首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 614 毫秒
1.
We have designed two taxon-selective primers for the internal transcribed spacer (ITS) region in the nuclear ribosomal repeat unit. These primers, ITS1-F and ITS4-B, were intended to be specific to fungi and basidiomycetes, respectively. We have tested the specificity of these primers against 13 species of ascomycetes, 14 of basidiomycetes, and 15 of plants. Our results showed that ITS4-B, when paired with either a 'universal' primer ITS1 or the fungal-specific primer ITS1-F, efficiently amplified DNA from all basidiomycetes and discriminated against ascomycete DNAs. The results with plants were not as clearcut. The ITS1-F/ITS4-B primer pair produced a small amount of PCR product for certain plant species, but the quantity was in most cases less than that produced by the 'universal' ITS primers. However, under conditions where both plant and fungal DNAs were present, the fungal DNA was amplified to the apparent exclusion of plant DNA. ITS1-F/ITS4-B preferential amplification was shown to be particularly useful for detection and analysis of the basidiomycete component in ectomycorrhizae and in rust-infected tissues. These primers can be used to study the structure of ectomycorrhizal communities or the distribution of rusts on alternate hosts.  相似文献   

2.
Increasing evidence of the fungal diversity in deep-sea sediments has come from amplification of environmental DNA with fungal specific or eukaryote primer sets. In order to assess the fungal diversity in deep-sea sediments of the Central Indian Basin (CIB) at ~5,000 m depth, we amplified sediment DNA with four different primer sets. These were fungal-specific primer pair ITS1F/ITS4 (internal transcribed spacers), universal 18S rDNA primers NS1/NS2, Euk18S-42F/Euk18S-1492R and Euk18S-555F/Euk18S-1269R. One environmental library was constructed with each of the primer pairs, and 48 clones were sequenced per library. These sequences resulted in 8 fungal Operational Taxonomic Units (OTUs) with ITS and 19 OTUs with 18S rDNA primer sets respectively by taking into account the 2% sequence divergence cut-off for species delineation. These OTUs belonged to 20 distinct fungal genera of the phyla Ascomycota and Basidiomycota. Seven sequences were found to be divergent by 79–97% from the known sequences of the existing database and may be novel. A majority of the sequences clustered with known sequences of the existing taxa. The phylogenetic affiliation of a few fungal sequences with known environmental sequences from marine and hypersaline habitat suggests their autochthonous nature or adaptation to marine habitat. The amplification of sequences belonging to Exobasidiomycetes and Cystobasidiomycetes from deep-sea is being reported for the first time in this study. Amplification of fungal sequences with eukaryotic as well as fungal specific primers indicates that among eukaryotes, fungi appear to be a dominant group in the sampling site of the CIB.  相似文献   

3.
With the continual improvement in high‐throughput sequencing technology and constant updates to fungal reference databases, the use of amplicon‐based DNA markers as a tool to reveal fungal diversity and composition in various ecosystems has become feasible. However, both primer selection and the experimental procedure require meticulous verification. Here, we computationally and experimentally evaluated the accuracy and specificity of three widely used or newly designed internal transcribed spacer (ITS) primer sets (ITS1F/ITS2, gITS7/ITS4 and 5.8S‐Fun/ITS4‐Fun). In silico evaluation revealed that primer coverage varied at different taxonomic levels due to differences in degeneracy and the location of primer sets. Using even and staggered mock community standards, we identified different proportions of chimeric and mismatch reads generated by different primer sets, as well as great variation in species abundances, suggesting that primer selection would affect the results of amplicon‐based metabarcoding studies. Choosing proofreading and high‐fidelity polymerase (KAPA HiFi) could significantly reduce the percentage of chimeric and mismatch sequences, further reducing inflation of operational taxonomic units. Moreover, for two types of environmental fungal communities, plant endophytic and soil fungi, it was demonstrated that the three primer sets could not reach a consensus on fungal community composition or diversity, and that primer selection, not experimental treatment, determines observed soil fungal community diversity and composition. Future DNA marker surveys should pay greater attention to potential primer effects and improve the experimental scheme to increase credibility and accuracy.  相似文献   

4.
The ribosomal DNA comprised of the ITS1-5.8S-ITS2 regions is widely used as a fungal marker in molecular ecology and systematics but cannot be aligned with confidence across genetically distant taxa. In order to study the diversity of Agaricomycotina in forest soils, we designed primers targeting the more alignable 28S (LSU) gene, which should be more useful for phylogenetic analyses of the detected taxa. This paper compares the performance of the established ITS1F/4B primer pair, which targets basidiomycetes, to that of two new pairs. Key factors in the comparison were the diversity covered, off-target amplification, rarefaction at different Operational Taxonomic Unit (OTU) cutoff levels, sensitivity of the method used to process the alignment to missing data and insecure positional homology, and the congruence of monophyletic clades with OTU assignments and BLAST-derived OTU names. The ITS primer pair yielded no off-target amplification but also exhibited the least fidelity to the expected phylogenetic groups. The LSU primers give complementary pictures of diversity, but were more sensitive to modifications of the alignment such as the removal of difficult-to align stretches. The LSU primers also yielded greater numbers of singletons but also had a greater tendency to produce OTUs containing sequences from a wider variety of species as judged by BLAST similarity. We introduced some new parameters to describe alignment heterogeneity based on Shannon entropy and the extent and contents of the OTUs in a phylogenetic tree space. Our results suggest that ITS should not be used when calculating phylogenetic trees from genetically distant sequences obtained from environmental DNA extractions and that it is inadvisable to define OTUs on the basis of very heterogeneous alignments.  相似文献   

5.
【背景】高通量测序分析作为深入了解环境微生物群落组成的重要方法,已成为植物内生真菌多样性研究的有效手段,然而由于引物的扩增差异,采用不同引物可对实验结果分析造成影响。同时,盐角草作为世界上最耐盐的植物之一,存在着多种功能性的内生真菌,而较为全面介绍其内生真菌组成和多样性的报道鲜见。【目的】为了揭示盐角草内生真菌的多样性,解析不同扩增引物对内生菌多样性分析的影响。【方法】分别采用真菌高通量测序常用引物对ITS1-5F、ITS1-1F、ITS2对采自乌鲁木齐达坂城盐湖的盐角草内生真菌进行扩增,开展其内生真菌OTU的分析。【结果】通过不同引物对扩增并测序共获得102个盐角草内生真菌OTU,涉及真菌界8个门和未分类菌群,其中子囊菌门(Ascomycota)占绝对优势,其次为担子菌门(Basidiomycota);在属层次上,盐角草内生真菌共涉及64个属及20个未分类属,其中Alternaria、Cladosporium、Podospora等3个属为盐角草内生真菌优势菌群。对不同引物对扩增测序结果分析表明,不同引物对扩增对分析内生真菌OTU数量和种类具有明显的影响,在全部所得的102个OTU中,ITS1-5F引物对获得44个OTU、ITS1-1F引物对获得55个OTU、ITS2引物对获得25个OTU,但以上3对引物扩增均检测到的OTU数仅为5个。物种组成和多样性分析表明,内生真菌多样性分析中采用以ITS1-1F为主,ITS1-5F为辅的分析策略,可较为全面地展现内生真菌的多样性。【结论】盐角草存在较为丰富的内生真菌资源,不同扩增引物对高通量分析盐角草内生真菌组成和分布具有明显的影响。  相似文献   

6.
DNA条形码技术是利用标准DNA片段进行准确快速鉴定物种的一种方法,理想的DNA条形码片段应具有高通用性。虽然核糖体DNA内部转录间隔区II(ITS2)被建议作为种子植物有效的DNA条形码,但目前裸子植物还没有通用性高的引物可用。为获得高通用性的ITS2引物,本研究基于裸子植物55个属的5.8S基因的保守序列区设计了3个正向引物,与已有的ITS反向引物组合,组成了7对ITS2引物进行通用性的评价。选取了裸子植物8目、12科和40属的56个种用于本文的研究。引物组合5.8SR/ITS4、5.8SRa/ITS4和5.8SF2/S3R因为在科水平评价中通用性低或者产生的PCR产物有双带,因而排除在全部物种水平上进一步评价。其余4对引物(GYM-5.8SF1/ITS4、GYM-5.8SFl/S3R、GYM-5.8SF2/ITS4和S2F/S3R)在56个物种的PCR检测中,均有100%的扩增率。基于PCR产物的亮度、序列质量和正反向引物覆盖率的综合评价,建议引物GYM_5.8SF2/ITS4作为裸子植物条形码片段ITS2最好的通用引物。  相似文献   

7.
Four fungal 18S rDNA and internal transcribed spacer (ITS) polymerase chain reaction (PCR) primer pairs were tested for their specificity towards target fungal DNA in soil DNA extracts, and their ability to assess the diversity of fungal communities in a natural grassland soil was compared. Amplified PCR products were cloned, and approximately 50 clones from each library were sequenced. Phylogenetic analysis and database searches indicated that each of the sequenced cloned DNA fragments was of fungal origin for each primer pair, with the exception of the sequences generated using the 18S rDNA primers nu-SSU-0817 and nu-SSU-1196, where 35 of the 50 sequenced clones represented soil invertebrates. Although some of the primers have previously been suggested to be biased towards certain fungal taxonomic groups, the ratio of sequences representing each of the four main fungal phyla, Ascomycota, Basidiomycota, Chytridiomycota and Zygomycota, was similar for each of the primer pairs, suggesting that primer bias may be less significant than previously thought. Collector's curves were plotted to estimate the coverage obtained for each of the clone libraries after clustering the sequences into operational taxonomic units at a level of 99% sequence similarity. The curves indicated that good coverage of diversity was achieved, with the exception of the clone library constructed using primers nu-SSU-0817 and nu-SSU-1196, on account of the high number of non-fungal sequences obtained. The work demonstrates the usefulness of 18S rDNA and ITS PCR primers for assessing fungal diversity in environmental samples, and it also highlights some potential limitations of the approach with respect to PCR primer specificity and bias.  相似文献   

8.
A primer able to amplify the internal transcribed spacers (ITS) of the ribosomal DNA (rDNA), having enhanced specificity for ascomycetes, was identified by reviewing fungal ribosomal DNA sequences deposited in GenBank. The specificity of the primer, named ITS4A, was tested with DNA extracted from several species of ascomycetes, basidiomycetes, zygomycetes, mastigomycetes and mitosporic fungi (formerly deuteromycetes) and also from plants. The PCR annealing temperature most specific for ascomycetes was found to be 62 degrees C and 64 degrees C for the primer pairs ITS5 + ITS4A and ITS1F + ITS4A, respectively. At these annealing temperatures, all ascomycetous DNA samples were amplified efficiently with the ITS4A primer. The sensitivity limit was in the range 10(-14) g of DNA. This primer could also provide useful tools in suggesting the affinities of many mitosporic fungi with their perfect states.  相似文献   

9.
Molecular Identification of Ectomycorrhizal Mycelium in Soil Horizons   总被引:14,自引:0,他引:14       下载免费PDF全文
Molecular identification techniques based on total DNA extraction provide a unique tool for identification of mycelium in soil. Using molecular identification techniques, the ectomycorrhizal (EM) fungal community under coniferous vegetation was analyzed. Soil samples were taken at different depths from four horizons of a podzol profile. A basidiomycete-specific primer pair (ITS1F-ITS4B) was used to amplify fungal internal transcribed spacer (ITS) sequences from total DNA extracts of the soil horizons. Amplified basidiomycete DNA was cloned and sequenced, and a selection of the obtained clones was analyzed phylogenetically. Based on sequence similarity, the fungal clone sequences were sorted into 25 different fungal groups, or operational taxonomic units (OTUs). Out of 25 basidiomycete OTUs, 7 OTUs showed high nucleotide homology (≥99%) with known EM fungal sequences and 16 were found exclusively in the mineral soil. The taxonomic positions of six OTUs remained unclear. OTU sequences were compared to sequences from morphotyped EM root tips collected from the same sites. Of the 25 OTUs, 10 OTUs had ≥98% sequence similarity with these EM root tip sequences. The present study demonstrates the use of molecular techniques to identify EM hyphae in various soil types. This approach differs from the conventional method of EM root tip identification and provides a novel approach to examine EM fungal communities in soil.  相似文献   

10.
Molecular identification of ectomycorrhizal mycelium in soil horizons   总被引:27,自引:0,他引:27  
Molecular identification techniques based on total DNA extraction provide a unique tool for identification of mycelium in soil. Using molecular identification techniques, the ectomycorrhizal (EM) fungal community under coniferous vegetation was analyzed. Soil samples were taken at different depths from four horizons of a podzol profile. A basidiomycete-specific primer pair (ITS1F-ITS4B) was used to amplify fungal internal transcribed spacer (ITS) sequences from total DNA extracts of the soil horizons. Amplified basidiomycete DNA was cloned and sequenced, and a selection of the obtained clones was analyzed phylogenetically. Based on sequence similarity, the fungal clone sequences were sorted into 25 different fungal groups, or operational taxonomic units (OTUs). Out of 25 basidiomycete OTUs, 7 OTUs showed high nucleotide homology (> or = 99%) with known EM fungal sequences and 16 were found exclusively in the mineral soil. The taxonomic positions of six OTUs remained unclear. OTU sequences were compared to sequences from morphotyped EM root tips collected from the same sites. Of the 25 OTUs, 10 OTUs had > or = 98% sequence similarity with these EM root tip sequences. The present study demonstrates the use of molecular techniques to identify EM hyphae in various soil types. This approach differs from the conventional method of EM root tip identification and provides a novel approach to examine EM fungal communities in soil.  相似文献   

11.
Like bacteria, fungi play an important role in the soil ecosystem. As only a small fraction of the fungi present in soil can be cultured, conventional microbiological techniques yield only limited information on the composition and dynamics of fungal communities in soil. DNA-based methods do not depend on the culturability of microorganisms, and therefore they offer an attractive alternative for the study of complex fungal community structures. For this purpose, we designed various PCR primers that allow the specific amplification of fungal 18S-ribosomal-DNA (rDNA) sequences, even in the presence of nonfungal 18S rDNA. DNA was extracted from the wheat rhizosphere, and 18S rDNA gene banks were constructed in Escherichia coli by cloning PCR products generated with primer pairs EF4-EF3 (1. 4 kb) and EF4-fung5 (0.5 kb). Fragments of 0.5 kb from the cloned inserts were sequenced and compared to known rDNA sequences. Sequences from all major fungal taxa were amplified by using both primer pairs. As predicted by computer analysis, primer pair EF4-EF3 appeared slightly biased to amplify Basidiomycota and Zygomycota, whereas EF4-fung5 amplified mainly Ascomycota. The 61 clones that were sequenced matched the sequences of 24 different species in the Ribosomal Database Project (RDP) database. Similarity values ranged from 0.676 to 1. Temperature gradient gel electrophoresis (TGGE) analysis of the fungal community in the wheat rhizosphere of a microcosm experiment was carried out after amplification of total DNA with both primer pairs. This resulted in reproducible, distinctive fingerprints, confirming the difference in amplification specificity. Clear banding patterns were obtained with soil and rhizosphere samples by using both primer sets in combination. By comparing the electrophoretic mobility of community fingerprint bands to that of the bands obtained with separate clones, some could be tentatively identified. While 18S-rDNA sequences do not always provide the taxonomic resolution to identify fungal species and strains, they do provide information on the diversity and dynamics of groups of related species in environmental samples with sufficient resolution to produce discrete bands which can be separated by TGGE. This combination of 18S-rDNA PCR amplification and TGGE community analysis should allow study of the diversity, composition, and dynamics of the fungal community in bulk soil and in the rhizosphere.  相似文献   

12.
We have developed a DNA-based assay to reliably detect brown rot and white rot fungi in wood at different stages of decay. DNA, isolated by a series of CTAB (cetyltrimethylammonium bromide) and organic extractions, was amplified by the PCR using published universal primers and basidiomycete-specific primers derived from ribosomal DNA sequences. We surveyed 14 species of wood-decaying basidiomycetes (brown-rot and white-rot fungi), as well as 25 species of wood-inhabiting ascomycetes (pathogens, endophytes, and saprophytes). DNA was isolated from pure cultures of these fungi and also from spruce wood blocks colonized by individual isolates of wood decay basidiomycetes or wood-inhabiting ascomycetes. The primer pair ITS1-F (specific for higher fungi) and ITS4 (universal primer) amplified the internal transcribed spacer region from both ascomycetes and basidiomycetes from both pure culture and wood, as expected. The primer pair ITS1-F (specific for higher fungi) and ITS4-B (specific for basidiomycetes) was shown to reliably detect the presence of wood decay basidiomycetes in both pure culture and wood; ascomycetes were not detected by this primer pair. We detected the presence of decay fungi in wood by PCR before measurable weight loss had occurred to the wood. Basidiomycetes were identified to the species level by restriction fragment length polymorphisms of the internal transcribed spacer region.  相似文献   

13.
We have developed a DNA-based assay to reliably detect brown rot and white rot fungi in wood at different stages of decay. DNA, isolated by a series of CTAB (cetyltrimethylammonium bromide) and organic extractions, was amplified by the PCR using published universal primers and basidiomycete-specific primers derived from ribosomal DNA sequences. We surveyed 14 species of wood-decaying basidiomycetes (brown-rot and white-rot fungi), as well as 25 species of wood-inhabiting ascomycetes (pathogens, endophytes, and saprophytes). DNA was isolated from pure cultures of these fungi and also from spruce wood blocks colonized by individual isolates of wood decay basidiomycetes or wood-inhabiting ascomycetes. The primer pair ITS1-F (specific for higher fungi) and ITS4 (universal primer) amplified the internal transcribed spacer region from both ascomycetes and basidiomycetes from both pure culture and wood, as expected. The primer pair ITS1-F (specific for higher fungi) and ITS4-B (specific for basidiomycetes) was shown to reliably detect the presence of wood decay basidiomycetes in both pure culture and wood; ascomycetes were not detected by this primer pair. We detected the presence of decay fungi in wood by PCR before measurable weight loss had occurred to the wood. Basidiomycetes were identified to the species level by restriction fragment length polymorphisms of the internal transcribed spacer region.  相似文献   

14.
Like bacteria, fungi play an important role in the soil ecosystem. As only a small fraction of the fungi present in soil can be cultured, conventional microbiological techniques yield only limited information on the composition and dynamics of fungal communities in soil. DNA-based methods do not depend on the culturability of microorganisms, and therefore they offer an attractive alternative for the study of complex fungal community structures. For this purpose, we designed various PCR primers that allow the specific amplification of fungal 18S-ribosomal-DNA (rDNA) sequences, even in the presence of nonfungal 18S rDNA. DNA was extracted from the wheat rhizosphere, and 18S rDNA gene banks were constructed in Escherichia coli by cloning PCR products generated with primer pairs EF4-EF3 (1.4 kb) and EF4-fung5 (0.5 kb). Fragments of 0.5 kb from the cloned inserts were sequenced and compared to known rDNA sequences. Sequences from all major fungal taxa were amplified by using both primer pairs. As predicted by computer analysis, primer pair EF4-EF3 appeared slightly biased to amplify Basidiomycota and Zygomycota, whereas EF4-fung5 amplified mainly Ascomycota. The 61 clones that were sequenced matched the sequences of 24 different species in the Ribosomal Database Project (RDP) database. Similarity values ranged from 0.676 to 1. Temperature gradient gel electrophoresis (TGGE) analysis of the fungal community in the wheat rhizosphere of a microcosm experiment was carried out after amplification of total DNA with both primer pairs. This resulted in reproducible, distinctive fingerprints, confirming the difference in amplification specificity. Clear banding patterns were obtained with soil and rhizosphere samples by using both primer sets in combination. By comparing the electrophoretic mobility of community fingerprint bands to that of the bands obtained with separate clones, some could be tentatively identified. While 18S-rDNA sequences do not always provide the taxonomic resolution to identify fungal species and strains, they do provide information on the diversity and dynamics of groups of related species in environmental samples with sufficient resolution to produce discrete bands which can be separated by TGGE. This combination of 18S-rDNA PCR amplification and TGGE community analysis should allow study of the diversity, composition, and dynamics of the fungal community in bulk soil and in the rhizosphere.  相似文献   

15.
Fungal endophyte community amplicon sequencing can lose a significant number of informative reads due to host-plant co-amplification. Blocking of plant-specific sequences with peptide nucleic acid (PNA) clamps has been shown to improve metrics of detected microbial diversity in studies targeting 16S and 18S regions of rRNA genes. However, PNA clamping has not been applied to the plant ITS region of rRNA gene – a widely accepted fungal marker. By applying PNA clamping technique to ITS amplicon sequencing of the endophytic fungal community of elderberry this study shows that PNA clamping significantly reduces host-plant co-amplification with the universal ITS1/ITS4 primer set. However, PNA clamping in combination with the discriminatory ITS1F/ITS2 primer set did not improve the metrics of fungal endophyte community ITS amplicon Illumina sequencing. This study shows that PNA clamping does not add practical benefit to taxonomic profiling of plant-associated fungal communities if the primers are already specific enough to exclude amplification of host DNA.  相似文献   

16.
To reduce the reliance on sporocarp records for conservation efforts, information on the below-ground distribution of specific fungal species, such as stipitate hydnoid fungi, is required. Species-specific primers were developed within the internal transcribed spacer (ITS1 and ITS2) regions for 12 hydnoid fungal species including Bankera fuligineoalba, Hydnellum aurantiacum, H. caeruleum, H. concrescens, H. ferrugineum, H. peckii, Phellodon confluens, P. melaleucus, P. niger, P. tomentosus, Sarcodon glaucopus and S. squamosus. The specificity of the primer pairs was tested using BLAST searches and PCR amplifications. All primers amplified DNA only of the target species with the exception of those designed for P. melaleucus. In order to assess the ability of the primers to detect DNA from mycelium in soil, DNA extracted from soil samples taken from around solitary H. peckii sporocarps was amplified with the H. peckii primer 1peck and ITS2. H. peckii DNA was detected in 70% of all soil samples and up to 40 cm away from the base of individual sporocarps. The development of these species-specific primers provides a below-ground alternative for monitoring the distribution of these rare fungi.  相似文献   

17.
Mello A  Napoli C  Murat C  Morin E  Marceddu G  Bonfante P 《Mycologia》2011,103(6):1184-1193
In a recent study pyrosequencing of the ribosomal internal transcribed spacer-1 (ITS-1) has validated the effectiveness of such technology in the survey of soil fungal diversity. Here we compare the two ITS regions, ITS-1 and ITS-2, of the fungal populations occurring in Tuber melanosporum/Quercus pubescens truffle grounds and sampled in two areas, one devoid of vegetation ("burned", brulé in French) where T. melanosporum fruiting bodies are usually collected, and outside the brulé. TS1F/ITS2 and ITS3/ITS4 were used respectively for the amplification of the ITS-1 and ITS-2 regions. Two amplicon libraries were built, one for inside and the other for outside. A set of 15.788 reads was obtained. After the removal of low quality sequences, 3568 and 3156 sequences were obtained from inside the brulé with the ITS-1 and ITS-2 primers respectively. The sequences obtained from outside the brulé were 4490 with the ITS-1 primers and 2432 with the ITS-2 primers. Most of the sequences obtained for both ITS fragments could be attributed to fungal organisms. The pair of primers, ITS1-F/ITS2, was more selective, producing fewer non-fungal sequences (1% inside, 3% outside), in addition to a higher number of sequences, than the pair ITS3/ITS4 (6% inside, 11% outside). Although differences are present in the taxa percentages between ITS-1 and ITS-2, both reveal that Ascomycota were the dominant fungal phylum and that their number decreased moving from inside the brulé to outside, while the number of Basidiomycota increased. Taken together, both the short ITS-1 and ITS-2 reads obtained by the high throughput 454 sequencing provide adequate information for taxon assignment and are suitable to correlate the dynamics of the fungal populations to specific environments.  相似文献   

18.
Detection of Rhizoctonia solani AG 2-2 LP isolates causing large-patch disease on zoysia grass was done using polymerase chain reaction (PCR). Specific primers were designed based on an amplified region using random amplified polymorphic DNA (RAPD)-PCR. Fifteen primers and three cultural types of R. solani AG 2-2 (types IIIB, IV and LP) were used for RAPD-PCR. The banding patterns by RAPD-PCR showed that the three cultural types were clearly distinguishable. A dendrogram constructed from the results of RAPD-PCR showed that the three cultural types of AG 2-2 clustered separately. The sequence of one PCR-amplified region which appeared only in LP isolates using primer A09 was selected for designing specific primers. Primer pair A091-F/R gave a single product from pure fungal DNA of LP isolates but not from those of the other two types (IIIB and IV), R. solani AG 1, 2-1, 2-3, 2-tulip, 3-10 and BI isolates and other turfgrass fungal pathogens. Primer pair A091-F/R also gave a single product from diseased leaf sheaths and this product was in accordance with those of pure fungal DNA of LP isolates. Primer pair A091-F/R did not yield PCR product from healthy leaf sheaths. The frequencies of detection of LP isolates from leaf sheaths of zoysia grass using PCR with primer pair A091-F/R were higher than those of the conventional isolation technique. These results showed that the PCR-based technique using specific primers A091-F/R is useful for the rapid detection of LP isolates from leaf sheaths of zoysia grass exhibiting large-patch symptoms.  相似文献   

19.
A denaturing gradient gel electrophoresis (DGGE) method for analyzing 16S rDNA of methanogenic archaeal community in paddy field soil is presented. Five specific primers for 16S rDNA of methanogenic archaea, which were modified from the primers for archaea, were first evaluated by polymerase chain reaction and DGGE using genomic DNAs of 13 pure culture strains of methanogenic archaea. The DGGE analysis was possible with two primer pairs (0348aF-GC and 0691R; 0357F-GC and 0691R) of the five pairs tested although 16S rDNA of some non-methanogenic archaea was amplified with 0348aF-GC and 0691R. These two primer pairs were further evaluated for use in analysis of methanogenic archaeal community in Japanese paddy field soil. Good separation and quality of patterns were obtained in DGGE analysis with both primer pairs. A total of 41 DNA fragments were excised from the DGGE gels and their sequences were determined. All fragments belonged to methanogenic archaea. These results indicate that the procedure of DGGE analysis with the primer pair 0357F-GC and 0691R is suitable for investigating methanogenic archaeal community in paddy field soil.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号