine resulted in incorporation of approximately 36 and 8.5% of the label into intracellular CSH and GSH, respectively. These cultured cells, therefore, seem to be an excellent model system for the eventual elucidation of a) the intricacies of cystine metabolism and b) regulation of 1) the cystine-dibasic amino acid co-transporter system and 2) the development of the cystine-glutamate anti-porter system. Supported by National Institutes of Health, Bethesda, MD, grant no. DK40555 and The National Kidney Foundation of the Delaware Valley.  相似文献   

2.
Urea transport in the proximal tubule is passive and is dependent on the epithelial permeability. The present study examined the maturation of urea permeability (P(urea)) in in vitro perfused proximal convoluted tubules (PCT) and basolateral membrane vesicles (BLMV) from rabbit renal cortex. Urea transport was lower in neonatal than adult PCT at both 37 and 25 degrees C. The PCT P(urea) was also lower in the neonates than the adults (37 degrees C: 45.4 +/- 10.8 vs. 88.5 +/- 15.2 x 10(-6) cm/s, P < 0.05; 25 degrees C: 28.5 +/- 6.9 vs. 55.3 +/- 10.4 x 10(-6) cm/s; P < 0.05). The activation energy for PCT P(urea) was not different between the neonatal and adult groups. BLMV P(urea) was determined by measuring vesicle shrinkage, due to efflux of urea, using a stop-flow instrument. Neonatal BLMV P(urea) was not different from adult BLMV P(urea) at 37 degrees C [1.14 +/- 0.05 x 10(-6) vs. 1.25 +/- 0.05 x 10(-6) cm/s; P = not significant (NS)] or 25 degrees C (0.94 +/- 0.06 vs. 1.05 +/- 0.10 x 10(-6) cm/s; P = NS). There was no effect of 250 microM phloretin, an inhibitor of the urea transporter, on P(urea) in either adult or neonatal BLMV. The activation energy for urea diffusion was also identical in the neonatal and adult BLMV. These findings in the BLMV are in contrast to the brush-border membrane vesicles (BBMV) where we have previously demonstrated that urea transport is lower in the neonate than the adult. Urea transport is lower in the neonatal proximal tubule than the adult. This is due to a lower rate of apical membrane urea transport, whereas basolateral urea transport is the same in neonates and adults. The lower P(urea) in neonatal proximal tubules may play a role in overall urea excretion and in developing and maintaining a high medullary urea concentration and thus in the ability to concentrate the urine during renal maturation.  相似文献   

3.
Rabbit kidney proximal convoluted tubule (RPCT) and proximal straight tubule (RPST) cells were independently isolated and cultured. The kinetics of the sodium-dependent glucose transport was characterized by determining the uptake of the glucose analog alpha-methylglucopyranoside. Cell culture and assay conditions used in these experiments were based on previous experiments conducted on the renal cell line derived from the whole kidney of the Yorkshire pig (LLC-PK1). Results indicated the presence of two distinct sodium-dependent glucose transporters in rabbit renal cells: a relatively high-capacity, low-affinity transporter (V(max) = 2.28 +/- 0.099 nmoles/mg protein min, Km = 4.1 +/- 0.27 mM) in RPCT cells and a low-capacity, high-affinity transporter (V(max) = 0.45 +/- 0.076 nmoles/mg protein min, K(m) = 1.7 +/- 0.43 mM) in RPST cells. A relatively high-capacity, low-affinity transporter (V(max) = 1.68 +/- 0.215 nmoles/mg protein min, Km = 4.9 +/- 0.23 mM) was characterized in LLC-PK1 cells. Phlorizin inhibited the uptake of alpha-methylglucopyranoside in proximal convoluted, proximal straight, and LLC-PK1 cells by 90, 50, and 90%, respectively. Sodium-dependent glucose transport in all three cell types was specific for hexoses. These data are consistent with the kinetic heterogeneity of sodium-dependent glucose transport in the S1-S2 and S3 segments of the mammalian renal proximal tubule. The RPCT-RPST cultured cell model is novel, and this is the first report of sodium-dependent glucose transport characterization in primary cultures of proximal straight tubule cells. Our results support the use of cultured monolayers of RPCT and RPST cells as a model system to evaluate segment-specific differences in these renal cell types.  相似文献   

4.
Angiotensin II (AngII) is a potent regulator of electrolyte transport with biphasic effects on salt and HCO3-resorption in proximal tubule epithelia (PCT). In cultured PCT cells, pM to nM AngII activates a GTP-binding protein to inhibit cAMP formation and thus releases inhibition of apical Na/H exchange. Phospholipase A2 is activated by nM to microM AngII releasing arachidonate which is metabolized by a novel P450 epoxygenase to form 5,6-epoxy-eicosatrienoic acid (5,6-EET). 5,6-EET and nM apical AngII cause dihydropyridine-sensitive Ca2+ influx from the extracellular space, inhibition of apical-to-basolateral Na flux, and decrease in epithelial monolayer short circuit current. 5,6-EET also inhibits Na/K-ATPase by 50%. This P450 epoxygenase is physiologically important in the AngII-signaling system because the P450 inhibitor ketoconazole blocks AngII effects while potentiating exogenous 5,6-EET effects. Finally, these AngII-mediated signaling systems are polarized in the PCT with pM basolateral AngII inhibiting adenylate cyclase and nM apical AngII activating PLA2 and subsequent generation of 5,6-EET.  相似文献   

5.
Stevioside, a non-caloric sweetening agent, is used as a sugar substitute. An influence of stevioside on renal function has been suggested, but little is known about its effect on tubular function. Therefore, the present study was designed to explore the direct effect of stevioside on transepithelial transport of p-aminohippurate (PAH) in isolated S2 segments of rabbit proximal renal tubules using in vitro microperfusion. Addition of stevioside at a concentration of 0.45 mM to either the tubular lumen, bathing medium, or both at the same time had no effect on transepithelial transport of PAH. Similarly, a concentration of 0.70 mM (maximum solubility in the buffer) when present in the lumen, had no effect on PAH transport. However, this concentration in the bathing medium inhibited PAH transport significantly by about 25-35%. The inhibitory effect of stevioside was gradually abolished after it was removed from the bath. Addition of 0.70 mM stevioside to both lumen and bathing medium at the same time produced no added inhibitory effect. Stevioside at this concentration has no effect on Na+/K+-ATPase activity as well as cell ATP content. These findings suggest that stevioside, at a pharmacological concentration of 0.70 mM, inhibits transepithelial transport of PAH by interfering with the basolateral entry step, the rate-limiting step for transepithelial transport. The lack of effect of stevioside on transepithelial transport of PAH on the luminal side and its reversible inhibitory effect on the basolateral side indicate that stevioside does not permanently change PAH transport and should not harm renal tubular function at normal human intake levels.  相似文献   

6.
The effects of estrogens on the growth and function of primary rabbit kidney proximal tubule (RPT) cells have been examined in hormonally defined phenol red–free medium. 17β-estradiol was observed to stimulate growth at dosages as low as 10−10 M. The growth stimulatory effects of 17β-estradiol were mitigated in the presence of hydrocortisone, suggesting that these two steroid hormones acted at least in part by common mechanisms. The effects of other steroids known to interact with the estrogen receptor were examined. Alpha estradiol was found to be growth stimulatory over a concentration range of 10−9 to 10−8 M, albeit to a lower extent than beta estradiol. In addition, the anti-estrogen tamoxifen was also growth stimulatory (unlike the case with the human mammary tumor cell line MCF-7). The effects of several metabolic precursors of 17β-estradiol were examined, including testosterone, which was growth stimulatory, and progesterone, which was growth inhibitory. The growth stimulatory effects of 17β-estradiol, alpha estradiol, and tamoxifen could possibly be explained by their interaction with an estrogen receptor. Indeed, metabolic labelling and immunoprecipitation studies indicated the presence of such an estrogen receptor in the primary cultures. The rate of biosynthesis of the estrogen receptor was found to be affected by the presence of exogenously added 17β-estradiol. 17β-estradiol was also observed to increase the activity of two brush border enzymes, alkaline phosphatase and gamma glutamyl transpeptidase, during the growth phase of the primary cultures. J Cell Physiol 178:35–43, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

7.
Summary The purpose of this study was to characterize the basolateral membrane of the S3 segment of the rabbit proximal tubule using conventional and ion-selective microelectrodes. When compared with results from S1 and S2 segments, S3 cells under control conditions have a more negative basolateral membrane potential (V bl=–69 mV), a higher relative potassium conductance (t K=0.6), lower intracellular Na+ activity (A Na=18.4mm), and higher intracellular K+ activity (A K=67.8mm). No evidence for a conductive sodium-dependent or sodium-independent HCO 3 pathway could be demonstrated. The basolateral Na–K pump is inhibited by 10–4 m ouabain and bath perfusion with a potassium-free (0-K) solution. 0-K perfusion results inA Na=64.8mm,A K=18.5mm, andV bl=–28 mV. Basolateral potassium channels are blocked by barium and by acidification of the bathing medium. The relative K+ conductance, as evaluated by increasing bath K+ to 17mm, is dependent upon the restingV bl in both S2 and S3 cells. In summary, the basolateral membrane of S3 cells contains a pump-leak system with similar properties to S1 and S2 proximal tubule cells. The absence of conductive bicarbonate pathways results in a hyperpolarized cell and larger Na+ and K+ gradients across the cell borders, which will influence the transport properties and intracellular ion activities in this tubule segment.  相似文献   

8.
The aim of this study was to establish epithelial cell lines derived from defined nephron segments. Primary cultures were prepared from dissected proximal S2 segments of the rabbit kidney, and grown in monolayers. Immortalization was observed after nuclear microinjection of the cells with simian virus 40 DNA and resulted in the development of cell lines of epithelial morphology. These cell lines were maintained in culture for at least 24 passages, then cells were frozen. One of the cell lines, the RKPC-2, was selected and further characterized. RKPC-2 cells formed domes on impermeable supports, indicating fluid and solute transport. RKPC-2 cells formed continuous monolayers of low transepithelial resistance on collagen-coated filters. They were able to accumulate tetraethylammonium, an organic cation; however, no significant transcellular transport could be measured. We conclude that this cell line which shows characteristics of epithelial cells has maintained certain properties of intact proximal tubules, in particular the capacity to accumulate organic cations.  相似文献   

9.
This is the first in a series of studies that examines the renal tubular ultrastructure of elasmobranch fish. Each subdivision of the neck segment and proximal segment of the renal tubule of the little skate (Raja erinacea) has been investigated using electron microscopy of thin sections and freeze-fracture replicas. Flagellar cells, characterized by long, wavy, flagellar ribbons, were observed in both nephron segments. They were found predominantly in the first subdivision of the neck segment, which suggests that propulsion of the glomerular filtrate is a primary function of this part of the renal tubule. In the non-flagellar cells of the neck segment (subdivisions I and II), there were bundles of microfilaments, a few apical cell projections, and, in subdivision II, numerous autophagosomes. In the proximal segment, the non-flagellar cells varied in size, being low in subdivision I, cuboidal in II, tall columnar in III, and again low in IV. Apical cell projections were low and scattered in subdivisions I and IV and were highest in III where the basolateral plasma membrane was extremely amplified by cytoplasmic projections. Furthermore, in these cells the mitochondria were numerous with an extensive matrix and short cristae. A network of tubules of the endoplasmic reticulum characterized the apical region of the non-flagellar cells in subdivisions I, II, and IV. In the late part of subdivision II and the early part of III, the cells were characterized by numerous coated pits and vesicles, large subluminal vacuoles, and basally located dense bodies, all of which are structures involved in receptor-mediated endocytosis. Freeze-fracture replicas revealed gap junctions restricted to the cells of the first three subdivisions of the proximal segment. The zonulae occludentes were not different in the neck and proximal segments, being composed of several strands, suggesting a moderately leaky paracellular pathway.  相似文献   

10.
The characteristics of renal transport of L-alanine by luminal-membrane vesicles from proximal straight tubules (pars recta) of rabbit kidney were investigated. The following picture emerges from transport studies. Two electrogenic and Na+ requiring systems confined to this region of the nephron exist for the transport of L-alanine. In addition to Na+, the transport of L-alanine was influenced by H+. However, H+ does not substitute for Na+, but instead potentiates the Na+ effect. Modification of histidyl residues of the intact luminal-membrane vesicles by diethylpyrocarbonate (DEP), completely abolished the transient renal accumulation of L-alanine. Substrate and Na+-protection experiments suggest that histidyl residues may be at or close to the active site of the L-alanine transporter in membrane vesicles from pars recta.  相似文献   

11.
12.
13.
Summary To assess steady-state transepithelial osmotic water permeability (P f ), rabbit proximal convoluted tubules were perfused in vitro with the impermeant salt, sodium isethionate at 26°C. Osmotic gradients () were established by varying the bath concentration of the impermeant solute, raffinose. When lumen osmolality was 300 mOsm and bath osmolality was 320, 360 and 400 mOsm, apparentP f decreased from 0.5 to 0.10 to 0.08 cm/sec, respectively. Similar data were obtained when lumen osmolality was 400 mOsm. Five possible causes of the dependence of apparentP f were considered experimentally and/or theoretically: (1) external unstirred layer (USL); (2) cytoplasmic USL; (3) change in surface area; (4) saturation of water transport; (5) down-regulation ofP f . ApparentP f was inhibited 83% byp-chloromercuribenzene sulfonate (pCMBS) at 20 mOsm, but not at 60 mOsm , suggesting presence of a serial barrier resistance to water transport. Increases in perfusate or bath solution flow rate and viscosity did not alter apparentP f , ruling out an external USL. A simple cytoplasmic USL, described by a constant USL thickness and solute diffusion coefficient, could not account for the dependence of apparentP f according to a mathematical model. The activation energy (E a ) for apparentP f increased from 7.0 to 12.5 kcal/mol when was increased from 20 to 60 mOsm, not consistent with a simple USL or a change in membrane surface area with transepithelial water flow. These findings are most consistent with a complex cytoplasmic USL, where the average solute diffusion coefficient and/or the area available for osmosis decrease with increasing . These results (1) indicate that trueP f (at physiologically low ) is very high (>0.5 cm/sec) in the rabbit proximal tubule; (2) provide an explanation for the wide variation inP f values reported in the literature using different , and (3) suggest the presence of a flow-dependent cytoplasmic barrier to water flow.  相似文献   

14.
The uptake of taurine by luminal membrane vesicles from pars convoluta and pars recta of rabbit proximal tubule was examined. In pars convoluta, the transport of taurine was characterized by two Na(+)-dependent (Km1 = 0.086 mM, Km2 = 5.41 mM) systems, and one Na(+)-independent (Km = 2.87 mM) system, which in the presence of an inwardly directed H(+)-gradient was able to drive the transport of taurine into these vesicles. By contrast, in luminal membrane vesicles from pars recta, the transport of taurine occurred via a dual transport system (Km1 = 0.012 mM, Km2 = 5.62 mM), which was strictly dependent on Na+. At acidic pH with or without a H(+)-gradient, the Na(+)-dependent flux of taurine was drastically reduced. In both kind of vesicles, competition experiments only showed inhibition of the Na(+)-dependent high-affinity taurine transporter in the presence of beta-alanine, whereas there was no significant inhibition with alpha-amino acids, indicating a beta-amino acid specific transport system. Addition of beta-alanine, L-alanine, L-proline and glycine, but not L-serine reduced the H(+)-dependent uptake of taurine to approx. 50%. Moreover, only the Na(+)-dependent high-affinity transport systems in both segments specifically required Cl-. Investigation of the stoichiometry indicated 1.8 Na+: 1 Cl-: 1 taurine (high affinity), 1 Na+: 1 taurine (low affinity) and 1 H+: 1 taurine in pars convoluta. In pars recta, the data showed 1.8 Na+: 1 Cl-: 1 taurine (high affinity) and 1 Na+: 1 taurine (low affinity).  相似文献   

15.
P Y Chen  A S Verkman 《Biochemistry》1988,27(2):655-660
The mechanisms for Cl transport across basolateral membrane vesicles (BLMV) isolated from rabbit renal cortex were examined by using the Cl-sensitive fluorescent indicator 6-methoxy-N-(3-sulfopropyl)quinolinium (SPQ). The transporters studied included Cl/base exchange, Cl/base/Na cotransport, K/Cl cotransport, and Cl conductance. Initial rates of chloride influx (JCl) were determined from the measured time course of SPQ fluorescence in BLMV following inwardly directed gradients of Cl and gradients of other ions and/or pH. For a 50 mM inwardly directed Cl gradient in BLMV which were voltage and pH clamped (7.0) using K/valinomycin and nigericin, JCl was 0.80 +/- 0.14 nmol S-1 (mg of vesicle protein)-1 (mean +/- SD, n = 8 separate preparations). In the absence of Na and CO2/HCO3 in voltage-clamped BLMV, JCl increased 56% +/- 5% in response to a 1.9 pH unit inwardly directed H gradient; the increase was further enhanced by 40% +/- 3% in the presence of CO2/HCO3 and inhibited 30% +/- 8% by 100 microM dihydro-4,4'-diisothiocyanostilbene-2,2'-disulfonic acid. Na gradients did not increase JCl in the absence of CO2/HCO3; however, an outwardly directed Na gradient in the presence of CO2/HCO3 increased JCl by 31% +/- 8% with a Na KD of 7 +/- 2 mM. These results indicate the presence of Cl/OH and Cl/HCO3 exchange, and Cl/HCO3 exchange trans-stimulated by Na. There was no significant effect of K gradients in the presence or absence of valinomycin, suggesting lack of significant K/Cl cotransport and Cl conductance under experimental conditions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
17.
The characteristics of 86Rb+ fluxes through conductive channels in basolateral-membrane vesicles isolated from pars convoluta of rabbit proximal tubule were investigated. In KCl loaded vesicles a transient accumulation of 86Rb+ was observed which was inhibited by BaCl2. The accumulation was driven by an electrical diffusion potential, as shown in experiments using membrane vesicles loaded with Li2SO4 and an outwardly directed Li+ gradient established with a Li(+)-ionophore. The vesicles containing the channel showed a cation selectivity with the order K+ = Rb+ much greater than Li+ greater than or equal to Na+ greater than choline+. The 86Rb+ flux was dependent on intravesicular Ca2+. Increasing concentrations of Ca2+ gradually decreased the 86Rb+ uptake.  相似文献   

18.
Summary Morphological examination of kidney biopsies from patients with glomerulonephritis and hematuria has revealed the presence of erythrocytes within epithelial cells of the proximal tubule. This observation suggested that the proximal tubule might be capable of phagocytizing morphologically intact erythrocytes. To examine this possibility small quantities of heparinized autologous blood were injected into surface convolutions of proximal tubules of the rat kidney using standard micropuncture techniques. At time intervals ranging from 10 min to 120 h after injection, the kidneys were preserved for light and transmission electron microscopy by drip-fixation with a half-strength Karnovsky's glutaraldehyde-formaldehyde fixative.During the initial 6 h there was a flattening of the brush border and accumulation of electron-dense material representing hemoglobin in apical vacuoles and in lysosome-like structures. From 6 to 15 h after micropuncture, there was progressive loss of the brush border and the simultaneous formation of pseudopodia-like evaginations that extended from the apical plasma membrane and surrounded the individual erythrocytes. By 18 and 24 h, erythrocytes were observed in the proximal tubule cells. At later time intervals, edema, lymphocytic infiltration, and fibrosis were observed in the interstitium. In addition, crystalline structures were present in the lumen and the cells of both proximal and distal tubules. These findings suggest that in addition to their well-established ability to pinocytize hemoglobin and other proteins, the cells of the proximal tubule are capable of phagocytizing morphologically intact autologous erythrocytes. It is possible that phagocytosis by the proximal tubule cells may play a role in the disposal of erythrocytes from the tubular fluid in hematuric conditions.  相似文献   

19.
20.
Sodium-dependent glucose transport by cultured proximal tubule cells   总被引:1,自引:0,他引:1  
The cotransport of sodium ion and alpha-methyl glucose, a non-metabolized hexose, was studied in rabbit proximal tubule cells cultured in defined medium. The rate of uptake of alpha-methyl glucose shows saturation kinetics, in which Km, but not Vmax, is dependent upon the Na+ concentration in the medium. The transport system was found to be of the high-affinity type, characteristic of the straight portion of the proximal tubule. Analysis of the rates of initial uptake within the context of a generalized cotransport model, suggests that two Na+ ions are bound in the activation of the hexose transport. The steady-state level of accumulation of alpha-methyl glucose also depends upon sodium concentration, consistent with the initial rate findings. The uptake of alpha-methyl glucose is inhibited by other sugars with the relative potencies of D-glucose greater than alpha-methyl glucose greater than D-galactose = 3-O methylglucose. L-Glucose, D-fructose, and D-mannose show no inhibition. Phlorizin inhibits the alpha-methyl glucose uptake with a Ki of 9 X 10(-6) M. Ouabain (10(-3) M) decreases the steady-state alpha-methyl glucose accumulation by 60%. In the absence of sodium, the accumulation of alpha-methyl glucose is 7-fold less than at 142 mM Na+, reaching a level comparable to the sodium-independent accumulation of 3-O-methyl-D-glucose. These findings are similar to those observed in the proximal tubule of the intact kidney.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号