首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of 2450 MHz microwave radiation on the proteins of human erythrocyte ghosts has been investigated using circular dichroism spectroscopy. A specially constructed waveguide inserted into the spectropolarimeter allowed the continuous recording of optical activity before, during and after microwave irradiation. The data indicate that high levels of microwave radiation (600 mW/g, specific absorption rate) induce decreases in α-helical conformation that may result from both thermal vibrations and increased strain on the intramolecular hydrogen bonds that maintain secondary structure. The latter effect may result from differential intramolecular interactions with the oscillating electric field. Spectrin (bands 1 and 2) isolated from the ghosts was more sensitive to microwave irradiation than intact ghosts, and spectrin-depleted vesicles were the least sensitive. The data, therefore, indicate that the α-helical conformation of spectrin is altered by high levels of microwave radiation.  相似文献   

2.
The effect of 2450 MHz microwave radiation on the proteins of human erythrocyte ghosts has been investigated using circular dichroism spectroscopy. A specially constructed waveguide inserted into the spectropolarimeter allowed the continuous recording of optical activity before, during and after microwave irradiation. The data indicate that high levels of microwave radiation (600 mW/g, specific absorption rate) induce decreases in alpha-helical conformation that may result from both thermal vibrations and increased strain on the intramolecular hydrogen bonds that maintain secondary structure. The latter effect may result from differential intramolecular interactions with the oscillating electric field. Spectrin (bands 1 and 2) isolated from the ghosts was more sensitive to microwave irradiation than intact ghosts, and spectrin-depleted vesicles were the least sensitive. The data, therefore, indicate that the alpha-helical conformation of spectrin is altered by high levels of microwave radiation.  相似文献   

3.
The effect of microwave radiation (2450 MHz) on binding of the ligand propyl-2,3-[3H]-dehydroalprenolol to β-adrenergic receptors of rat erythrocyte membranes has been studied. It is shown that microwave exposure decreases specific binding of the ligand to receptors. The effect is dependent on time of exposure (66.2% on 10 min exposure and 37.3% on 30 min exposure). EDTA and heparin used as anticoagulants do not significantly alter the experimental results. However, the Ca2+ content in the incubation medium is essential for the effect. Exposure of erythrocytes isolated in the presence of EDTA and incubated in Hanks' solution without CA2+ has no effect on binding. The effect is manifest when Ca2+ is added to the specimen exposed. Possible mechanisms of action of microwaves on the studied parameter are discussed.  相似文献   

4.
Effects of ionizing radiation and of sulfhydryl reagents on the 45Ca binding of red cell membranes were studied. Corresponding effects of these agents on potassium leak from intact red cells were also determined. Essentially all the 45Ca associated with the ghosts appeared to be bound. Calcium binding could be described by assuming two independent groups of binding sites with dissociation constants of about 6 × 10?4 m and 2 × 10?4 m. The total binding capacity was about 2.5 × 10?4 moles/g ghost protein. Membrane calcium was decreased by radiation and by the two sulfhydryl reagents, p-chloromercuribenzoate (PCMB) and N-ethyl maleimide (NEM). The tightly bound calcium fraction appeared to be most affected by these agents. Changes in potassium leak evoked by varying doses of agents appeared to parallel effects on membrane calcium. These investigations suggest that the increased cation permeability observed after exposure or red cells to radiation or sulfhydryl reagents may be related to alterations in the calcium-binding properties of the cell membrane.  相似文献   

5.
We have studied the differences between erythrocytes and erythrocyte ghosts as target membranes for the study of Sendai virus fusion activity. Fusion was monitored continuously by fluorescence dequenching of R18-labeled virus. Experiments were carried out either with or without virus/target membrane prebinding. When Sendai virus was added directly to a erythrocyte/erythrocyte ghost suspension, fusion was always lower than that obtained when experiments were carried out with virus already bound to the erythrocyte/erythrocyte ghost in the cold, since with virus prebinding fusion can be triggered more rapidly. Although virus binding to both erythrocytes and erythrocyte ghosts was similar, fusion activity was much more pronounced when erythrocyte ghosts were used as target membranes. These observations indicate that intact erythrocytes and erythrocyte ghosts are not equivalent as target membranes for the study of Sendai virus fusion activity. Fusion of Sendai virus with both target membranes was inhibited when erythrocytes or erythrocyte ghosts were pretreated with proteinase K, suggesting a role of target membrane proteins in this process. Treatment of both target membranes with neuraminidase, which removes sialic acid residues (the biological receptors for Sendai virus) greatly reduced viral binding. Interestingly, this treatment had no significant effect on the fusion reaction itself.  相似文献   

6.
Plasma membrane vesicles were prepared from guinea pig ileum longitudinal muscle. The vesicles were characterized by electron microscopy and analysis of lipid and protein content. They were shown to be free of gross contamination from actomyosin, sarcoplasmic reticulum, and mitochondria. 8-Anilino-1-naphthalene sulphonic acid (ANS) binding characteristics were similar to those found in other membranes. Both carbachol and atropine increased the fluorescence of ANS bound to this membrane, the maximum increase for atropine being greater than that for carbachol. Since neither drug effected the apparent affinity constant for the ANS-membrane interaction. It may be assumed that the increased fluorescence was due to an increase in the number of ANS binding sites. The carbachol-dependent increase in ANS fluorescence was blocked noncompetitively by atropine but not by tubocurarine or diphenhydramine. These latter two antagonists also increased ANS fluorescence but at much higher concentrations than either carbachol or atropine. Neither atropine nor carbachol increased ANS fluorescence on either erythrocyte ghosts or liposomes (prepared from a lipid extract of the muscle membrane).  相似文献   

7.
The induction of stress proteins in HeLa and CHO cells was investigated following a 2 h exposure to radiofrequency (RF) or microwave radiation. Cells were exposed or sham exposed in vitro under isothermal (37 ± 0.2 °C) conditions. HeLa cells were exposed to 27- or 2450 MHz continuous wave (CW) radiation at a specific absorption rate (SAR) of 25 W/kg. CHO cells were exposed to CW 27 MHz radiation at a SAR of 100 W/kg. Parallel positive control studies included 2 h exposure of HeLa or CHO cells to 40 °C or to 45 μM cadmium sulfate. Stress protein induction was assayed 24 h after treatment by electrophoresis of whole-cell extracted protein labeled with [35S]-methionine. Both cell types exhibited well-characterized responses to the positive control stresses. Under these exposure conditions, neither microwave nor RF radiation had a detectable effect on stress protein induction as determined by either comparison of RF-exposed cells with sham-exposed cells or comparison with heat-stressed or Cd++ positive control cells. Bioelectromagnetics 18:499–505, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

8.
By use of fluorescence probes 1-anilinonaphthalene-8-sulfonic acid, 2-toluidinylnaphthalene-6-sulfonate, pyrene, perylene and chemical label phosphatidylethanolamine 2,4,6-trinitrobenzele sulfonic acid, the effect of microwave radiation on the erythrocyte membrane was studied. The studies with the fluorescence probes were carried out on erythrocyte ghosts and with 2,4,6-trinitrobenzene sulfonic acid on whole erythrocytes. The fluorescence was measured during irradiation of the membranes with 340-MHz microwaves at an SAR of 100 W/kg. Trinitrophenylation of phosphatidylethanolamine from whole erythrocytes was performed simultaneously with microwave irradiation at 900 MHz (10 mW/cm2). It was shown that the microwave field decreased lipid viscosity, altered the structural state of lipid-protein contact regions, and decreased the protein shielding of lipids. These changes corresponded to those produced by thermal action of microwaves.  相似文献   

9.
The spatial distributions of induced 27 or 2450 MHz radiofrequency (RF) electric fields (E-fields) and specific absorption rates (SARs) in a three-component spherical cell model (cytoplasm, membrane, extracellular space) were determined by Mie scattering theory. The results were compared to results for the same cell model but with 0.5 nm thick of bound water on the inner (cytoplasmic) and outer (extracellular) membrane surfaces (i.e., five-component cell model). The results provide insight regarding direct frequency-dependent RF radiation effects at the cellular level. Induced E-fields and SARs were calculated for two bound-water characteristic frequencies (400 or 1000 MHz) and ionic conductivities (1–1000 mS/m). In order to estimate the dependence of the results on bound water within the membrane per se, the model was revised to include bound water within the inner and outer membrane surfaces. The results were as follows: (1) On the x-axis, the y- and z-components of the induced E-field were of insignificant magnitude compared to the x-component for an incident E-field parallel to the x-axis; (2) the ratio of transmembrane E-fields induced by 2450 MHz vs. 27 MHz RF [i.e., Ex (2450 MHz)/Ex (27 MHz)] was 0.1; (3) for the three-component cell model, the corresponding SAR ratios [SAR (2450 MHz)/SAR (27 MHz)] in the cytoplasm and extracellular space were 1.66 and 5.0, respectively; (4) the SAR ratios [SAR (2450 MHz)/SAR (27 MHz)] for the cytoplasm and extracellular space for the five-component cell model were 1.66 and 5.0, respectively; (5) the ratio of the E-fields induced in the cytoplasmic and extracellular layers of bound water in the five-component cell model [E (2450 MHz)/E (27 MHz)] were 0.62 and 0.63, respectively; (6) the SAR ratios [SAR (2450 MHz)/SAR (27 MHz)] for the cytoplasmic and extracellular bound-water layers were 66 and 65.3, respectively; and (7) variation of bound-water characteristic frequency, ionic conductivity, or bound-water incorporation inside the membrane surfaces, per se, did not significantly affect the E-field or SAR ratios. These results indicate that frequency-dependent nonuniformities may occur in the distribution of induced RF E-fields and SARs at the cellular level. © 1995 Wiley-Liss, Inc.  相似文献   

10.
Antibodies directed against purified human erythrocyte Ca2+-ATPase (purified according to a procedure modified from V. Niggli, J. T. Penniston, and E. Carafoli, 1979, J. Biol. Chem., 254, 9955–9958) were raised in rabbits. In competitive radioimmunoassay tests of immunological cross-reactivity, human erythrocyte Ca2+-ATPase shows a consistent pattern of immunological similarity to the Ca2+-ATPases derived from cell surface fractions of other species, such as rat and dog erythrocyte ghosts, rat corpus luteum plasma membranes, and rat brain synaptic plasma membranes. On the other hand, a purified Ca2+-ATPase preparation from rabbit skeletal muscle sarcoplasmic reticulum failed to show any immunological similarity to the human enzyme. The amount of Ca2+-ATPase protein in the erythrocyte ghosts was estimated to be about 0.6 μg/mg ghost protein, which was not too different from the calculated value of 1.2 ± 0.2 μg/mg ghost protein (mean ± SD, n = 6) based on the calmodulin binding studies of the erythrocyte ghosts. Anti-Ca2+-ATPase immunoglobulin G inhibited enzyme activity and calcium transport, showing that at least one subpopulation of antibodies can block the active site of the enzyme. The antibodies had no effect on the binding of calmodulin to erythrocyte membranes.  相似文献   

11.
Sodium-23 nuclear magnetic resonance was utilized to compare sodium binding to erythrocyte ghosts of normotensive and of essential hypertensive individuals. Plots of the reciprocal of the excess longitudinal relaxation rates as a function of total sodium ion concentration indicated tighter and more complex sodium interaction with erythrocyte membrane preparations from normotensives and a weaker, simpler sodium binding with membranes of hypertensives. NMR studies comparing 1) sodium-23 interaction with DIDS inhibition of chloride-35 interaction and 2) competitive effects of cations on the sodium interaction provided evidence for specific sodium binding to the cytoplasmic surface of the erythrocyte ghosts. The results are briefly considered relative to possible mechanisms for essential hypertension.  相似文献   

12.
Iu P Denisov  S M Danilov 《Biofizika》1975,20(6):1027-1028
The binding of the negatively charged fluorescence dye ANS and neutral dye NPN2 with lipid and erythrocyte membranes in the presence of barbiturates was studied. It was found that barbiturates decreased the amount of binding sites of ANS and NPN2 with membranes did not affect the quantum yield and the dissociation of the membrane-dye complex. It was shown that all barbiturates investigated were bound with the membranes in a neutral form.  相似文献   

13.
Microwave exposure (2450 MHz, 60 mW/g, CW) of rabbit erythrocytes increases Na passive transport only at membrane phase transition temperatures (Tc) of 17–19°C. This permeability effect is enhanced for relative hypoxia which is characteristic of intracellular oxygen tension (pO2 ? 5 mm Hg). Neither the permeability nor the pO2 effects are observed in temperature-matched (± 0.05°C), sham-exposed controls. In addition, at Tc, microwave exposure is observed to induce the shedding or release of two erythrocyte proteins not seen in sham-exposed controls. Moreover, the enhanced shedding of at least seven other proteins all of molecular weight ? 28,000 D was detected in the microwave-treated samples. Using sensitive silver staining we estimate that approximately 450 fg of protein were shed per erythrocyte. These results demonstrate that temperature and pO2 are important influences on both functional and structural responses of cell membranes to microwave radiation.  相似文献   

14.
To characterize a previously proposed hepatocyte albumin receptor, we examined the binding of native and defatted 125I-labeled rat albumin to rat liver plasma membranes. After incubation for 30 min, binding was determined from the distribution of radioactivity between membrane pellet and supernatant following initial centrifugation (15 000 × g for 15 min), after repeated cycles of washing with buffer and re-centrifugation. 125I-labeled albumin recovered in the initial membrane pellet averaged only 4% of that incubated. Moreover, this albumin was only loosely associated with the membrane, as indicated by recovery in the pellet of under 0.5% of the counts after three washes. Binding of 125I-labeled albumin to the plasma membranes was no greater than to erythrocyte ghosts, was not inhibited by excess unlabeled albumin, and was not decreased by heat denaturation of the membranes, all suggestive of a lack of specific binding. Failure to observe albumin binding to the membranes was not due to a rapid dissociation rate or ‘off-time’, as incubations in the presence of sufficient ultraviolet light to promote covalent binding of ligands to receptors did not increase 125I counts bound to the membrane. Finally, affinity chromatography over albumin/agarose gel of solubilized membrane proteins provided no evidence of a membrane protein with a high affinity for albumin. These studies, therefore, do not support the hypothesis that liver cell plasma membranes contain a specific albumin receptor.  相似文献   

15.
The number of membrane-bound terminal complement proteins (C5b-9) required to generate a functional pore in the human erythrocyte membrane ghost has been determined. Resealed erythrocyte ghost membranes (ghosts) were treated with human complement proteins C5b6, C7, 131I-C8, and 125I-C9 under non-lytic conditions. Following C5b-9 assembly, sucrose-permeant ghosts were separated from C5b-9 ghosts that remained impermeant to sucrose by centrifugation over density barriers formed of 43% (w/v) sucrose. Analysis of 131I-C8 and 125I-C9 bound to sucrose-permeant and sucrose-impermeant subpopulations of C5b-9 ghosts revealed: 1. Sucrose-permeant C5b-9 ghosts show increased uptake of both 131I-C8 and 125I-C9 as compared to ghosts that remain impermeant to sucrose. Ghosts with less than 300 molecules 131I-C8 bound remain impermeant to sucrose, irrespective of the total C9 input, or, the multiplicity of C9 uptake by membrane C5b-8. 2. In the presence of excess 125I-C9, the ratio of 125I-C9/131I-C8 bound to membrane C5b67 is 3.2 ± 0.8 (mean ± 2 S.D.), suggesting an average stoichiometry of 3 C9 per C5b-8. Under these conditions, the ratio of 125I-C9/131I-C8 bound to sucrose-permeant ghosts (3.3 ± 0.7) does not significantly differ from the ratio bound to sucrose-impermeant ghosts (2.9 ± 0.6). 3. With limiting C9 input, the threshold of total C5b-8 uptake required for sucrose permeability increases significantly above 300 per cell when the ratio of bound 125I-C9/131I-C8 is decreased below unity. In the complete absence of C9, 11 700 C5b-8 complexes are bound to sucrose-permeant ghosts. It is concluded that more than 300 C5b-9 complexes must bind to the human erythrocyte to form a sucrose-permeant lesion. Although the binding of one C9 per C5b-8 is critical to the pore-forming activity of these proteins, the binding of additional molecules of C9 to each complex (C9/C8 > 1) does not significantly alter the threshold of total C5b-9 uptake required for lesion formation.  相似文献   

16.
The calcium dependence and the time course of phosphatidylethanolamine and phosphatidylcholine degradation by sheep erythrocyte membrane suspensions in presence of Triton X-100 were investigated. One enzyme with phospholipase A2 specificity was found to be responsible for both phosphatidylethanolamine and phosphatidylcholine degradation.The localization of this enzyme in the membrane of the sheep erythrocyte was investigated by proteolytic treatment of sealed erythrocyte ghosts from the outside and of ghosts which had both sides of the membrane exposed to chymotrypsin. The inability of sealed ghosts to take up chymotrypsin was followed by flux measurements of [14C]dextran carboxyl previously trapped in the ghosts. No efflux of the marker was found during the proteolytic treatment. By comparing the residual phospholipase activities in the membranes from both ghost preparations, we concluded that the phospholipase is oriented to the exterior of the sheep erythrocyte.  相似文献   

17.
The pulse microwave radiation has been shown to increase the fluorescence intensity of 2-toluidinonaphthanene-6-sulfonate (2,6-TNS) and 1-anilinonaphthalene-8-sulfonate (1,8-ANS) built-in membranes of erythrocyte ghosts. In experiments with 2,6-TNS a frequency dependence of the effect of microwave radiation with maximum within the frequency range of 55-65 Hz has been found. It is suggested that the changes registered with fluorescent probes are induced by mechanical oscillations generated by the pulse microwave radiation.  相似文献   

18.
In the presence of 1.0 mM ATP and MgCl2, the specific viscosity of suspensions of human erythrocyte ghosts decreases 35% in 20 minutes at 22°C. The changes in viscosity are a sensitive index of Mg-ATP dependent shape changes in these membranes. Low concentrations of Ca2+ (1 to 5 μM) inhibit Mg-ATP dependent viscosity changes. If ghosts were preincubated with 1 mM Mg-ATP and 20 μM A23187 to produce a maximal decrease in viscosity, addition of 10 μM Ca2+ to the preincubated ghosts increased the viscosity to levels observed in ghosts preincubated without ATP. Ca2+ (1 to 5 μM) also inhibited Mg2+ dependent phosphorylation 30% and stimulated dephosphorylation 25% in ghost membranes. These effects of Ca2+ on viscosity and phosphorylation may be due to a membrane bound Ca2+ phosphatase activity which dephosphorylates membranes phosphorylated by a Mg2+ dependent kinase activity.  相似文献   

19.
The calcium dependence and the time course of phosphatidylethanolamine and phosphatidylcholine degradation by sheep erythrocyte membrane suspensions in presence of Triton X-100 were investigated. One enzyme with phospholipase A2 specificity was found to be responsible for both phosphatidylethanolamine and phosphatidylcholine degradation.The localization of this enzyme in the membrane of the sheep erythrocyte was investigated by proteolytic treatment of sealed erythrocyte ghosts from the outside and of ghosts which had both sides of the membrane exposed to chymotrypsin. The inability of sealed ghosts to take up chymotrypsin was followed by flux measurements of [14C]dextran carboxyl previously trapped in the ghosts. No efflux of the marker was found during the proteolytic treatment. By comparing the residual phospholipase activities in the membranes from both ghost preparations, we concluded that the phospholipase is oriented to the exterior of the sheep erythrocyte.  相似文献   

20.
To investigate possible abnormalities in erythrocyte membrane enzyme activities in the pharmacogenetic disorder MH, membrane ATPase activities have been examined in erythrocyte ghosts prepared from red blood cells of MHS and normal swine. While no differences were noted in Mg2+-ATPase activities, the (Na+, K+)-ATPase activity of MHS erythrocyte ghosts was less than that of normal ghosts. Ca2+-ATPase activity exhibited low- and high-affinity Ca2+-binding sites in both types of erythrocyte ghost. While the Km for Ca2+ was greater for normal than for MHS erythrocyte ghosts at the high-affinity Ca2+-binding site, the reverse was true at the low-affinity Ca2+-binding site. Irrespective of the type of calcium binding site occupied, the Vmax for normal erythrocyte ghost Ca2+-ATPase activity was greater than that for MHS ghosts. In the presence of calmodulin, there was now no difference between MHS and normal erythrocyte ghosts in either the Km for Ca2+ or the Vmax of the Ca2+-ATPase activity. To determine if the calcium pumping activity of intact MHS and normal pig erythrocytes differed, calcium efflux from the 45Ca-loaded erythrocytes was determined; this activity was significantly greater for MHS than for normal erythrocytes. Thus, the present study confirms that there are abnormalities in the membranes of MHS pig red blood cells. However, we conclude that these abnormalities are unlikely to result in an impaired ability of MHS erythrocytes to regulate their cytosolic Ca2+ concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号