首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Hrp pilus: learning from flagella   总被引:5,自引:0,他引:5  
Plant pathogenic bacteria deliver avirulence and virulence effector proteins into plant cells via the hrp-gene-encoded type III secretion system. A key component of this secretion system is a surface appendage called the Hrp pilus. Recent results suggest that the Hrp pilus serves as a conduit for type III protein secretion and that it is assembled in a manner similar to the flagellum. The Hrp pilus is likely to be the functional equivalent of the needle extension, assembled by type III secretion systems of mammalian pathogenic bacteria.  相似文献   

2.
Yersinia pestis, the causative agent of the plague, employs a type III secretion system (T3SS) to secrete and translocate virulence factors into to the cytoplasm of mammalian host cells. One of the secreted virulence factors is YopR. Little is known about the function of YopR other than that it is secreted into the extracellular milieu during the early stages of infection and that it contributes to virulence. Hoping to gain some insight into the function of YopR, we determined the crystal structure of its protease-resistant core domain, which consists of residues 38-149 out of 165 amino acids. The core domain is composed of five alpha-helices that display unexpected structural similarity with one domain of YopN, a central regulator of type III secretion in Y. pestis. This finding raises the possibility that YopR may play a role in the regulation of type III secretion.  相似文献   

3.
Pathogenic Yersinia species possess a type III secretion system, which is required for the delivery of effector Yop proteins into target cells during infection. Genes encoding the type III secretion machinery, its substrates, and several regulatory proteins all reside on a 70-Kb virulence plasmid. Genes encoded in the chromosome of yersiniae are thought to play important roles in bacterial perception of host environments and in the coordinated activation of the type III secretion pathway. Here, we investigate the contribution of chromosomal genes to the complex regulatory process controlling type III secretion in Yersinia pestis. Using transposon mutagenesis, we identified five chromosomal genes required for expression or secretion of Yops in laboratory media. Four out of the five chromosomal mutants were defective to various extents at injecting Yops into tissue culture cells. Interestingly, we found one mutant that was not able to secrete in vitro but was fully competent for injecting Yops into host cells, suggesting independent mechanisms for activation of the secretion apparatus. When tested in a mouse model of plague disease, three mutants were avirulent, whereas two strains were severely attenuated. Together these results demonstrate the importance of Y. pestis chromosomal genes in the proper function of type III secretion and in the pathogenesis of plague.  相似文献   

4.
Bacterial type III secretion system drives the translocation of virulence factors into the cystosol of host target cells. In phagocytes and in Epstein-Barr virus immortalized B lymphocytes, NADPH oxidase generates O(-2) through an electron transfer chain the activity of which depends on the assembly of three, p67(phox), p47(phox) and p40(phox) cytosolic activating factors with Rac 1/2 and a membrane redox component, cytochrome b(558). In p67(phox) deficient chronic granulomatous disease (CGD) patients, p67-phox is missing and NADPH oxidase activity is abolished. ExoS is a virulence factor of Pseudomonas aeruginosa which is secreted via the type III secretion system: it was fused with p67(phox). Pseudomonas aeruginosa synthesized and translocated the hybrid ExoS-p67(phox) fusion protein into the cytosol of B lymphocytes via the type III secretion system. Purified ExoS-p67(phox) hybrid protein was as efficient as normal recombinant p67(phox) in cell-free reconstitution of NADPH oxidase activity. Therefore, ExoS-p67(phox) was transferred via the type III secretion system of Pseudomonas aeruginosa into the cytosol of B lymphocytes from a p67(phox)-deficient CGD patient and functionally reconstituted NADPH oxidase activity. In the complementation process, ExoS acted as a molecular courier for protein delivery: the reconstitution of an active NADPH oxidase complex suggests type III secretion system to be a new approach for cellular therapy.  相似文献   

5.
Several medically important Gram-negative bacterial pathogens inject virulence factors into host cells through a type III secretion system and specialized bacterial chaperones are required for their effective delivery. Recent structural work shows that these chaperones maintain virulence factors in a partially non-globular conformation that is primed for unfolding and translocation through the 'injectisome'.  相似文献   

6.
Invasion is an important microbial virulence strategy to overcome the barrier formed by polarized epithelial cells. Salmonella enterica is a food-borne pathogen that deploys a type III secretion system for the manipulation of the actin cytoskeleton and to trigger internalization into epithelial cells. Here we show that this function is not sufficient to enter polarized cells and report that penetration of epithelia from the luminal side requires both the type III secretion system and novel virulence functions conferred by Salmonella pathogenicity island 4. Salmonella pathogenicity island 4 encodes a type I secretion system for the giant non-fimbrial adhesin SiiE that mediates intimate contact of Salmonella to microvilli on the apical membrane. Mutant strains lacking SiiE fail to invade polarized cells, to destroy epithelial barrier functions and to efface the apical brush border. Deletion analyses of repetitive domains in SiiE indicate that the large size of the adhesin is of functional importance. Our observations demonstrate that efficient penetration of epithelial barriers requires the cooperative activity of two Salmonella pathogenicity islands encoding different secretion systems. These findings underline the role of the epithelial brush border and reveal a new mechanism used by bacterial pathogens to overcome this barrier.  相似文献   

7.
The plague-causing bacterium Yersinia pestis utilizes a contact-dependent (type III) secretion system (T3SS) to transport virulence factors from the bacterial cytosol directly into the interior of mammalian cells where they interfere with signal transduction pathways that mediate phagocytosis and the inflammatory response. The type III secretion apparatus is composed of 20-25 different Yersinia secretion (Ysc) proteins. We report here the structure of YscE, the smallest Ysc protein, which is a dimer in solution. The probable mode of oligomerization is discussed.  相似文献   

8.
尹磊  祁克宗  宋祥军  涂健 《微生物学通报》2017,44(12):3031-3037
许多革兰氏阴性菌借助Ⅲ型分泌系统黏附在宿主细胞表面,然后跨越胞膜将特异性蛋白注入宿主细胞内,破坏宿主细胞内的多种信号通路,从而有利于细菌的感染及定殖。在肠致病性大肠杆菌(Enteropathogenic Escherichia coli,EPEC)中,除了肠细胞脱落位点(Locus of entericyte effacement,LEE)毒力岛编码的Ⅲ型分泌系统(Type Ⅲ secretion system,T3SS)外,在分析肠出血性大肠杆菌O157:H7的基因组序列时发现一个新的Ⅲ型分泌系统,大肠杆菌Ⅲ型分泌系统2(Escherichia coli type Ⅲ secretion system 2,ETT2)毒力岛。研究显示,ETT2可能在大多数菌株中不具有完整的分泌系统功能,但是其对于细菌毒力的发挥具有重要作用。因此,本文简要综述了大肠杆菌ETT2的基因特征、ETT2的分布与流行、ETT2的功能与机制等方面的主要研究进展。  相似文献   

9.
10.
The bacterial flagellum and the virulence-associated injectisome are complex, structurally related nanomachines that bacteria use for locomotion or the translocation of virulence factors into eukaryotic host cells. The assembly of both structures and the transfer of extracellular proteins is mediated by a unique, multicomponent transport apparatus, the type III secretion system. Here, we discuss the significant progress that has been made in recent years in the visualization and functional characterization of many components of the type III secretion system, the structure of the bacterial flagellum, and the injectisome complex.  相似文献   

11.
Many Gram-negative pathogens translocate virulence proteins directly into host cells using a type III secretion system. This complex secretion machinery is composed of approximately 25 different proteins that assemble to span both bacterial membranes, and contact the host cell to form a direct channel between the bacterial and host cell cytoplasms. Assembly of the system and efficient secretion of virulence proteins through this apparatus require specific chaperones. Although the machinery is morphologically conserved among all bacteria, the secreted proteins vary widely and are responsible for the range of diseases caused by bacterial pathogens. Recent structures have given insights into important chaperone and effector proteins, as well as revealing the first atomic structures of portions of the secretion machinery itself.  相似文献   

12.
Numerous Gram-negative bacteria use a type III, or contact dependent, secretion system to deliver proteins into the cytosol of host cells. All of these systems identified to date have been shown to have a role in pathogenesis. We have identified 13 genes on the Yersinia enterocolitica chromosome that encode a type III secretion apparatus plus two associated putative regulatory genes. In order to determine the function of this chromosomally-encoded secretion apparatus, we created an in frame deletion of a gene that has homology to the hypothesized inner membrane pore, ysaV. The ysaV mutant strain failed to secrete eight proteins, called Ysps, normally secreted by the parental strain when grown at 28 degrees C in Luria-Bertani (LB) broth supplemented with 0.4 M NaCl. Disruption of the ysaV gene had no effect on motility or phospholipase activity, suggesting this chromosomally encoded type III secretion pathway is distinct from the flagella secretion pathway of Y. enterocolitica. Deletion of the ysaV gene in a virulence plasmid positive strain had no effect on in vitro secretion of Yops by the plasmid-encoded type III secretion apparatus. Secretion of the Ysps was unaffected by the presence or absence of the virulence plasmid, suggesting the chromosomally encoded and plasmid-encoded type III secretion pathways act independently. Y. enterocolitica thus has three type III secretion pathways that appear to act independently. The ysaV mutant strain was somewhat attenuated in virulence compared with the wild type in the mouse oral model of infection (an approximately 0.9 log difference in LD50). The ysaV mutant strain was nearly as virulent as the wild type when inoculated intraperitoneally in the mouse model. A ysaV probe hybridized to sequences in other Yersinia spp. and homologues were found in the incomplete Y. pestis genome sequence, indicating a possible role for this system throughout the genus.  相似文献   

13.
Type III secretion system-associated pili found in several plant pathogenic bacteria are required for injection of virulence proteins from bacteria into the plant cells. The possibility to use the type III secretion pilus of Pseudomonas syringae as an epitope display tool was studied. The advantage of the type III secretion pilus, compared with conventional fimbrial epitope display tools, is that the pilin subunits of the type III secretion pilus can auto-assemble into intact pili in vitro. Various peptides were inserted into the type III secretion pilin subunit, and secretion, assembly and surface properties of the modified pili were monitored. It was concluded that the outwards-projecting N-terminal region of the pilin can bear even 43 amino acids insertion. The three-dimensional structure of the epitope, however, can restrict the use of the pilus as an epitope display tool: a beta-hairpin structure was poorly tolerated.  相似文献   

14.
Pseudomonas syringae pv. tomato strain DC3000 (Pst DC3000) causes bacterial speck disease on tomato. The pathogenicity of Pst DC3000 depends on both the type III secretion system that delivers virulence effector proteins into host cells and the phytotoxin coronatine (COR), which is thought to mimic the action of the plant hormone jasmonic acid (JA). We found that a JA-insensitive mutant (jai1) of tomato was unresponsive to COR and highly resistant to Pst DC3000, whereas host genotypes that are defective in JA biosynthesis were as susceptible to Pst DC3000 as wild-type (WT) plants. Treatment of WT plants with exogenous methyl-JA (MeJA) complemented the virulence defect of a bacterial mutant deficient in COR production, but not a mutant defective in the type III secretion system. Analysis of host gene expression using cDNA microarrays revealed that COR works through Jai1 to induce the massive expression of JA and wound response genes that have been implicated in defense against herbivores. Concomitant with the induction of JA and wound response genes, the type III secretion system and COR repressed the expression of pathogenesis-related (PR) genes in Pst DC3000-infected WT plants. Resistance of jai1 plants to Pst DC3000 was correlated with a high level of PR gene expression and reduced expression of JA/wound response genes. These results indicate that COR promotes bacterial virulence by activating the host's JA signaling pathway, and further suggest that the type III secretion system might also modify host defense by targeting the JA signaling pathway in susceptible tomato plants.  相似文献   

15.
Many gram-negative bacteria share a closely related mechanism for secretion of virulence proteins. This complex machine, the type III secretion system, secretes virulence proteins in response to sensing the presence of target mammalian cells. We have found that recombinant human lactoferrin impairs the function of this system in two model organisms: Shigella and Enteropathogenic E. coli (EPEC). In the case of Shigella, there is loss and degradation of two proteins secreted by the type III mechanism, invasion plasmid antigens B and C (IpaB and IpaC); these proteins normally form a complex that causes Shigella to be taken up by host mammalian cells. In the case of EPEC, lactoferrin causes loss and degradation of E. coli secreted proteins A, B and D (EspABD) particularly EspB. These proteins are components of type III machinery and are known to be key elements of EPEC pathogenesis. Studies using purified EspB demonstrated that lactoferrin has a direct proteolytic effect on EspB that can be prevented by serine protease inhibitors. A synthetic peptide of the N-terminal 33 amino acids of lactoferrin caused loss of cell associated EspB but, unlike the whole lactoferrin molecule, did not caused degradation of EspB. Thus, in both model systems, brief exposure to lactoferrin causes loss and degradation of type III secretion system virulence proteins.  相似文献   

16.
Invasion of epithelial cells by Shigella flexneri involves entry and intercellular dissemination. Entry of bacteria into non-phagocytic cells requires the IpaA-D proteins that are secreted by the Mxi-Spa type III secretion machinery. Type III secretion systems are found in several Gram-negative pathogens and serve to inject bacterial effector proteins directly into the cytoplasm of host cells. In this study, we have analysed the IpgD protein of S. flexneri, the gene of which is located on the virulence plasmid at the 5' end of the mxi-spa locus. We have shown that IpgD (i) is stored in the bacterial cytoplasm in association with a specific chaperone, IpgE; (ii) is secreted by the Mxi-Spa type III secretion system in amounts similar to those of the IpaA-D proteins; (iii) is associated with IpaA in the extracellular medium; and (iv) is involved in the modulation of the host cell response after contact of the bacterium with epithelial cells. This suggests that IpgD is an effector that might be injected into host cells to manipulate cellular processes during infection.  相似文献   

17.
Enteropathogenic Escherichia coli (EPEC) is a diarrhoeal pathogen that adheres to epithelial cells of the small intestine and uses a type III secretion system to inject effector proteins into host cells. EPEC infection leads to disruption of host intestinal tight junctions that are important for maintaining intestinal barrier function. This disruption is dependent on the bacterial type III secretion system, as well as the translocated effectors EspF and Map. Here we show that a third type III translocated bacterial effector protein, NleA, is also involved in tight junction disruption during EPEC infection. Using the drug Brefeldin A, we demonstrate that the effect of NleA on tight junction integrity is related to its inhibition of host cell protein trafficking through COPII-dependent pathways. These results suggest that NleA's striking effect on virulence is mediated, at least in part, via its role in disruption of intestinal barrier function.  相似文献   

18.
The type III secretion needle complex (NC) of Salmonella typhimurium is a complex secretory system that functions to translocate virulence proteins into eukaryotic cells. Evolutionarily it is related to bacterial flagella. Assembly of the NC occurs through ordered secretion, polymerization, and assembly, and requires the coordinated expression and association of over 20 different proteins. Recent progress in the understanding of the assembly and architecture of the NC is reviewed.  相似文献   

19.
Bacterial type III secretion systems are thought to translocate virulence proteins directly from the bacterial cytoplasm into host cells through a continuous molecular channel. Little is known about how the apparatus itself interacts with membranes and whether insertion of this structure into the host membrane has consequences for the bacteria apart from its beneficial role in delivering virulence proteins. New evidence suggests that membrane insertion of the bacterial type III apparatus might turn on a calcium-dependent signaling pathway resulting in phagolysosomal fusion.  相似文献   

20.
Gram-negative bacterial pathogens have evolved a number of virulence-promoting strategies including the production of extracellular polysaccharides such as alginate and the injection of effector proteins into host cells. The induction of these virulence mechanisms can be associated with concomitant downregulation of the abundance of proteins that trigger the host immune system, such as bacterial flagellin. In Pseudomonas syringae, we observed that bacterial motility and the abundance of flagellin were significantly reduced under conditions that induce the type III secretion system. To identify genes involved in this negative regulation, we conducted a forward genetic screen with P. syringae pv. maculicola ES4326 using motility as a screening phenotype. We identified the periplasmic protease AlgW as a key negative regulator of flagellin abundance that also positively regulates alginate biosynthesis and the type III secretion system. We also demonstrate that AlgW constitutes a major virulence determinant of P. syringae required to dampen plant immune responses. Our findings support the conclusion that P. syringae co-ordinately regulates virulence strategies through AlgW in order to effectively suppress host immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号