首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The activities of enzymes of pentose phosphate pathway (PPP) viz. glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and carbon metabolism viz. phosphoenol pyruvate carboxylase, NADP- isocitrate dehydrogenase and NADP-malic enzyme were measured in the plant and bacteroid fractions of mungbean (ureide exporter) and lentil (amide exporter) nodules along with the developing roots for comparison. The enzymes of pentose phosphate pathway in legume cytosol had higher activities at a stage of maximum nitrogenase activity and higher sucrose metabolism. However, bacteroids had only limited capacity for this pathway. The specific activities of these enzymes were greater in ureide than in amide exporter. CO2 fixation via higher activity of phosphoenolpyruvate carboxylase in the plant part of the nodules in lentil might have been due to the greater synthesis of four carbon amino acids for amide export. The peak of NADP-isocitrate dehydrogenase in both legumes coincided with the pentose phosphate pathway enzymes at the time of high rates of sucrose metabolism and nitrogen fixation. Higher activities of NADP-malic enzyme were obtained in mungbean than in the lentil nodules. These findings are consistent with the role of these enzymes in providing reductant (NADPH) and substrates for energy yielding metabolism of bacteroids and carbon skeletons for ammonia assimilation.  相似文献   

2.
Pyruvate kinase from Propionibacterium shermanii was shown to be activated by glucose-6-phosphate (G-6-P) at non-saturating phosphoenol pyruvate (PEP) concentrations but other glycolytic and hexose monophosphate pathway intermediates and AMP were without effect. Half-maximal activation was obtained at 1 mM G-6-P. The presence of G-6-P decreased both the PEP0.5V and ADP0.5V values and the slope of the Hill plots for both substrates. The enzyme was strongly inhibited by ATP and inorganic phosphate (Pi) at all PEP concentrations. At non-saturating (0.5 mM) PEP, half-maximal inhibition was obtained at 1.8 mM ATP or 1.4 mM Pi. The inhibition by both Pi and ATP was largely overcome by 4 mM G-6-P. The specific activity of pyruvate kinase was considerably higher in lactate-, glucose- and glycerol-grown cultures than that of the enzyme catalysing the reverse reaction, pyruvate, phosphate dikinase. It is suggested that the activity of pyruvate kinase in vivo is determined by the balance between activators and inhibitors such that it is inhibited during gluconeogenesis while, during glycolysis, the inhibition is relieved by G-6-P.Abbreviations PEP phosphoenolpyruvate - G-6-P glucose-6-phosphate - Pi inorganic phosphate  相似文献   

3.
Concentrations of m-Cl-peroxy benzoic acid (CPBA) higher than 0.1 mM decrease the ATP-content of Saccharomyces cerevisiae in the presence of glucose in 1 min to less than 10% of the initial value. In the absence of glucose, 1.0 mM CPBA is necessary for a similar effect. After the rapid loss of ATP in the first min in the presence of glucose caused by 0.2 mM CPBA, the ATP-content recovers to nearly the initial value after 10 min. Aerobic glucose consumption and ethanol formation from glucose are both completely inhibited by 1.0 mM CPBA. Assays of the activities of nine different enzymes of the glycolytic pathway as well as analysis of steady state concentrations of metabolites suggest that glyceraldehyde-3-phosphate dehydrogenase is the most sensitive enzyme of glucose fermentation. Phosphofructokinase and alcohol dehydrogenase are slightly less sensitive. Incubation for 1 or 10 min with concentrations of 0.05 to 0.5 mM CPBA causes a) inhibition of glyceraldehyde-3-phosphate dehydrogenase, b) decrease of the ATP-content and c) a decrease of the colony forming capacity. From these findings it is concluded that the disturbance of the ATP-producing glycolytic metabolism by inactivation of glyceraldehyde-3-phosphate dehydrogenase may be an explanation for cell death caused by CPBA.Abbreviations CPBA m-Chloro-peroxy benzoic acid - G-6-P glucose-6-phosphate - F-6-P fructose-6-phosphate - F-1,6-P2 frnctose-1,6-bisphosphate - DAP dihydroxyacetone phosphate - GAP glyceraldehyde-3-phosphate - 2PGA 2-phosphoglycerate - PEP phosphoenol pyruvate - Pyr pyruvate - EtOH ethanol - PFK phosphofructokinase - GAPDH glyceraldehyde-3-phosphate dehydrogenase - ADH alcohol dehydrogenase Dedicated to Prof. Dr. Wolfgang Gerok at the occasion of his 60th birthday  相似文献   

4.
Summary Glucose metabolism has been studied in Salmo trutta red blood cells. From non-metabolizable analogue (3-O-methyl glucose and l-glucose) uptake experiments it is concluded that there is no counterpart to the membrane transport system for glucose found in mammalian red blood cells. Once within the cells, glucose is directed to CO2 and lactate formation through both the Embden-Meyerhoff and hexose monophosphate shunts; lactate appears as the most important endproduct of glucose metabolism in these cells. From experiments under anaerobic conditions, and in the presence of an inhibitor of pyruvate transfer to mitochondria, most of the CO2 formed appears to derive from the hexose monophosphate pathway. Appreciable O2 consumption has been detected, but there is no clear relationship between this and substrate metabolism. Key enzymes of glucose metabolism hexokinase, fructose-6-phosphate kinase and, probably, pyruvate kinase are out of equilibrium, confirming their regulatory activity in Salmo trutta red blood cells. The presence of isoproterenol, a catecholamine analogue, induces important changes in glucose metabolism under both aerobic and anaerobic conditions, and increases the production of both CO2 and lactate. From the data presented, glucose appears to be the major fuel for Salmo trutta red blood cells, showing a slightly different pattern of glucose metabolism from rainbow trout red blood cells.Abbreviations EM Embden-Meyerhoff pathway - G6D glucose-6-phosphate dehydrogenase - GOT glutamate oxalacetate transaminase - GPI glucose phosphate isomerase - HK hexokinase - HMS hexose monophosphate shunt - IP isoproterenol - LDH lactate dehydrogenase - MCB modified Cortland buffer - OMG 3-O-methyl glucose - PFK fructose-6-phosphate kinase - PK pyruvate kinase - RBC red blood cells - TAC tricarboxylic acid cycle  相似文献   

5.
Phosphoenolpyruvate carboxylase (EC 4.1.1.31), used as a coupling enzyme in the assay of the pyruvate, orthophosphate dikinase (EC 2.7.9.1) forward reaction, is a serious limiting factor for the overall rate when added at a level of 0.2–0.3 unit/ml of assay medium. Nonlimiting assay conditions are obtained by either increasing the level of the coupling enzyme to 3 units/ml or adding 6mM glucose-6-phosphate as an activator/stabilizer of phosphoenolpyruvate carboxylase.Abbreviations G-6-P glucose-6-phosphate - LDH lactate dehydrogenase - MDH malate dehydrogenase - PEP phosphoenolpyruvate - PEPCase phosphoenolpyruvate carboxylase - PVP polyvinylpyrrolidone - PPDK pyruvate, orthophosphate dikinase - U unit of enzyme activity (mol/min)  相似文献   

6.
The rate and extent of light activation of PEPC may be used as another criterion to distinguish C3 and C4 plants. Light stimulated phosphoenolypyruvate carboxylase (PEPC) in leaf discs of C4 plants, the activity being three times greater than that in the dark but stimulation of PEPC was limited about 30% over the dark-control in C3 species. The light activation of PEPC in leaves of C3 plants was complete within 10 min, while maximum activation in C4 plants required illumination for more than 20 min, indicating that the relative pace of PEPC activation was slower in C4 plants than in C3 plants. Similarly, the dark-deactivation of the enzyme was also slower in leaves of C4 than in C3 species. The extent of PEPC stimulation in the alkaline pH range indicated that the dark-adapted form of the C4 enzyme is very sensitive to changes in pH. The pH of cytosol-enriched cell sap extracted from illuminated leaves of C4 plants was more alkaline than that of dark-adapted leaves. The extent of such light-dependent alkalization of cell sap was three times higher in C4 leaves than in C3 plants. The course of light-induced alkalization and dark-acidification of cytosol-enriched cell sap was markedly similar to the pattern of light activation and dark-deactivation of PEPC in Alternanthera pungens, a C4 plant. Our report provides preliminary evidence that the photoactivation of PEPC in C4 plants may be mediated at least partially by the modulation of cytosolic pH.Abbreviations CAM Crassulacean acid metabolism - G-6-P glucose-6-phosphate - PMSF phenylmethylsulfonyl fluoride - PEPC phosphoenolpyruvate carboxylase - PEPC-PK phosphoenolpyruvate ca carboxylase-protein kinase  相似文献   

7.
Ian E. Woodrow  Keith A. Mott 《Planta》1993,191(4):421-432
A model of the C 3 photosynthetic system is developed which describes the sensitivity of the steadystate rate of carbon dioxide assimilation to changes in the activity of several enzymes of the system. The model requires measurements of the steady-state rate of carbon dioxide assimilation, the concentrations of several intermediates in the photosynthetic system, and the concentration of the active site of ribulose 1,5-bisphosphate carboxyalse/oxygenase (Rubisco). It is shown that in sunflowers (Helianthus annuus L.) at photon flux densities that are largely saturating for the rate of photosynthesis, the steady-stete rate of carbon dioxide assimilation is most sensitive to Rubisco activity and, to a lesser degree, to the activities of the stromal fructose, 6-bisphosphatase and the enzymes catalysing sucrose synthesis. The activities of sedoheptulose 1,7-bisphosphatase, ribulose 5-phosphate kinase, ATP synthase and the ADP-glucose pyrophosphorylase are calculated to have a negligible effect on the flux under the high-light conditions. The utility of this analysis in developing simpler models of photosynthesis is also discussed.Abbreviations c i intercellular CO2 concentration - C infP supJ control coefficient for enzyme P with respect to flux J - DHAP dihydroxyacetonephosphate - E4P erythrose 4-phosphate - F6P fructose 6-phosphate - FBP fructose 1,6-bisphosphate - FBPase fructose 1,6-bisphosphatase - G3P glyceraldehyde 3-phosphate - G1P glucose 1-phosphate - G6P glucose 6-phosphate - Pi inorganic phosphate - PCR photosynthetic carbon reduction - PGA 3-phosphoglyceric acid - PPFD photosynthetically active photon flux density - R n J response coefficient for effector n with respect to flux J - R5P ribose 5-phosphate - Rubisco ribulose 1,5-bisphosphate carboxylase/oxygenase - Ru5P ribulose 5-phosphate - RuBP ribulose 1,5-bisphosphate - S7P sedoheptulose 7-phosphate - SBP sedoheptulose 1,7-bisphosphate - SBPase sedoheptulose 1,7-bisphosphatase - SPS sucrose-phosphate synthase - Xu5P xylulose 5-phosphate - n P elasticity coefficient for effector n with respect to the catalytic velocity of enzyme P This research was funded by an Australian Research Council grant to I.E.W. and was undertaken during a visity by K.A.M. to the James Cook University of North Queensland. The expert help of Glenys Hanley and Mick Kelly is greatly appreciated.  相似文献   

8.
Pyruvate kinase (ATP: pyruvate phosphotransferase (EC 2.7.1.40) was partially purified from both autotrophically and heterotrophycally grown Paracoccus denitrificans. The organism grown under heterotrophic conditions contains four times more pyruvate kinase than under autotrophic conditions. The enzyme isolated from both sources exhibited sigmoidal kinetics for both phosphoenolpyruvate (PEP) and ADP. The apparent M m for ADP and PEP in the autotrophic enzyme were 0.63 mM ADP and 0.25 mM PEP. The effect of several low molecular weight metabolites on the pyruvate kinase activity was investigated. Ribose-5-phosphate, glucose-6-phosphate and AMP stimulated the reaction at low ADP levels; this stimulation was brought about by an alteration in the apparent K m for ADP. The pyruvate kinases differ in their response to adenine nucleotides, but both preparations seem to be under adenylate control. The results are discussed in relation to the role of pyruvate kinase as a regulatory enzyme in P. denitrificans grown under both autotrophic and heterotrophic conditions.Non-Common Abbreviations PEP phosphoenolpyruvate - R-5-P ribose-5-phosphate - G-6-P glucose-6-phosphate - F-6-P fructose-6-phosphate - 3-PGA 3-phosphoglycerate  相似文献   

9.
Plants develop strategies to recycle phosphorus so that all organs receive adequate amounts of phosphorus, especially new growing organs. To evaluate the metabolic adaptation of rice plants under phosphorus deficient conditions, we selected several genes related to phosphorus utilization efficiency in the cell. Phosphoenolpyruvate carboxylase, triose phosphate translocator, phosphoenolpyruvate/phosphate translocator (PPT), pyruvate kinase, NAD dependent glyceraldehyde-3-phosphate dehydrogenase, and NADP dependent glyceraldehyde-3-phosphate dehydrogenase were selected because of their important roles in phosphorus utilization by the cell, and because they are part of the proposed bypass pathways by which the cells save phosphate. The most dramatic change was observed in the expression level of PPT (which transports phosphoenolpyruvate (PEP) from the cytosol into the chloroplast); thus we believe that PEP may play an important role in maintaining carbon metabolism under phosphate deficient conditions.  相似文献   

10.
F. D. Macdonald  J. Preiss 《Planta》1986,167(2):240-245
The cytoplasm was identified as the probable location of pyrophosphate-fructose-6-phosphate 1-phosphotransferase (EC 2.7.1.90) in suspension-cultured cells of soybean (Glycine max L.). The characteristics of the partially purified enzyme were investigated. The activity was strongly dependent on the presence of fructose 2,6-bisphosphate and this activator exerted its effects through a dramatic increase in the affinity of the enzyme for its substrates, fructose 6-phosphate and inorganic pyrophosphate. Saturation curves for all substrates were hyperbolic. The apparent molecular weight of the partially purified enzyme was 183000 by gel filtration chromatography and 128000 by sucrose-density-gradient centrifugation. The activation by fructose 2,6-bisphosphate was not accompanied by any measurable change in molecular weight. The possible role of this enzyme in the metabolism of non-photosynthetic sink tissues is discussed.Abbreviations PFP pyrophosphate-fructose-6-phosphate 1-phosphotransferase - Pi phosphate - PPi pyrophosphate  相似文献   

11.
The effects of anoxia (N2 atmosphere at 5 °C) or freezing (at-8 °C) exposure in vivo on the activities of five enzymes of carbohydrate metabolism were assessed in foot muscle and hepatopancreases of the marine periwinkle Littorina littorea. Changes in glycogen phosphorylase, glycogen synthetase, pyruvate kinase and pyruvate dehydrogenase under either stress were generally consistent with covalent modification of the enzymes to decrease enzyme activity and/or convert the enzyme to a less active form. However, no evidence for a similar covalent modification of phosphofructokinase was found. The metabolic effects of freezing and anoxia were generally similar, suggesting that a primary contributor to freezing survival is the implementation of anaerobic metabolism and metabolic arrest mechanisms that also promote anoxia survival in marine molluses. However, in hepatopancreas phosphorylase was activated and pyruvate kinase remained in two enzyme forms in freezing-exposed snails, contrary to the results for anoxic animals. Ion exchange chromatography on DE-52 Sephadex revealed the presence of two forms of pyruvate kinase in both tissues of control L. littorea, eluting at 30–50 mmol·1-1 KCl (peak I) or 90–110 mmol·1-1 KCl (peak II). Anoxia exposure converted pyruvate kinase in both tissues to the peak I form, as did freezing for foot muscle pyruvate kinase. Kinetic analysis showed that peak I pyruvate kinase had lower affinities for substrates, phosphoenolpyruvate and ADP, and was very strongly inhibited by l-alanine compared with the peak II enzyme. Peak I pyruvate kinase had an I 50 value for l-alanine of 0.38 mmol·1-1, whereas peak II pyruvate kinase was unaffected by l-alanine evenat 40 mmol·1-1. In vitro incubation of extracts from control foot muscle under conditions promoting phosphorylation or dephosphorylation identified the peak I and II forms as the low and high phosphate forms, respectively. This result for L. littorea pyruvate kinase was highly unusual and contrary to the typical effect of anoxia on pyruvate kinase in marine molluscs which is to stimulate the phosphorylation of pyruvate kinase and, thereby, convert the enzyme to a less active form.Abbreviations AABS p-(p-aminophenylazo)benzene sulphonic acid - F2, 6P fructose-2,6-bisphosphate - F6P fructose-6-phosphate - G6P glucose-6-phosphate - GP glycogen phosphorylase - GS glycogen synthase - I 50 inhibitor concentration reducing enzyme velocity by 50% - MR metabolic rate - PDH pyruvate dehydrogenase - PEP phosphoenopyruvate - PFK phosphofructokinase - PK pyruvate kinase - SW sea water - F a air temperature - TCA trichloroacetic acid - UDPG uridine-diphosphate glucose - WW wet weight  相似文献   

12.
Exploiting the differential expression of genes for Calvin cycle enzymes in bundle-sheath and mesophyll cells of the C4 plant Sorghum bicolor L., we isolated via subtractive hybridization a molecular probe for the Calvin cycle enzyme d-ribulose-5-phosphate 3-epimerase (R5P3E) (EC 5.1.3.1), with the help of which several full-size cDNAs were isolated from spinach. Functional identity of the encoded mature subunit was shown by R5P3E activity found in affinity-purified glutatione S-transferase fusions expressed in Escherichia coli and by three-fold increase of R5P3E activity upon induction of E. coli overexpressing the spinach subunit under the control of the bacteriophage T7 promoter, demonstrating that we have cloned the first functional ribulose-5-phosphate 3-epimerase from any eukaryotic source. The chloroplast enzyme from spinach shares about 50% amino acid identity with its homologues from the Calvin cycle operons of the autotrophic purple bacteria Alcaligenes eutrophus and Rhodospirillum rubrum. A R5P3E-related eubacterial gene family was identified which arose through ancient duplications in prokaryotic chromosomes, three R5P3E-related genes of yet unknown function have persisted to the present within the E. coli genome. A gene phylogeny reveals that spinach R5P3E is more similar to eubacterial homologues than to the yeast sequence, suggesting a eubacterial origin for this plant nuclear gene.Abbreviations R5P3E d-ribulose-5-phosphate 3-epimerase - RPI ribose-5-phosphate isomerase - TKL transketolase - PRK phosphoribulokinase - GAPDH glyceraldehyde-3-phosphate dehydrogenase - FBP fructose-1,6-bisphophatase - FBP fructose 1,6-bisphosphate - G6PDH glucose-6-phosphate dehydrogenase - 6PGDH 6-phosphogluconate dehydrogenase - OPPP oxidative pentose phosphate pathway - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - FBA fructose-1,6-bisphophate aldolase - IPTG isopropyl -d-thiogalactoside - GST glutathione S-tranferase - PBS phosphate-buffered saline - TPI triosephosphate isomerase  相似文献   

13.
This review deals with the factors controlling the aggregation-state of several enzymes involved in C4 photosynthesis, namely phosphoenolpyruvate carboxylase, NAD-and NADP-malic enzyme, NADP-malic dehydrogenase and pyruvate, phosphate dikinase and its regulatory protein. All of these enzymes are oligomeric and have been shown to undergo changes in their quaternary structure in vitro under different conditions. The activity changes linked to variations in aggregation-state are discussed in terms of their putative physiological role in the regulation of C4 metabolism.Abbreviations P-enolpyruvate phosphoenolpyruvate - NAD-ME NAD-dependent malic enzyme - NADP-ME NADP-dependent malic enzyme - NADP-MDH NADP-dependent malic dehydrogenase - PPDK pyruvate, phosphate dikinase - PPDK-RP pyruvate, phosphate dikinase regulatory protein - Vmax maximal velocity - Km Michaelis constant - CAM Crassulacean acid metabolism  相似文献   

14.
The objective of this study was to determine whether exposure of plants to ozone (O3) increased the foliar levels of glucose, glucose sources, e.g., sucrose and starch, and glucose-6-phosphate (G6P), because in leaf cells, glucose is the precursor of the antioxidant, L-ascorbate, and glucose-6-phosphate is a source of NADPH needed to support antioxidant capacity. A further objective was to establish whether the response of increased levels of glucose, sucrose, starch and G6P in leaves could be correlated with a greater degree of plant tolerance to O3. Four commercially available Spinacia oleracea varieties were screened for tolerance or susceptibility to detrimental effects of O3 employing one 6.5 hour acute exposure to 25O nL O3 L-1 air during the light. One day after the termination of ozonation (29 d post emergence), leaves of the plants were monitored both for damage and for gas exchange characteristics. Cultivar Winter Bloomsdale (cv Winter) leaves were least damaged on a quantitative grading scale. The leaves of cv Nordic, the most susceptible, were approximately 2.5 times more damaged. Photosynthesis (Pn) rates in the ozonated mature leaves of cv Winter were 48.9% less, and in cv Nordic, 66.2% less than in comparable leaves of their non-ozonated controls. Stomatal conductance of leaves of ozonated plants was found not to be a factor in the lower Pn rates in the ozonated plants. At some time points in the light, leaves of ozonated cv Winter plants had significantly higher levels of glucose, sucrose, starch, G6P, G1P, pyruvate and malate than did leaves of ozonated cv Nordic plants. It was concluded that leaves of cv Winter displayed a higher tolerance to ozone mediated stress than those of cv Nordic, in part because they had higher levels of glucose and G6P that could be mobilized during diminished photosynthesis to generate antioxidants (e.g., ascorbate) and reductants (e.g., NADPH). Elevated levels of both pyruvate and malate in the leaves of ozonated cv Winter suggested an increased availability of respiratory substrates to support higher respiratory capacity needed for repair, growth, and maintenance.Abbreviations ADPG-PPiase ADPglucose pyrophosphorylase - ASC L-ascorbic acid - APX ascorbate peroxidase - Ce CO2 concentration in air in the measuring cuvette during photosynthesis measurements - Ci CO2 concentration in the leaf intercellular spaces during photosynthesis measurement - Chl chlorophyll - DHA dehydroascorbic acid - DHA reductase dehydroascorbate reductase - DHAP dihydroxyacetone phosphate - GAP glyceraldehyde-3-phosphate - Gluc glucose - GR glutathione reductase - Gsw stomatal conductance with units as mmol H2O m-2 s-1 - GSSG oxidized glutathione - GSH reduced glutathione - G1P glucose-1-phosphate - G6P glucose-6-phosphate - G6P dehydrogenase glucose-6-phosphate dehydrogenase - 6PG 6-phosphogluconate - 6PG dehydrogenase 6-phosphogluconate dehydrogenase - F6P fructose-6-phosphate - FBP fructose-1,6-bisphosphate - MAL malate - MDHA reductase monodehydroascorbate reductase - PE post-emergence - PEP phosphoenolpyruvate - PGA 3-phosphoglycerate - Pi orthophosphate - PYR pyruvate - Pn net CO2 photoas-similation in leaves - PPFD photosynthetic photon flux density with units of mol photons m-2 s-1 - PPRC pentose phosphate reductive cycle - RuBP ribulose-1,5-bisphosphate - rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - SLW specific leaf weight - TCA cycle tricarboxylic acid cycle - Triose-P DHAP+GAP  相似文献   

15.
The activity of some enzymes of intermediary metabolism, including enzymes of glycolysis, the hexose monophosphate shunt, and polyol cryoprotectant synthesis, were measured in freeze-tolerant Eurosta solidaginis larvae over a winter season and upon entry into pupation. Flexible metabolic rearrangement was observed concurrently with acclimatization and development. Profiles of enzyme activities related to the metabolism of the cryoprotectant glycerol indicated that fall biosynthesis may occur from two possible pathways: 1. glyceraldehyde-phosphate glyceraldehyde glycerol, using glyceraldehyde phosphatase and NADPH-linked polyol dehydrogenase, or 2. dihydroxyacetonephosphate glycerol-3-phosphate glycerol, using glycerol-3-phosphate dehydrogenase and glycerol-3-phosphatase. Clearance of glycerol in the spring appeared to occur by a novel route through the action of polyol dehydrogenase and glyceraldehyde kinase. Profiles of enzyme activities associated with sorbitol metabolism suggested that this polyol cryoprotectant was synthesized from glucose-6-phosphate through the action of glucose-6-phosphatase and NADPH-linked polyol dehydrogenase. Removal of sorbitol in the spring appeared to occur through the action of sorbitol dehydrogenase and hexokinase. Glycogen phosphorylase activation ensured the required flow of carbon into the synthesis of both glycerol and sorbitol. Little change was seen in the activity of glycolytic or hexose monophosphate shunt enzymes over the winter. Increased activity of the -glycerophosphate shuttle in the spring, indicated by greatly increased glycerol-3-phosphate dehydrogenase activity, may be key to removal and oxidation of reducing equivalents generated from polyol cryoprotectan catabolism.Abbreviations 6PGDH 6-Phosphogluconate dehydrogenase - DHAP dihydroxy acetone phosphate - F6P fructose-6-phosphate - F6Pase fructose-6-phospha-tase - FBPase fructose-bisphosphatase - G3P glycerol-3-phosphate - G3Pase glycerol-3-phosphate phophatase - G3PDH glycerol-3-phosphate dehydrogenase - G6P glucose-6-phosphate - G6Pase glucose-6-phosphatase - G6PDH glucose-6-phosphate dehydrogenase - GAK glyceraldehyde kinase - GAP glyceraldehyde-3-phosphate - GAPase glyceraldehyde-3-phosphatase - GAPDH glyceraldehyde-3-phosphate dehydrogenase - GDH glycerol dehydrogenase - GPase glycogen phosphorylase - HMS hexose monophosphate shunt - LDH lactate dehydrogenase - NADP-IDH NADP+-dependent isocitrate dehydrogenase - PDHald polyol dehydrogenase, glyceraldehyde activity - PDHgluc polyol dehydrogenase, glucose activity - PFK phosphofructokinase - PGI phosphoglucoisomerase - PGK phosphoglycerate kinase - PGM phosphoglucomutase - PK pyruvate kinase - PMSF phenylmethylsulfonylfluoride - SoDH sorbitol dehydrogenase - V max maximal enzyme activity - ww wet weight  相似文献   

16.
The aim of this work was to examine the effect of temperature in the range 5 to 30 ° C upon the regulation of photosynthetic carbon assimilation in leaves of the C4 plant maize (Zea mays L.) and the C3 plant barley (Hordeum vulgare L.). Measurements of the CO2-assimilation rate in relation to the temperature were made at high (735 bar) and low (143 bar) intercellular CO2 pressure in barley and in air in maize. The results show that, as the temperature was decreased, (i) in barley, pools of phosphorylated metabolites, particularly hexose-phosphate, ribulose 1,5-bisphosphate and fructose 1,6-bisphosphate, increased in high and low CO2; (ii) in maize, pools of glycerate 3-phosphate, triose-phosphate, pyruvate and phosphoenolpyruvate decreased, reflecting their role in, and dependence on, intercellular transport processes, while pools of hexose-phosphate, ribulose 1,5-bis phosphate and fructose 1,6-bisphosphate remained approximately constant; (iii) the redox state of the primary electron acceptor of photosystem II (QA) increased slightly in barley, but rose abruptly below 12° C in maize. Non-photochemical quenching of chlorophyll fluorescence increased slightly in barley and increased to high values below 20 ° C in maize. The data from barley are consistent with the development of a limitation by phosphate status at low temperatures in high CO2, and indicate an increasing regulatory importance for regeneration of ribulose 1,5-bisphosphate within the Calvin cycle at low temperatures in low CO2. The data from maize do not show that any steps of the C4 cycle are particularly cold-sensitive, but do indicate that a restriction in electron transport occurs at low temperature. In both plants the data indicate that regulation of product synthesis results in the maintenance of pools of Calvin-cycle intermediates at low temperatures.Abbreviations Glc6P glucose-6-phosphate - Fru6P fructase-6-phosphate - Frul,6bisP fructose-1,6-bisphosphate - PGA glycerate-3-phosphate - p i intercellular partial pressure of CO2 - RuBP ribulose-1,5-bisphosphate - triose-P sum of glyceraldehyde-3-phosphate and dihydroxyacetone phosphate We thank the Agricultural and Food Research Council, UK (Research grant PG50/67) and the Science and Engineering Research Council, UK for financial support. C.A.L. was supported by the British Council, by the Conselho Nacional de Desenvolvimento Cientiflco e Tecnologico (CNPq), Brazil and by an Overseas Research Student Award. We also thank Mark Stitt (Bayreuth, FRG) and Debbie Rees for helpful discussions.  相似文献   

17.
Metabolic alterations mediated by 2-ketobutyrate in Escherichia coli K12   总被引:9,自引:0,他引:9  
Summary We have previously proposed that 2-ketobutyrate is an alarmone in Escherichia coli. Circumstantial evidence suggested that the target of 2-ketobutyrate was the phosphoenol pyruvate: glycose phosphotransferase system (PTS). We demonstrate here that the phosphorylated metabolites of the glycolytic pathway experience a dramatic downshift upon addition of 2-ketobutyrate (or its analogues). In particular, fructose-1,6-diphosphate, glucose-6-phosphate, fructose-6-phosphate and acetyl-CoA concentrations drop by a factor of 10, 3, 4, and 5 respectively. This result is consistent with (i) an inhibition of the PTS by 2-ketobutyrate, (ii) a control of metabolism by fructose-1,6-diphosphate. Since fructose-1,6-diphosphate is an activator of phosphoenol pyruvate carboxylase and of pyruvate kinase, the concentration of their common substrate, phosphoenol pyruvate, does not decrease in parallel.Abbreviations G1P glucose-1-phosphate - G6P glucose-6-phosphate - F6P fructose-6-phosphate - F1-6DP fructose-1,6-diphosphate - PEP phosphoenol pyruvate  相似文献   

18.
J. N. Pierre  O. Queiroz 《Planta》1979,144(2):143-151
Glycolysis shows different patterns of operation and different control steps, depending on whether the level of Crassulacean acid metabolism (CAM) is low or high in the leaves of Kalanchoe blossfeldiana v.Poelln., when subjected to appropriate photoperiodic treatments: at a low level of CAM operation all the enzymes of glycolysis and phosphoenol pyruvate (PEP) carboxylase present a 12 h rhythm of capacity, resulting from the superposition of two 24h rhythms out of phase; phosphofructokinase appears to be the main regulation step; attainment of high CAM level involves (1) an increase in the peak of capacity occurring during the night of all the glycolytic enzymes, thus achieving an over-all 24h rhythm, in strict allometric coherence with the increase in PEP carboxylase capacity, (2) the establishment of different phase relationships between the rhythms of enzyme capacity, and (3) the control of three enzymic steps (phosphofructokinase, the group 3-P-glyceraldehyde dehydrogenase — 3-P-glycerate kinase, and PEP carboxylase). Results show that the hypothesis of allosteric regulation of phosphofructokinase (by PEP) and PEP carboxylase (by malate and glucose-6-P) cannot provide a complete explanation for the temporal organization of glycolysis and that changes in the phase relationships between the rhythms of enzyme capacity along the pathway and a strict correlation between the level of PEP carboxylase capacity and the levels of capacity of the glycolytic enzymes are important components of the regulation of glycolysis in relation to CAM.Abbreviations CAM crassulacean acid metabolism - F-6-P fructose-6-phosphate - F-bi-P fructose-1,6 biphosphate - G-3-PDH 3-phosphoglyceraldehyde dehydrogenase (NAD), EC 1.2.1.12 - G-6-P glucose-6-phosphate - GSH reduced glutathion - GDH glycerolphosphate dehydrogenase, EC 1.1.1.8 - PEP phosphoenol pyruvate - PEPC PEP carboxylase, EC 4.1.1.31 - PFK phosphofructokinase, EC 2.7.1.11 - 2-PGA 2-phosphoglycerate - 3-PGA 3-phosphoglycerate - PGM phosphoglycerate phosphomutase, EC 5.4.2.1 - T.P. triose phosphates - TPI triose phosphate isomerase, EC 5.3.1.1  相似文献   

19.
Glycine enhanced the sensitivity of maize phosphenolpyruvate carboxylase to the activator glucose 6-phosphate and reduced the sensitivity of the enzyme to the inhibitors malate and aspartate. The effects of glycine on the kinetic constants for these other effectors were greater than its effect on the Km for substrate, raising the Ki(malate) 11-fold and reducing Ka(glucose6-P) 7-fold, while reducing the Km(PEP) by 3-fold. Kinetically saturating levels of glycine and glucose 6-phosphate acted synergistically to raise Ki(malate) higher than that observed with either activator alone. Glycine and glucose 6-phosphate also synergistically reduced aspartate inhibition. Dual inhibitor analysis indicated that aspartate and malate bind in a mutually exclusive manner, and thus probably compete for the same inhibitor site. In contrast, the synergism between glycine and glucose 6-phosphate indicate that these activators bind at separate sites. Glycine also reduced the Km(Mg) by 3-fold but had no significant effect on the Km of bicarbonate.Abbreviation PEP phosphoenolpyruvate  相似文献   

20.
RNA synthesis during morphogenesis of the fungusMucor racemosus   总被引:6,自引:0,他引:6  
Bacteroides succinogenes produces acetate and succinate as major products of carbohydrate fermentation. An investigation of the enzymes involved indicated that pyruvate is oxidized by a flavin-dependent pyruvate cleavage enzyme to acetyl-CoA and CO2. Active CO2 exchange is associated with the pyruvate oxidation system. Reduction of flavin nucleotides is CoASH-dependent and does not require ferredoxin. Acetyl-CoA is further metabolized via acetyl phosphate to acetate and ATP. Reduced flavin nucleotide is used to reduce fumarate to succinate by a particulate flavin-specific fumarate reductase reaction which may involve cytochrome b. Phosphoenolpyruvate (PEP) is carboxylated to oxalacetate by a GDP-specific PEP carboxykinase. Oxalacetate, in turn, is converted to malate by a pyridine nucleotide-dependent malate dehydrogenase. The organism has a NAD-dependent glyceraldehyde-3-phosphate dehydrogenase. The data suggest that reduced pyridine nucleotides generated during glycolysis are oxidized in malate formation and that the electrons generated during pyruvate oxidation are used to reduce fumarate to succinate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号