共查询到20条相似文献,搜索用时 0 毫秒
1.
E Armstrong 《American journal of physical anthropology》1985,66(3):263-273
Prosimians have smaller brains relative to their body sizes than do monkeys. Brain and body weights, however, are associated not only on the basis of the brain integrating sensorimotor functions, but also on the basis of the body's requirement to support the energetic needs of the brain. Prosimians differ from monkeys in that they have lower rates of oxygen turnover. When body size is adjusted for its rate of oxygen turnover, monkeys and prosimians have equivalent relative brain sizes. A consideration of the brain's energy requirements helps to clarify brain-body relationships. 相似文献
2.
An increase in brain size is a hallmark of human evolution. Questions regarding the evolution of brain development and obstetric constraints in the human lineage can be addressed with accurate estimates of the size of the brain at birth in hominins. Previous estimates of brain size at birth in fossil hominins have been calculated from regressions of neonatal body or brain mass to adult body mass, but this approach is problematic for two reasons: modern humans are outliers for these regressions, and hominin adult body masses are difficult to estimate. To accurately estimate the brain size at birth in extinct human ancestors, an equation is needed for which modern humans fit the anthropoid regression and one in which the hominin variable entered into the regression equation has limited error. Using phylogenetically sensitive statistics, a resampling approach, and brain-mass data from the literature and from National Primate Research Centers on 362 neonates and 2802 adults from eight different anthropoid species, we found that the size of the adult brain can strongly predict the size of the neonatal brain (r2 = 0.97). This regression predicts human brain size, indicating that humans have precisely the brain size expected as an adult given the size of the brain at birth. We estimated the size of the neonatal brain in fossil hominins from a reduced major axis regression equation using published cranial capacities of 89 adult fossil crania. We suggest that australopiths gave birth to infants with cranial capacities that were on average 180 cc (95% CI: 158–205 cc), slightly larger than the average neonatal brain size of chimpanzees. Neonatal brain size increased in early Homo to 225 cc (95% CI: 198–257 cc) and in Homo erectus to approximately 270 cc (95% CI: 237–310 cc). These results have implications for interpreting the evolution of the birth process and brain development in all hominins from the australopiths and early Homo, through H. erectus, to Homo sapiens. 相似文献
3.
Ingo W. Stuermer Karsten Plotz Axel Leybold Olaf Zinke Otto Kalberlah Ravchikh Samjaa Henning Scheich 《Zoologischer Anzeiger》2003,242(3):249-266
A survey of adult male Mongolian gerbils, Meriones unguiculatus (Milne-Edwards, 1867), either trapped during an expedition in Mongolia near 47 °N and 105,5 °E in June 1995 (WILD) or obtained from a laboratory strain bred in captivity since 1935 (LAB), revealed significant morphological and behavioural differences, which are likely a result of domestication in the laboratory strain. Mean body length (125.4 mm), tail length (95.5 mm) and body weight (53.6 g) was lower in WILD, although no other external characteristics were obviously different. Related allometrically to net carcass weight, organ weights were significantly lower (p < 0.01) in LAB (brain – 17.6%, eyes – 26.0%, heart – 22.3%, lungs – 43.3%). Seizures frequently seen in LAB were absent in WILD trapped (n = 167) or subsequently housed in Germany (n = 81), and rare in their offspring. Mean litter size was greater in LAB (n = 5.5) than in WILD bred in the laboratory (n = 4.4). The WILD breeding strain was named Ugoe:MU95.A genetic bottleneck (n = 9) that occurred in 1954 and remarkably smaller brains in LAB indicate that the laboratory strain has become domesticated and should be designated as “Laboratory gerbils” (M. unguiculatus forma domestica) to signify this new case of domestication among rodents. 相似文献
4.
Summary Corner's rules for plant form relate the degree of branching to branch diameter, and branch diameter to leaf or inflorescence size. We report the first interspecific test of these rules for inflorescence size and branch diameter. We derived a simple corollary of Corner's rules; since leaf size and inflorescence size are both correlated to branch thickness, they may be correlated to each other. This corollary holds for Leucadendron and Protea (Proteaceae), and in certain other taxa in the Asteraceae, Bruniaceae and Pinaceae which also have leaves and reproductive structures on the same shoot. For such taxa this implies that selection for aspects of floral display (inflorescence size, pollination type) may also be expressed at the level of leaf size and vice versa. This has implications for many aspects of botany and also points to the importance of the co-ordinating role of plant architecture for aspects of plant form. 相似文献
5.
A. Kotrschal A. Corral‐Lopez S. Zajitschek S. Immler A. A. Maklakov N. Kolm 《Journal of evolutionary biology》2015,28(4):841-850
Brain size is an energetically costly trait to develop and maintain. Investments into other costly aspects of an organism's biology may therefore place important constraints on brain size evolution. Sexual traits are often costly and could therefore be traded off against neural investment. However, brain size may itself be under sexual selection through mate choice on cognitive ability. Here, we use guppy (Poecilia reticulata) lines selected for large and small brain size relative to body size to investigate the relationship between brain size, a large suite of male primary and secondary sexual traits, and body condition index. We found no evidence for trade‐offs between brain size and sexual traits. Instead, larger‐brained males had higher expression of several primary and precopulatory sexual traits – they had longer genitalia, were more colourful and developed longer tails than smaller‐brained males. Larger‐brained males were also in better body condition when housed in single‐sex groups. There was no difference in post‐copulatory sexual traits between males from the large‐ and small‐brained lines. Our data do not support the hypothesis that investment into sexual traits is an important limiting factor to brain size evolution, but instead suggest that brain size and several sexual traits are positively genetically correlated. 相似文献
6.
R. Lynn 《Human Evolution》1990,5(3):241-244
The brain size of hominids has increased approximately threefold during the evolution of the hominids fromAustralopithecus toHomo sapiens. It is proposed that the principal reason for this increase is that larger brains conferred greater intelligence, and greater intelligence conferred a selection advantage. A number of anthropologists have difficulty accepting this thesis because they believe that brain size is not associated with intelligence in man. Evidence is reviewed, and new evidence from two studies is presented, to show that brain size as measured by head size is positively correlated with intelligence as measured by intelligence tests. On two recent samples statistically significant correlations of .21 and .30 were obtained between estimates of brain size and IQ. It is considered that brain size is positively associated with intelligence in man and that this is the major reason for the increase in brain size of the hominids during the last 3.2 million years. 相似文献
7.
Lori Marino 《Evolutionary anthropology》1996,5(3):81-86
Fifty-five million years ago, a furry, hoofed mammal about the size of a dog ventured into the shallow brackish remnant of the Tethys Sea and set its descendants on a path that would lead to their complete abandonment of the land. These early ancestors of cetaceans (dolphins, porpoises, and whales) thereafter set on an evolutionary course that is arguably the most unusual of any mammal that ever lived. Primates and cetaceans, because of their adaptation to exclusively different physical environments, have had essentially nothing to do with each other throughout their evolution as distinct orders. In fact, the closest phylogenetic relatives of cetaceans are even-toed ungulates. 相似文献
8.
R H Eaglen 《American journal of physical anthropology》1986,71(2):185-201
Size variations in the anterior dentition were analyzed for 26 species of strepsirhine primates. The upper and lower incisor rows of strepsirhines, like those of anthropoid primates, scale isometrically with body size. Within the order Primates, strepsirhines exhibit the smallest incisors relative to body size, followed in increasing size by tarsiers, platyrrhines, and catarrhines. If the lateral teeth of the indriid toothcomb are interpreted as incisors and not canines, correlations between mandibular tooth size variables and body weight are maximized. The upper incisors of strepsirhines are extremely small and frequently widely separated, most likely to minimize occlusion with the toothcomb. Species deviations for assorted size variables of the anterior dentition generally fail to reflect functional variations in the use of the anterior teeth; some of the variables, however, do reflect taxonomic differences within the Strepsirhini. Although toothcomb size variations among extant strepsirhines are more readily interpreted in terms of gum feeding and bark scraping than they are in terms of grooming, anterior dental morphology as a whole is more easily explained by a grooming hypothesis when existing models of toothcomb origins are considered. 相似文献
9.
Kaitlyn J. Howell Shannon M. Beston Sara Stearns Matthew R. Walsh 《Ecology and evolution》2021,11(1):365-375
Brain size, brain architecture, and eye size vary extensively in vertebrates. However, the extent to which the evolution of these components is intricately connected remains unclear. Trinidadian killifish, Anablepsoides hartii, are found in sites that differ in the presence and absence of large predatory fish. Decreased rates of predation are associated with evolutionary shifts in brain size; males from sites without predators have evolved a relatively larger brain and eye size than males from sites with predators. Here, we evaluated the extent to which the evolution of brain size, brain structure, and eye size covary in male killifish. We utilized wild‐caught and common garden‐reared specimens to determine whether specific components of the brain have evolved in response to differences in predation and to determine if there is covariation between the evolution of brain size, brain structure, and eye size. We observed consistent shifts in brain architecture in second generation common garden reared, but not wild caught preserved fish. Male killifish from sites that lack predators exhibited a significantly larger telencephalon, optic tectum, cerebellum, and dorsal medulla when compared with fish from sites with predators. We also found positive connections between the evolution of brain structure and eye size but not between overall brain size and eye size. These results provide evidence for evolutionary covariation between the components of the brain and eye size. Such results suggest that selection, directly or indirectly, acts upon specific regions of the brain, rather than overall brain size, to enhance visual capabilities. 相似文献
10.
Disagreement is current over the question of whether relatively large teeth in some large primates are a natural outcome of growth trends instead of an indication of intrinsic differences. A cross-primate survey of dental scaling relative to skull (and inferred body) size is given in this study, using a principal component technique to measure the multivariate growth relation between two sets of data: dental size and cranial size. Cheek teeth are strongly positively allometric in restriced taxonomic groups, especially in cercopithecoids. Conversely, the allometry drops to an almost linear proportional growth relation when variation in diet is controlled. 相似文献
11.
Data on captive longevity in 587 mammalian species were analyzed in order to evaluate primate longevity in the context of general mammalian life history patterns. Contrary to some recurrent claims in the literature, we found that 1) primates are not the longest-lived mammalian order, either by absolute longevity, longevity corrected for body size, or metabolic expenditure per lifetime; 2) although relative brain size is highly correlated with longevity in primates, this is an aberrant trend for mammals in general, and other body organs account for an even greater amount of variation in longevity; and 3) there has been no progressive evolution of increased longevity among the primate superfamilies. The exceptional magnitude of primate longevity may, in keeping with evolutionary senescence theory, be due to an evolutionary history of low vulnerability to environmentally imposed death due to their body size, arboreal habit, and propensity to live in social groups. © 1992 Wiley-Liss, Inc. 相似文献
12.
Von M. Rhrs P. Ebinger 《Journal of Zoological Systematics and Evolutionary Research》1993,31(3):233-239
Progressive and regressive changes of brain size within Equidae From Hyracotherium to Equus brain size increased eightfold independently from body size. In domestication brain size is reduced; within mammals the amount of reduction depends on cephalization. Species with high cephalization show much more reductions than those with low cephalization. Among the ancestors of domesticated mammals wild horses have the highest cephalization level; reduction of brain size of more than 30% in domesticated horses could be expected. The size of the brain case of domesticated horses is only 14 % smaller than in wild Przewalski horses. We think that populations of the wild Przewalski horses have been crossbreeds between wild and domesticated animals. There is no difference in size of the brain case capacity and the brain weight between the Przewalski horses from zoological gardens and domesticated horses. This may be due to further crossbreeding between Zoo-Przewalski horses and domesticated horses and to artificial selection. 相似文献
13.
Robert H. Eaglen 《American journal of physical anthropology》1984,64(3):263-275
Allometric relationships between incisor size and body size were determined for 26 species of New World primates. While previous studies have suggested that the incisors of Old World primates, and anthropoids in general, scale isometrically with body size, the data presented here indicate a negative allometric relationship between incisor size and body size among New World species. This negative allometry was exhibited by platyrrhines when either upper or lower incisor row length was regressed against body weight, and when either least-squares or bivariate principal axis equations were used. When upper incisor length was plotted against skull length, negative allometry could be sustained using both statistical techniques only when the full sample of 26 species was plotted. The choice of variables to represent incisor size and body size, and the choice of a statistical technique to effect the allometric equation, had a more pronounced impact on the location of individual species with regard to lines of best fit. Platyrrhines as a group have smaller incisors relative to body size than do catarrhines, regardless of diet. Among New World primates, small incisors represent a plausible primitive condition; species with relatively large incisors manifest a phyletic change associated with a dietary shift to foods that require increased incisal preparation. The opposite trend characterizes Old World primates. In spite of the taxonomic differences in relative incisor size between platyrrhine and catarrhine primates, inferences about diet derived from an allometric equation for all anthropoids should prove reliable as long as the species with unknown diet does not lie at the upper end of the body size range for platyrrhines or catarrhines. 相似文献
14.
The larval development of the Japanese flounder,Paralichthys olivaceus, was surveyed using two types of morphometric analyses, modified allometry and polar coordinate analysis by principal component
analysis (PCA). In the former, centroid size was used as a growth index instead of total length (TL), such enabling the determination
of more detailed changes in each character than ordinary allometry based upon TL. Polar coordinate analysis disclosed two
remarkable inflexions during the larval development ofP. olivaceus. Postlarvae ofP. olivaceus were found to undergo four developmental phases. From the point of view of metamorphosis, the phases were named drifting
larva, premetamorphic larva, metamorphic larva and postmetamorphic larva, respectively. These phases were also tested by other
characters related to flounder metamorphosis. 相似文献
15.
Alexander Kotrschal Eva JP Lievens Josefin Dahlbom Andreas Bundsen Svetlana Semenova Maria Sundvik Alexei A Maklakov Svante Winberg Pertti Panula Niclas Kolm 《Evolution; international journal of organic evolution》2014,68(4):1139-1149
Animal personalities range from individuals that are shy, cautious, and easily stressed (a “reactive” personality type) to individuals that are bold, innovative, and quick to learn novel tasks, but also prone to routine formation (a “proactive” personality type). Although personality differences should have important consequences for fitness, their underlying mechanisms remain poorly understood. Here, we investigated how genetic variation in brain size affects personality. We put selection lines of large‐ and small‐brained guppies (Poecilia reticulata), with known differences in cognitive ability, through three standard personality assays. First, we found that large‐brained animals were faster to habituate to, and more exploratory in, open field tests. Large‐brained females were also bolder. Second, large‐brained animals excreted less cortisol in a stressful situation (confinement). Third, large‐brained animals were slower to feed from a novel food source, which we interpret as being caused by reduced behavioral flexibility rather than lack of innovation in the large‐brained lines. Overall, the results point toward a more proactive personality type in large‐brained animals. Thus, this study provides the first experimental evidence linking brain size and personality, an interaction that may affect important fitness‐related aspects of ecology such as dispersal and niche exploration. 相似文献
16.
Allometric analyses of hair densities in 23 anthropoid primate taxa reveal that increasingly massive primates have systematically fewer hairs per equal unit of body surface. Considering the absence of effective sweating in monkeys and apes, the negative allometry of relative hair density may represent an architectural adaptation to thermal constraints imposed by the decreasing ratios of surface area to volume in progressively massive primates. Judging by estimates of body volume, denudation of the earliest hominids should have progressed to a considerable extent prior to their shift from a forest to a grassland habitat during the Pliocene. We propose that, lacking a reflective coat of hair, the exploitation of eccrine sweating emerged as the primary mechanism for adaptation to the increased heat loads of man's new environment and permitted further reduction of the remnant coat to its present vestigial condition. 相似文献
17.
Attempts to analyze variation in the rates of molecular evolution among mammalian lineages have been hampered by paucity of data and by nonindependent comparisons. Using phylogenetically independent comparisons, we test three explanations for rate variation which predict correlations between rate variation and generation time, metabolic rate, and body size. Mitochondrial and nuclear genes, protein coding, rRNA, and nontranslated sequences from 61 mammal species representing 14 orders are used to compare the relative rates of sequence evolution. Correlation analyses performed on differences in genetic distance since common origin of each pair against differences in body mass, generation time, and metabolic rate reveal that substitution rate at fourfold degenerate sites in two out of three protein sequences is negatively correlated with generation time. In addition, there is a relationship between the rate of molecular evolution and body size for two nuclear-encoded sequences. No evidence is found for an effect of metabolic rate on rate of sequence evolution. Possible causes of variation in substitution rate between species are discussed. 相似文献
18.
19.
The allometric relationships between canine base area, first molar and summed molar crown area, and the glabella–opisthocranion distance, and the direct allometric relationships between canine and molar size have been established in five primate taxa. Separate sex and combined sex ‘intraspecific’, and ‘interspecific’ regression and ‘best fit’ allometry coefficients were computed. This analysis showed that for any increase in glabella–opisthocranion length, the rate of increase in canine size exceeds the rate of increase in molar area, and ‘best fit’ solutions indicate that canine base area is positively allometric when related directly to molar crown area. These results were compared with data available for the ‘gracile’ australopithecine, A. africanus, and two ‘robust’ australopithecine taxa, A. boisei and A. robustus. The differences in canine and molar size which occur between the ‘gracile’ taxon and the two ‘robust’ taxa do not correspond to any of the trends in the comparative allometric models. Data on glabella–opisthocranion length for the fossils, meagre though they are, show that while the proportional increase in molar crown area between the taxa corresponds to comparative allometry models, the reduced canine size in the ‘robust’ taxa is against comparative allometric trends. These results indicate that, at least in terms of canine/molar proportions, the differences between the ‘gracile’ and ‘robust’ australopithecines are not merely allometric and may indicate significant dietary or behavioural differences. 相似文献
20.
Adult static intraspecific allometry of tooth size was evaluated in a sample of 66 Otolemur crassicaudatus (34 male, 32 female). Tooth areas were calculated from mesiodistal and buccolingual measurements of canines and postcanine teeth of both arcades and were scaled to four viscerocranial measurements: bimaxillary width; maxillo-alveolar length; mandibular length and bigonial width. Individual tooth crown areas were also scaled to total skull length, body length and body weight. From the log-transformed analyses it is concluded that postcanine tooth size was unrelated to body length or weight, and poorly correlated to skull length or jaw size. Although viscerocranial size appears to be independent of body size, these measures are well correlated to skull length. It is shown that the longer the skull, the shorter and narrower the maxilla, and the longer and broader the mandible. Canines are shown to scale negatively allometric to skull length, hence, large animals will have relatively small canines. 相似文献