首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 230 毫秒
1.
Vernon LP  Shaw ER 《Plant physiology》1969,44(11):1645-1649
The use of diphenylcarbazide as an electron donor coupled to the photoreduction of 2,6-dichlorophenolindophenol by tris-washed chloroplasts or subchloroplast fragments provides a simple and sensitive assay for photosystem 2 of chloroplasts. By varying the concentration of tris buffer at pH 8.0 during an incubation period it is shown that the destruction of oxygen evolution activity is accompanied by a corresponding emergence of an ability to photooxidize diphenylcarbazide, as evidenced by absorbance changes due to diphenylcarbazide at 300 nm. The temperature-sensitive oxidation of diphenylcarbazide is inhibited by DCMU and by high ionic strengths. This activity appears to measure the primary photochemical reaction of photosystem 2.  相似文献   

2.
Krishna  K. Bala  Joshi  M.K.  Vani  B.  Mohanty  P. 《Photosynthetica》1999,36(1-2):199-212
We studied the development of chloroplasts from etioplasts in the cotyledonary leaves of 4-d-old dark-grown cucumber (Cucumis sativus) seedlings after irradiation (20 μmol m-2 s-1). Upon irradiation, the triggering of chlorophyll (Chl) synthesis and accumulation showed a relatively short lag phase. The irradiation of etiolated seedlings initiated the synthesis of apoproteins of pigment-protein complexes. While Chl-protein 2 (CP2) was detected at 6 h after irradiation, CP1 only after 29 h. The appearance and accumulation of some of the apoproteins were monitored by Western-blotting. LHC2 apoprotein was detected after a 6 h-irradiation. The amounts of D1 protein of photosystem (PS) 2 and PsaA/B protein of PS1 were quantitated by ELISA. Further, the thylakoid membrane function during this time period in terms of PS1- and PS2-mediated electron transfer activity and intersystem electron pool size were analyzed. While PS1 activity was detected after 4 h, PS2-mediated O2 evolution was detected only after a 17 h-irradiation. Fv/Fm value of Chl a fluorescence measurements indicated that the photochemical efficiency of these leaves reached its maximum after 29 h of irradiation. The intersystem pool size of cotyledonary leaves was equivalent to that of the control cotyledonary leaves grown for 25 h under continuous irradiation. Thus etioplasts develop into fully functional chloroplasts after approximately 25 h when 4 d-dark grown cucumber seedlings are continuously moderately irradiated. The development of photosynthetic electron transport chain seems to be limited in time at the level of PS2, possibly at the donor side. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

3.
Evidence was obtained for the interaction between the photosystem 2 (PS2) reaction centre (RC) chlorophyll (Chl) P680 and inorganic phosphate, Pi. The light-induced endogenous basal electron transport to ferricyanide in PS2 depended on endogenous Pi. The electron transport in phosphate deficient chloroplasts was absent, and could be resumed upon the addition of exogenous Pi or of the exogenous electron donor, diphenylcarbazide. Some chloroplast Chl molecules were apparently bound with Pi to a complex via the magnesium atom that was detected by the increase in absorbance in the Chl a absorption maximum at 435 nm observed after the consumption of endogenous Pi in the photophosphorylation reactions. The electron paramagnetic resonance (EPR) Signal I, found in the spectra at 77 K after irradiation of frozen samples in chloroplasts poor in endogenous Pi, was the sum of P700+ and P680+ signals. The P680+ signal disappeared after addition of Pi, diphenylcarbazide or diuron to the chloroplasts before freezing. In addition, the EPR doublet signal of the phosphate anion radicals was recorded at 77 K after irradiation in the ethanol solutions of Chl a containing potassium phosphate. The same doublet signal was discovered in the difference EPR spectrum "chloroplasts minus chloroplasts with diuron" at 77 K after irradation. The results are a possible evidence of the participation of phosphate ions in the primary light reactions of PS2. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
Evidence was obtained for the interaction between the photosystem 2 (PS2) reaction centre (RC) chlorophyll (Chl) P680 and inorganic phosphate, Pi. The light-induced endogenous basal electron transport to ferricyanide in PS2 depended on endogenous Pi. The electron transport in phosphate deficient chloroplasts was absent, and could be resumed upon the addition of exogenous Pi or of the exogenous electron donor, diphenylcarbazide. Some chloroplast Chl molecules were apparently bound with Pi to a complex via the magnesium atom that was detected by the increase in absorbance in the Chl a absorption maximum at 435 nm observed after the consumption of endogenous Pi in the photophosphorylation reactions. The electron paramagnetic resonance (EPR) Signal I, found in the spectra at 77 K after irradiation of frozen samples in chloroplasts poor in endogenous Pi, was the sum of P700+ and P680+ signals. The P680+ signal disappeared after addition of Pi, diphenylcarbazide or diuron to the chloroplasts before freezing. In addition, the EPR doublet signal of the phosphate anion radicals was recorded at 77 K after irradiation in the ethanol solutions of Chl a containing potassium phosphate. The same doublet signal was discovered in the difference EPR spectrum "chloroplasts minus chloroplasts with diuron" at 77 K after irradation. The results are a possible evidence of the participation of phosphate ions in the primary light reactions of PS2.  相似文献   

5.
The mechanism of inhibition by local anaesthetics of the procaine group of electron transport at the donor site of photosystem II (PS II) from pea chloroplasts was investigated. It was found that besides the inactivation of the O2 release system the anaesthetics used at one order of magnitude lesser concentration exert an uncoupling effect. With a rise in pH the inhibiting activity increases; however, this process is not coupled with the protonophore effect but is due to the generation of a neutral form of the amine. The increment of the inhibiting activity of the anaesthetics in the course of deprotonation seems to be regulated by changes in the coefficient of distribution between the membrane and the aqueous phase. The rate of inactivation of the H2O-dissociating complex increases considerably upon illumination. Electron transport through PS II in anaesthetic-treated chloroplasts in restored by diphenylcarbaside, but not by hydroxylamine. It is concluded that the anaesthetics induce the inhibition by interacting with the electron carrier. The role of the Ca2+--calmodulin-like protein in the functioning of the electron transport chain of PS II is discussed.  相似文献   

6.
Ni2+ inhibits electron-transport activity of isolated barley chloroplasts and this inhibition of electron transport by Ni2+ is distinctly different from other heavy metal ion (e.g., Pb2+, Cd2+, Zn2+)-induced inhibition of chloroplast function. Ni2+ inactivates Photosystem II (PS II) activity at a lower concentration than that required for the same extent of inhibition of Photosystem I (PS I)-mediated electron flow. Ni2+ induces changes in chlorophyll a (Chl a) emission characteristics and brings about a lowering of the Chl a fluorescence yield, and this lowering of Chl a fluorescence intensity is not relieved by the exogenously supplied electron donor NH2OH which donates electrons very close to the PS II reaction centres. Immobilization of the chloroplast membrane structure with glutaraldehyde fails to arrest the Ni2+-induced loss of PS II activity. Also, Ni2+-treated chloroplasts do not regain the ability to photoreduce 2,6-dichlorophenolindophenol even after washing of chloroplasts with buffer. These results indicate that unlike Zn2+ or Pb2+, Ni2+ induces alterations in the chloroplast photosynthetic apparatus resulting in an irreversible loss of electron-transport activity.  相似文献   

7.
Cadmium ions, as an environmental pollution factor, significantly inhibited the photosynthesis especially, photosystem Ⅱ activity in isolated spinach chloroplasts. The presence of 5 mmol/l Cd2+ inhibited the O2-evolution to 53%. Cd2+ reduced the activity of photoreduction of DCIP and the variable fluorescence of chloroplasts and PSⅡ preparation. The inhibited DCIP photoreduction activity could only be restored slightly by the addition of an artificial electron donor of PSII, DPC, and the inhibited variable fluorescence could not be obviously recovered by the addition of NH2OH, another artificial electron donor of PSⅡ. It is considered that, besides the oxidizing side of PSI1, Cd2+ could also inhibit directly the PSⅡ reaction center. The inhibitory effect of Cd2+ on the whole chain electron transport (H2O→MV) was more serious than on O2-evolution (H2O→DCMU). It is suggested that the oxidizing side of PSⅡ is not the only site for Cd2+ action. There may be another site inhibited by Cd2+ in the electron transport chain between PSⅠ and PSⅡ.  相似文献   

8.
Abstract. Aging of chloroplasts both in vivo and in vitro causes a considerable loss in the 2,6-dichlorophenol indophenol (DCPIP)-Hill reaction with water as electron donor. The loss can be reduced by exogenous electron donors like diphenyl carbazide (DPC). suggestive of aging-induced damage of the oxygen evolving system. Aging also brings about a considerable loss in methylviologen (MV) reduction mediated by Photosystem I (PS I) of chloroplasts with an ascorbate-DCPIP couple as the electron donating system.
The loss in the electron transport ability of the plastids is faster during in vitro compared to in vivo aging of the chloroplasts.
Light protects the photo-electron transport ability of chloroplasts during aging of intact leaves in contrast to its action during aging of the isolated organelles.  相似文献   

9.
UV-C对紫杉针叶叶绿体膜脂过氧化及PSⅡ电子传递活性的影响   总被引:12,自引:0,他引:12  
杜英君  姜萍  王兵  史奕 《应用生态学报》2003,14(8):1218-1222
在实验室条件下,用12W·m^-2剂量的紫外线C(UV-C,254nm)辐射紫杉针叶离体叶绿体.结果表明。随辐射时间的延长,活性氧清除系统中类胡萝卜素(Car)、谷胱甘肽(GSH)含量和超氧化物歧化酶(SOD)活性有不同程度的下降;脂质过氧化产物丙二醛(MDA)含量和膜相对透性有不同程度的增加;光系统Ⅱ(PSⅡ)电子传递活性显著下降,这种下降与光合活性光(PAR)强度呈反比;叶绿素对UV-C辐射不敏感.根据以上结果推测,UV-C辐射诱导叶绿体膜脂过氧化是导致PSⅡ电子传递活性下降的原因之一.  相似文献   

10.
(1) Similar results were obtained after controlled digestion of spinach chloroplasts with trypsin and chymotrypsin, but the specificity of digestion of chymotrypsin differed from that of trypsin. Trypsin weakly uncoupled photosynthetic electron transport but chymotrypsin did not. (2) Both changes of DCIP and Fecy reduction activity and the recovery of CCCP inhibition by electron donors of PSⅡ during proteolytic enzyme digestion showed that trypsin not only affected oxidizing side and reducing side of PSⅡ, but also partially inactivated the reaction center of PSⅡ. (3) The effects of CCCP on photosynthetic electron transport in chloroplasts digested with trypsin and chymotrypsin indicated the probable presence of "channel" in PSⅡ. These results support the interpretation that there is a fine structure in PSⅡ membrane. Modification of the protein components of PSⅡ in the membrane might alter their function.  相似文献   

11.
The enzyme lactoperoxidase was used to specifically iodinate the surface-exposed proteins of chloroplast lamellae. This treatment had two effects on Photosystem II activity. The first, occurring at low levels of iodination, resulted in a partial loss of the ability to reduce 2,6-dichlorophenolindophenol (DCIP), even in the presence of an electron donor for Photosystem II. There was a parallel loss of Photosystem II mediated variable yield fluorescence which could not be restored by dithionite treatment under anaerobic conditions. The same pattern of inhibition was observed in either glutaraldehyde-fixed or unfixed membranes. Analysis of the lifetime of fluorescence indicated that iodination changes the rate of deactivation of the excited state chlorophyll. We have concluded that iodination results in the introduction of iodine into the Photosystem II reaction center pigment-protein complex and thereby introduces a new quenching. The data indicate that the reaction center II is surface exposed.At higher levels of iodination, an inhibition of the electron transport reactions on the oxidizing side of Photosystem II was observed. That portion of the total rate of photoreduction of DCIP which was inhibited by this action could be restored by addition of an electron donor to Photosystem II. Loss of activity of the oxidizing side enzymes also resulted in a light-induced bleaching of chlorophyll a680 and carotenoid pigments and a dampening of the sequence of O2 evolution observed during flash irradiation of treated chloroplasts. All effects on electron transport on the oxidizing side of Photosystem II could be eliminated by glutaraldehyde fixation of the chloroplast lamellae prior to lactoperoxidase treatment. It is concluded that the electron carriers on the oxidizing side of Photosystem II are not surface localized; the functioning of these components is impaired by structural disorganization of the membrane occurring at high levels of iodination.Our data are in agreement with previously published schemes which suggest that Photosystem II mediated electron transport traverses the membrane.  相似文献   

12.
Water stress inhibited the photosynthetic O2 evolution rate of wheat leaves. It was shown that water stress decreased the electron transport rate, the activities of photophosphorylation and, coupling factor, and, the synthesis of ATP in chloroplasts. PS Ⅱ electron transport was more senstitive to water stress than PS Ⅰ. The reduction in photophosphorylation activity might be the results of reduction in electron transport rate and coupling factor activity, as well as the uncoupling effect of water stress on chloroplasts. The uncoupling effect could be due to the inhibition of light induced proton translocation in chloroplasts.  相似文献   

13.
(1) Using asolectin (mixed soybean phospholipids) liposomes, extra lipid, with or without additional plastoquinone, has been introduced into isolated thylakoid membranes of pea chloroplasts. (2) Evidence for this lipid enrichment was obtained from freeze-fracture which indicated that a decrease in the numbers of EF and PF particles per unit area of membrane occurred with increasing lipid incorporation. The decrease was not due to loss of integral membrane polypeptides as judged by assay of cytochrome present or SDS-polyacrylamide gel electrophoresis of lipid-enriched membrane fractions. Moreover, the enrichment procedure did not lead to extraction of low molecular weight lipophilic membrane components or of thylakoid membrane lipids. (3) The introduction of phospholipids into the membrane affected steady-state electron transport. Inhibition of electron transport was observed when either water (Photosystem (PS) II + PS I) or duroquinol (PS I) was used as electron donor with methyl viologen as electron acceptor, and the degree of inhibition increased with higher enrichment levels. Introduction of exogenous plastoquinone with the additional lipid had little effect on whole-chain electron transport, but caused an increase in the 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB)-sensitive rate of PS I electron transport. The inhibition was also detected by flash-induced oxidation-reduction changes of cytochrome f.  相似文献   

14.
Pea chloroplasts were treated with phospholipase A2 which hydrolysed approx. 75% phosphatidylglycerol and 60% phosphatidylcholine. The major effect of the treatment was an inhibition of Photosystem (PS) II electron transport together with an (approx. 30%) increase of initial chlorophyll fluorescence (F0) and a subsequent loss of variable fluorescence during induction, as well as an inhibition of the cation-induced rise in steady-state chlorophyll fluorescence. In contrast to the effects upon PS II activities, PS I activity was not depressed and increased slightly under certain conditions, while the coupling factor for photophosphorylation was inhibited to some extent. No significant increase in spillover was observed following the treatment with phospholipase A2. These results are discussed in relation to the ways in which phospholipid depletion may lead to the various effects observed. It is proposed that the site of PS II inhibition after phospholipase A2 treatment may be at the electron transfer from pheophytin to Q, the first quinone-type electron acceptor.  相似文献   

15.
The artificial electron donor compounds p-phenylenediamine (PD), N, N, N′, N′-tetramethyl-p-phenylenediamine (TMPD), and 2,6-dichlorophenol-indophenol (DCPIP) restored the Hill reaction and photophosphorylation in chloroplasts that had been inhibited by washing with 0.8 m tris (hydroxymethyl) aminomethane (tris) buffer, pH 8.0. The tris-wash treatment inhibited the electron transport chain between water and photosystem II and electron donation occurred between the site of inhibition and photosystem II. Photoreduction of nicotinamide adenine dinucleotide phosphate (NADP) supported by 33 μm PD plus 330 μm ascorbate was largely inhibited by 1 μm 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) while that supported by 33 μm TMPD or DCPIP plus ascorbate was relatively insensitive to DCMU. Experiments with the tris-washed chloroplasts indicated that electron donors preferentially donate electrons to photosystem II but in the presence of DCMU the donors (with the exception of PD at low concentrations) could also supply electrons after the DCMU block. The PD-supported photoreduction of NADP showed the relative inefficiency in far-red light characteristic of chloroplast reactions requiring photosystem II. With phosphorylating systems involving electron donors at low concentrations (33 μm donor plus 330 μm ascorbate) photophosphorylation, which occurred with P/e2 ratios approaching unity, was completely inhibited by DCMU but with higher concentrations of the donor systems, photophosphorylation was only partially inhibited.  相似文献   

16.
Electron spin resonance spectroscopy (ESR) was used to study the effects of amphiphilic amines of the carbamate, amide, and ester type and amine oxide on the photosynthetic system of spinach chloroplasts. The ESR signal II connected to the photosynthetic center PS II donor side was observed to diminish in the presence of amines, whereas that of PS I remained unchanged. The inhibition of PS II increased with the increasing of amine concentration. In the presence of amines, the light: dark chloroplast ESR signals ratio as well as the intensity of the ESR signal of unbound Mn2+ increased. It is suggested that the amphiphilic amines affect the structure of PS II and the electron transfer to PS I. The effects of the amines tested on the photosynthetic system correlate with their potency to perturb the lipid membrane structure.  相似文献   

17.
Using a mathematical model of light-induced stages of photosynthesis, which takes into account the key stages of pH-dependent regulation on the acceptor and donor sides of PS I, we analyzed electron and proton transport in chloroplasts of higher plants and in cyanobacterial cells. A comparison of computer simulations with experimental data showed that our model adequately described the complex nonmonotonic kinetics of the light-induced redox transients of P700. Effects of atmospheric gases (CO2 and O2) on the kinetics of photooxidation of P700 and generation of the transmembrane pH difference were studied. We also analyzed how cyclic electron transport influenced the kinetics of electron transfer, intrathylakoid pH, and ATP production. Within the framework of our model, we described the time courses of electron flow through PS II and distribution of electron fluxes on the acceptor side of PS I in chloroplasts and in cyanobacteria. It was demonstrated that contributions of cyclic electron transport and electron flow to O2 (the Mehler reaction) were significant during the initial phase of the induction period, but diminished upon activation of the Calvin-Benson cycle.  相似文献   

18.
Bertamini  M.  Muthuchelian  K.  Grando  M.S.  Nedunchezhian  N. 《Photosynthetica》2002,40(1):157-160
The contents of chlorophyll (Chl), leaf biomass, and soluble proteins were markedly decreased in phytoplasma infected apple leaves. Similar results were also observed for ribulose-1,5-bisphosphate carboxylase, 14CO2 fixation, and nitrate reductase activity. In contrast, the contents of sugars, starch, amino acids, and total saccharides were significantly increased in phytoplasma infected leaves. In isolated chloroplasts, phytoplasma infection caused marked inhibition of whole photosynthetic electron chain and photosystem 2 (PS2) activity. The artificial exogenous electron donor, diphenyl carbazide, significantly restored the loss of PS2 activity in infected leaves. Similar results were obtained when Fv/Fm was evaluated by in vivo Chl a fluorescence kinetic measurements.  相似文献   

19.
Direct evidence for the possible loss of photosystem II (PS II) activity in chloroplasts of Vigna sinensis L. cv. Walp after ultraviolet-B (UV-B, 280–320 nm) radiation treatment was provided by polyacrylamide gel electrophoretic analysis of PS II polypeptides. A 30 min UV-B treatment of chloroplasts caused a 50% loss of PS II activity. The artificial electron donor. Mn2+ failed to restore UV-B radiation induced loss of PS II activity, while diphenyl carbazide (DPC) and NH2OH only partially restored activity. Such a loss in PS II activity was found to be primarily due to a loss of 23 and 33 kDa extrinsic polypeptides. UV-B treatment induced the synthesis of a few polypeptides and a 29 kDa light-harvesting chlorophyll protein.  相似文献   

20.
Changes in photosynthetic activities were studied with tobacco (Nicotiana tabacum L.) leaves and chloroplasts infected by cucumber mosaic virus (CMV) at the top, middle and bottom located leaves. Net photosynthetic rate was reduced at all three positioned leaves, with the maximum reduction occurring at the top leaves (31.9% of control). The infected chloroplasts showed a reduction in electron transport rates of the whole chain electron transport, photosystem Ⅱ (PSⅡ) and photosystem Ⅰ (PSⅠ). Since the decline in the whole chain electron transport (15.6% of control, H2O→MV) closely paralleled the decline in PSⅡ activity (20.9% of control, H2O→PBQ), the inhibition of the latter was probably responsible for the overall decrease. Chlorophyll a fluorescence measurements showed a variable reduced fluorescence yield (Fv/Fo) which indicated that PSⅡ was impaired and the CO2 assimilation was disturbed by CMV infection. Fluorescence emission spectra at 77 K indicated that energy distribution between PSⅡ and PSⅠ was affected. F686/F734 of infected leaves and chloroplasts increased and the greatest increase (331.1% of control ) was found in the top leaves. These data may conclude that the infection inhibited mainly the PSⅡ activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号