首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined the hemodynamic factors associated with the lower maximal O2 consumption (VO2max) in older formerly elite distance runners. Heart rate and VO2 were measured during submaximal and maximal treadmill exercise in 11 master [66 +/- 8 (SD) yr] and 11 young (32 +/- 5 yr) male runners. Cardiac output was determined using acetylene rebreathing at 30, 50, 70, and 85% VO2max. Maximal cardiac output was estimated using submaximal stroke volume and maximal heart rate. VO2max was 36% lower in master runners (45.0 +/- 6.9 vs. 70.4 +/- 8.0 ml.kg-1.min-1, P less than or equal to 0.05), because of both a lower maximal cardiac output (18.2 +/- 3.5 vs. 25.4 +/- 1.7 l.min-1) and arteriovenous O2 difference (16.6 +/- 1.6 vs. 18.7 +/- 1.4 ml O2.100 ml blood-1, P less than or equal to 0.05). Reduced maximal heart rate (154.4 +/- 17.4 vs. 185 +/- 5.8 beats.min-1) and stroke volume (117.1 +/- 16.1 vs. 137.2 +/- 8.7 ml.beat-1) contributed to the lower cardiac output in the older athletes (P less than or equal 0.05). These data indicate that VO2max is lower in master runners because of a diminished capacity to deliver and extract O2 during exercise.  相似文献   

2.
To evaluate the effect of endurance training on ventilatory function in older individuals, 1) 14 master athletes (MA) [age 63 +/- 2 yr (mean +/- SD); maximum O2 uptake (VO2max) 52.1 +/- 7.9 ml . kg-1 . min-1] were compared with 14 healthy male sedentary controls (CON) (age 63 +/- 3 yr; VO2max of 27.6 +/- 3.4 ml . kg-1 . min-1), and 2) 11 sedentary healthy men and women, age 63 +/- 2 yr, were reevaluated after 12 mo of endurance training that increased their VO2max 25%. MA had a significantly lower ventilatory response to submaximal exercise at the same O2 uptake (VE/VO2) and greater maximal voluntary ventilation (MVV), maximal exercise ventilation (VEmax), and ratio of VEmax to MVV than CON. Except for MVV, all of these parameters improved significantly in the previously sedentary subjects in response to training. Hypercapnic ventilatory response (HCVR) at rest and the ventilatory equivalent for CO2 (VE/VCO2) during submaximal exercise were similar for MA and CON and unaffected by training. We conclude that the increase in VE/VO2 during submaximal exercise observed with aging can be reversed by endurance training, and that after training, previously sedentary older individuals breathe at the same percentage of MVV during maximal exercise as highly trained athletes of similar age.  相似文献   

3.
The effect of body temperature on the locomotory energetics of lizards   总被引:1,自引:0,他引:1  
Oxygen consumption (VO2), carbon dioxide production (VCO2), and stamina were measured in the lizard Tupinambis nigropunctatus running at sustainable and non-sustainable velocities (v) on a motor-driven treadmill. Three experimental groups were measured: field-fresh animals at body temperature (Tb) = 35 degrees C and laboratory-maintained animals at Tb = 35 and 25 degrees C. Mean preferred Tb was determined to be 35.2 degrees C. At 35 degrees C, field-fresh animals had a greater maximal oxygen consumption (VO2max corr) (4.22 vs 3.60 ml O2 g-0.76h-1) and a greater endurance. The net cost of transport (slope of VO2 on v) did not differ between the groups (= 2.60 ml O2 g-0.76)km-1). Velocity at which VO2max is attained (MAS) is 0.84 km h-1. The respiratory exchange ratio (R) exceeded 1.0 at v above MAS, indicating supplementary anaerobic metabolism. At 25 degrees C, VO2max corr was lower (2.34 ml O2 g-0.76h-1) as was endurance, MAS occurring at 0.5 km h-1. Net cost of transport was not significantly different than at 35 degrees C. The effect of Tb on locomotory costs was analyzed for this lizard and other species. It was concluded that the net cost of transport is temperature independent in all species examined and the total cost of locomotion (VO2 v-1) is temperature dependent in Tupinambis (Q10 = 1.4-2.0) and all other species examined except one. The energetic cost of locomotion [(VO2active-VO2rest)v-1], previously reported to be temperature independent in lizards, is temperature dependent in Tupinambis (Q10 = 1.3-1.6) and in two other species.2r  相似文献   

4.
Exercise training reduces the muscle insulin resistance of the obese Zucker rat. The purpose of the present study was to determine whether the magnitude of this training response is exercise intensity specific. Obese Zucker rats were randomly divided into sedentary (SED), low-intensity (LI), and high-intensity (HI) exercise groups. For the LI rats, exercise training consisted of running on a rodent treadmill at 18 m/min up an 8% grade for 90 min. Rats in the HI group ran at 24 m/min up an 8% grade for four 17-min bouts with 3 min between bouts. Both exercise groups performed the same amount of work and trained 5 days/wk for 7 wk. To evaluate muscle insulin resistance, rat hindlimbs were perfused for 30 min with perfusate containing 6 mM glucose (0.15 mu Ci of D-[14C(U)] glucose/ml) and either a maximal (10.0 mU/ml) or a submaximal (0.50 mU/ml) insulin concentration. Perfusions were performed 48-56 h after the last exercise bout and a 12-h fast. In the presence of 0.5 mU/ml insulin, the rate of muscle glucose uptake was found to be significantly faster for the HI (9.56 +/- 0.66 mumol.h-1.g-1) than for the LI (7.72 +/- 0.65 mumol.h-1.g-1) and SED (6.64 +/- 0.44 mumol.h-1.g-1) rats. The difference in glucose uptake between the LI and SED rats was not significant. In the presence of 10.0 mU/ml insulin, the rate of glucose uptake was significantly faster for the HI (16.43 +/- 1.02 mumol.h-1.g-1) than for the LI rats (13.76 +/- 0.84 mumol.h-1.g-1) and significantly faster for the LI than for the SED rats (11.02 +/- 0.35 mumol.h-1.g-1).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
We investigated the influence of aging on cardiac baroreflex function during dynamic exercise in seven young (22 +/- 1 yr) and eight older middle-aged (59 +/- 2 yr) healthy subjects. Carotid-cardiac baroreflex function was assessed at rest and during moderate-intensity steady-state cycling performed at 50% heart rate reserve (HRR). Five-second pulses of neck pressure and neck suction from +40 to -80 Torr were applied to determine the operating point gain (G(OP)) and maximal gain (G(MAX)) of the full carotid-cardiac baroreflex function curve and examine baroreflex resetting during exercise. At rest, mean arterial pressure (MAP) and heart rate were similar between the younger and older subjects. In contrast, the resting G(OP) and G(MAX) were significantly lower in the older subjects. The increase in MAP from rest to exercise was greater in the older subjects (Delta +20 +/- 2 older vs. Delta +6 +/- 3 younger mmHg; P < 0.001). However, the G(OP) was similar in both groups during exercise because of a reduction in the younger subjects. In contrast, G(MAX) was unchanged from rest and therefore remained lower in older subjects (-0.19 +/- 0.05 older vs. -0.42 +/- 0.05 younger beats.min(-1).mmHg(-1); 50% HRR; P < 0.001). Furthermore, exercise resulted in an upward and rightward resetting of the cardiac baroreflex function curve in both groups. Collectively, these findings suggest that the cardiac baroreflex function curve appropriately resets during exercise in older subjects but operates at a reduced G(MAX) primarily because of age-related reductions in carotid-cardiac control manifest at rest.  相似文献   

6.
This study was undertaken to determine biochemical and functional (in vivo) adaptations of the rodent neonatal heart in response to a training program of endurance running. Ten day-old rats were progressively trained on a treadmill (final intensity, 21 m/min, 30% grade, 1 h/day) until 75 days of age. The training program induced 14, 57, and 24% increases in relative heart mass, skeletal muscle citrate synthase activity, and whole-body maximal O2 uptake, respectively (P less than 0.05). Cardiac myosin (ATPase) and Ca2+-regulated myofibril ATPase were both reduced by approximately 15% in trained vs. sedentary animals (P less than 0.05). In the majority of trained hearts examined, the myosin isozyme profile reflected an estimated 14 +/- 3% shift toward the V3 or low ATPase isozyme. Left ventricular functional indices during submaximal exercise, derived from a fluid-filled indwelling cannula, indicated that the trained animals maintained similar left ventricular (LV) systolic pressure, LV + the time derivative of pressure, and systemic arterial mean blood pressure compared with their sedentary counterparts. These functional parameters were maintained even though the trained animals performed with lower submaximal exercise heart rate. These findings suggest that maximal exercise capacity can be enhanced in neonatal rats even though the biochemical potential for ATP degradation in the cardiac contractile system is lowered. We speculate that the trend to maintain the myosin isozyme pattern further in the direction of the V3 isozyme in the trained neonatal rat heart may reflect a means to economize cross-bridge cycling while maintaining normal levels of ventricle performance at a given submaximal work load.  相似文献   

7.
This study evaluated the effects of aging and endurance training on the metabolic responses of trained and sedentary young (age 20-32 yr) and older (age 60-70 yr) men to exercise at the same relative exercise stress (70% of maximal O2 consumption). Plasma growth hormone concentrations at rest were similar in all four groups, but both older groups had an attenuated response to exercise. The older trained men appeared to have avoided the age-associated changes that were evident in their sedentary peers with respect to resting plasma insulin, C-peptide, and norepinephrine concentrations. Plasma glucagon concentrations were lower in both older subject groups at rest. Both sedentary groups decreased their plasma glucose concentrations and increased their plasma glucagon concentrations during exercise, whereas the trained groups had increases in their plasma glucose concentrations but had no change in their glucagon concentrations. Thus, although the concentrations of some hormones at rest and during submaximal exercise are unaffected by aging or by training, others are markedly altered by aging, training, or the interaction of the two. However, it appears that older healthy sedentary men undergo less physiological stress than young untrained men during submaximal exercise at the same relative exercise intensity, and they have no responses that would contraindicate their participation in exercise of the duration and intensity usually prescribed in exercise-training programs.  相似文献   

8.
The purpose of this investigation was to evaluate the effect of passive smoke inhalation on submaximal and maximal exercise performance. Eight female subjects ran on a motor driven treadmill for 20 min at 70% VO2max followed by an incremental change in grade until maximal work capacity was obtained. Each subject completed the exercise trial with and without the presence of residual cigarette smoke. Compared to the smokeless trials, the passive inhalation of smoke significantly reduced maximal oxygen uptake by 0.25 l X min-1 and time to exhaustion by 2.1 min. The presence of sidestream smoke also elevated maximal R value (1.01 vs 0.93), maximal blood lactate (6.8 vs 5.5 mM), and ratings of perceived exertion (17.4 vs 16.5 units). Passive inhalation of smoke during submaximal exercise significantly elevated the CO2 output (1.68 vs 1.58 l X min-1), R values (0.91 vs 0.86), heart rate (178 vs 172 bts X min-1) and rating of perceived exertion (13.8 vs 11.8 units). These findings suggest that passive inhalation of sidestream smoke adversely affects exercise performance.  相似文献   

9.
Low heart rate variability (HRV) is associated with an increased susceptibility to ventricular fibrillation (VF). Exercise training can increase HRV (an index of cardiac vagal regulation) and could, thereby, decrease the risk for VF. To test this hypothesis, a 2-min coronary occlusion was made during the last min of a 18-min submaximal exercise test in dogs with healed myocardial infarctions; 20 had VF (susceptible), and 13 did not (resistant). The dogs then received either a 10-wk exercise program (susceptible, n=9; resistant, n=8) or an equivalent sedentary period (susceptible, n=11; resistant, n=5). HRV was evaluated at rest, during exercise, and during a 2-min occlusion at rest and before and after the 10-wk period. Pretraining, the occlusion provoked significantly (P<0.01) greater increases in HR (susceptible, 54.9+/-8.3 vs. resistant, 25.0+/-6.1 beats/min) and greater reductions in HRV (susceptible, -6.3+/-0.3 vs. resistant, -2.8+/-0.8 ln ms2) in the susceptible dogs compared with the resistant animals. Similar response differences between susceptible and resistant dogs were noted during submaximal exercise. Training significantly reduced the HR and HRV responses to the occlusion (HR, 17.9+/-11.5 beats/min; HRV, -1.2+/-0.8, ln ms2) in the susceptible dogs; similar response reductions were noted during exercise. In contrast, these variables were not altered in the sedentary susceptible dogs. Posttraining, VF could no longer be induced in the susceptible dogs, whereas four sedentary susceptible dogs died during the 10-wk control period, and the remaining seven animals still had VF when tested. Atropine decreased HRV but only induced VF in one of eight trained susceptible dogs. Thus exercise training increased cardiac vagal activity, which was not solely responsible for the training-induced VF protection.  相似文献   

10.
Exercise-induced alterations in cardiac function during graded cycling with submaximal and maximal intensities were studied in 13 trained and 13 untrained young men. Stroke volume (SV) and stroke index (SI) at rest and during submaximal and maximal exercise, determined by impedance cardiography, were consistently greater in the trained than in the less fit group. Training-induced bradycardia was evident in the trained group at rest and during submaximal exercise. Even when SV and SI were compared at the same absolute heart rate and left ventricular ejection time, those for the trained group were markedly greater than those for the untrained. SV for the untrained group was relatively diminished above the work rate corresponding to the anaerobic threshold. The difference in SV during exercise may be attributed to inadequate filling due to the smaller stretch of myocardial fibers in diastole and/or lesser systolic emptying of the left ventricle due to the reduced myocardial contractility in systole of untrained individuals.  相似文献   

11.
Subjects with greater aerobic fitness demonstrate better diastolic compliance at rest, but whether fitness modulates exercise cardiac compliance and cardiac filling pressures remains to be determined. On the basis of maximal oxygen consumption (VO2max), healthy male subjects were categorized into either low (LO: VO2max=43+/-6 ml.kg-1.min-1; n=3) or high (HI: VO2max=60+/-3 ml.kg-1.min-1; n=5) aerobic power. Subjects performed incremental cycle exercise to 90% Vo(2max). Right atrial (RAP) and pulmonary artery wedge (PAWP) pressures were measured, and left ventricular (LV) transmural filling pressure (TMFP=PAWP-RAP) was calculated. Cardiac output (CO) and stroke volume (SV) were determined by direct Fick, and LV end-diastolic volume (EDV) was estimated from echocardiographic fractional area change and Fick SV. There were no between-group differences for any measure at rest. At a submaximal workload of 150 W, PAWP and TMFP were higher (P<0.05) in LO compared with HI (12 vs. 8 mmHg, and 9 vs. 4 mmHg, respectively). At peak exercise, CO, SV, and EDV were lower in LO (P<0.05). RAP was not different at peak exercise, but PAWP (23 vs. 15 mmHg) and TMFP (12 vs. 6 mmHg) were higher in LO (P<0.05). Compared with less fit subjects, subjects with greater aerobic fitness demonstrated lower LV filling pressures during exercise, whereas SV and EDV were either similar (submaximal exercise) or higher (peak exercise), suggesting superior diastolic function and compliance.  相似文献   

12.
The role of angiotensin II in the hormonal and renal responses to maximal exercise was investigated by using the angiotensin-converting enzyme inhibitor captopril. Nine male subjects performed a standardized maximal treadmill test with and without acute captopril treatment (25 mg orally). At rest, captopril elevated plasma renin activity and lowered aldosterone levels. With maximal exercise, captopril treatment reduced the increase in mean arterial blood pressure by 8 mmHg and the increase in plasma renin activity by 3.0 ng ANG I.ml-1.h-1. The responses of adrenocorticotropin (ACTH), cortisol, and vasopressin to maximal exercise were not altered by captopril treatment. Although aldosterone levels were reduced at rest with captopril, during maximal exercise no difference was noted between treatments. Captopril treatment had no effects on the renal handling of salts or water during exercise. In conclusion, angiotensin II plays a role in the increase in mean blood pressure during maximal exercise in normal subjects but has no effect on the exercise responses of ACTH, vasopressin, and aldosterone or on the renal handling of salts and water.  相似文献   

13.
In order to determine the effect of short-term training on central adaptations, gas exchange and cardiac function were measured during a prolonged submaximal exercise challenge prior to and following 10-12 consecutive days of exercise. In addition, vascular volumes and selected haematological properties were also examined. The subjects, healthy males between the ages of 19 and 30 years of age, cycled for 2 h per day at approximately 59% of pre-training peak oxygen consumption (VO2) i.e., maximal oxygen consumption (VO2max). Following the training, VO2max (l.min-1) increased (P less than 0.05) by 4.3% (3.94, 0.11 vs 4.11, 0.11; mean, SE) whereas maximal exercise ventilation (VE,max) and maximal heart rate (fc,max) were unchanged. During submaximal exercise, VO2 was unaltered by the training whereas carbon dioxide production (VE) and respiratory exchange ratio were all reduced (P less than 0.05). The altered activity pattern failed to elicit adaptations in either submaximal exercise cardiac output or arteriovenous O2 difference. fc was reduced (P less than 0.05). Plasma volume (PV) as measured by 125I human serum albumin increased by 365 ml or 11.8%, while red cell volume (RCV) as measured by 51chromium-labelled red blood cells (RBC) was unaltered. The increase in PV was accompanied by reductions (P less than 0.05) in haematocrit, haemoglobin concentration (g.100 ml-1), and RBCs (10(6) mm-3). Collectively these changes suggest only minimal adaptations in maximal oxygen transport during the early period of prolonged exercise training. However, as evidenced by the changes during submaximal exercise, both the ventilatory and the cardiodynamic response were altered.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Cerebral blood flow (CBF) in humans was measured at rest and during dynamic exercise on a cycle ergometer corresponding to 56% (range 27-85) of maximal O2 uptake (VO2max). Exercise bouts were performed by 16 male and female subjects, lasted 15 min each, and were carried out in a semisupine position. CBF (133Xe clearance) was expressed as the initial slope index (ISI) and as the first compartment flow (F1). CBF at rest [ISI, 58 (range 45-73); F1, 76 (range 55-98) ml.100 g-1.min-1] increased during exercise [ISI to 79 (57-94) and F1 to 118 (75-164) ml.100 g-1.min-1, P less than 0.01]. CBF did not differ significantly between work loads from 32 (24-33) to 86% (74-96) of VO2max (n = 10). During exercise, mean arterial pressure increased from 84 (60-100) to 101 (78-124) Torr (P less than 0.01) and PCO2 remained unchanged [5.1 (4.6-5.6) vs. 5.4 (4.4-6.3) kPa, n = 6]. These results demonstrate a median increase of 31% (0-87) in CBF by ISI and a median increase of 58% (0-133) in CBF by F1 during dynamic exercise in humans.  相似文献   

15.
To evaluate the effects of endurance training on gluconeogenesis and blood glucose homeostasis, trained as well as untrained short-term-fasted rats were injected with mercaptopicolinic acid (MPA), a gluconeogenic inhibitor, or the injection vehicle. Glucose kinetics were assessed by primed-continuous venous infusion of [U-14C]- and [6-3H]glucose at rest and during submaximal exercise at 13.4 m/min on level grade. Arterial blood was sampled for the determination of blood glucose and lactate concentrations and specific activities. In resting untrained sham-injected rats, blood glucose and lactate were 7.6 +/- 0.2 and 1.3 +/- 0.1 mM, respectively; glucose rate of appearance (Ra) was 71.1 +/- 12.1 mumol.kg-1.min-1. MPA treatment lowered blood glucose, raised lactate, and decreased glucose Ra. Trained animals had significantly higher glucose Ra at rest and during exercise. At rest, trained MPA-treated rats had lower blood glucose, higher blood lactate, and similar glucose Ra and disappearance rates (Rd) than trained sham-injected animals. Exercising sham-injected untrained animals had increased blood glucose and glucose Ra compared with rest. Exercising trained sham-injected rats had increased blood glucose and glucose Ra and Rd but no change in blood lactate compared with untrained sham-injected animals. In the trained animals during exercise, MPA treatment increased blood lactate and decreased blood glucose and glucose Ra and Rd. There was no measurable glucose recycling in trained or untrained MPA-treated animals either at rest or during submaximal exercise. There was no difference in running time to exhaustion between trained and untrained MPA-treated rats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Neurohumoral, cardiovascular, and respiratory parameters were evaluated during sustained submaximal exercise (3.2 km/h, 15 degrees elevation) in normal adult mongrel dogs. At the level of activity achieved (fivefold elevation of total body O2 consumption and threefold elevation of cardiac output), significant (P less than 0.05) increases in plasma norepinephrine and epinephrine concentration (from 150 +/- 23 to 341 +/- 35 and from 127 +/- 27 to 222 +/- 31 pg/ml, respectively) were present, as well as smaller but significant increases in plasma renin activity and plasma aldosterone concentration (from 2.2 +/- 0.3 to 3.1 +/- 0.6 ng X ml-1 X h-1 and from 98 +/- 8 to 130 +/- 6 pg/ml, respectively). Plasma arginine vasopressin increased variably and insignificantly. The cardiovascular response (heart rate, systemic arterial and pulmonary arterial pressures, left ventricular filling pressure, and calculated total peripheral and pulmonary arteriolar resistance) closely paralleled that of human subjects. Increased hemoglobin concentration was induced by exercise in the dogs. The ventilatory response of the animals was characterized by respiratory alkalosis. These data suggest similarities between canine and human subjects in norepinephrine, plasma renin activity, and plasma aldosterone responses to submaximal exercise. Apparent species differences during submaximal exertion include greater alterations of plasma epinephrine concentration and a respiratory alkalosis in dogs.  相似文献   

17.
Maximal aerobic capacity and the ability to sustain submaximal exercise (Ex) declines with advancing age. Whether altered muscle blood flow (BF) plays a mechanistic role in these effects remains to be resolved. The present investigation determined the effects of aging on the hemodynamic and regional BF response to submaximal Ex in rats. Heart rate (HR), mean arterial pressure (MAP), and BF to different organs (kidneys, splanchnic organs, and 28 hindlimb muscles) were determined at rest and during submaximal treadmill Ex (20 m/min, 5% grade) with radiolabeled microspheres in young (Y; 6-8 mo old, 339 +/- 8 g, n = 9) and old (O; 27-29 mo old, 504 +/- 18 g, n = 7) Fischer 344 x Brown Norway rats. Results demonstrated that HR, MAP, and BF to the pancreas, small and large intestine, and total hindlimb musculature were similar between Y and O rats at rest. BF to the kidneys, spleen, and stomach were 33, 60, and 43% lower, respectively, in O compared with Y rats. BF to the total hindlimb musculature increased (P < 0.05) during Ex and was similar for both Y and O rats (Y: 16 +/- 3 to 124 +/- 7 vs. O: 20 +/- 3 to 137 +/- 12 ml.min-1.100 g-1). However, in O vs. Y rats, BF was reduced in 6 (highly oxidative) and elevated in 8 (highly glycolytic) of the 28 individual hindquarter muscles or muscle parts examined (P < 0.05). During Ex, BF to the spleen and stomach decreased (P < 0.05) from rest in Y rats, whereas BF decreased in the kidneys, pancreas, spleen, stomach, as well as the small and large intestines of O rats. In conclusion, these data demonstrate that, despite similar increases in total hindlimb BF in Y and O rats during submaximal Ex, there is a profound BF redistribution from highly oxidative to highly glycolytic muscles.  相似文献   

18.
We investigated differences in walking (80 m/min) and running (147 m/min) economy [submaximal oxygen consumption (VO(2) (submax))] between adolescent girls (n = 13; age = 13.3 +/- 0.9 yr) and young women (n = 23; age = 21.0 +/- 1.5 yr). Subjects were matched for height (158.7 +/- 2.9 cm) and weight (52.1 +/- 3.0 kg). Anthropometric measures (height, weight, breadths, skinfolds) and preexercise oxygen consumption were obtained on all subjects before submaximal and maximal treadmill exercise. Anthropometric measures were similar between groups, as was maximal oxygen consumption (girls, 47.7 +/- 5.2; women, 47.5 +/- 5.7 ml. kg(-1). min(-1)). VO(2) (submax) was significantly greater (P < 0.0002) in girls compared with women during both walking (16.4 +/- 1.7 vs. 14.4 +/- 1. 1 ml. kg(-1). min(-1)) and running (38.1 +/- 3.7 vs. 33.9 +/- 2.4 ml. kg(-1). min(-1)). Preexercise oxygen consumption (4.4 vs. 3.9 ml. kg(-1). min(-1)) accounted for only a fraction of the differences found in exercise economy. Although heart rate and respiratory frequency were greater in the girls in both walking (118 +/- 11 vs. 104 +/- 12 beats/min and 31 +/- 3 vs. 25 +/- 4 breaths/min, respectively; P < 0.002) and running (180 +/- 15 vs. 163 +/- 17 beats/min and 47 +/- 11 vs. 38 +/- 8 breaths/min; P < 0.005), this did not likely account for a large part of the difference in VO(2) (submax) between groups.  相似文献   

19.
This study was designed to examine time-of-day effects on markers of cardiac functional capacity during a standard progressive cycle exercise test. Fourteen healthy, untrained young males (mean?±?SD: 17.9?±?0.7 yrs of age) performed identical maximal cycle tests in the morning (08:00-11:00?h) and late afternoon (16:00-19:00?h) in random order. Cardiac variables were measured at rest, submaximal exercise, and maximal exercise by standard echocardiographic techniques. No differences in morning and afternoon testing values at rest or during exercise were observed for oxygen uptake, heart rate, cardiac output, or markers of systolic and diastolic myocardial function. Values at peak exercise for Vo(2) at morning and afternoon testing were 3.20?±?0.49 and 3.24?±?0.55?L min(-1), respectively, for heart rate 190?±?11 and 188?±?15?bpm, and for cardiac output 19.5?±?2.8 and 19.8?±?3.5?L min(-1). Coefficients of variation for morning and afternoon values for these variables were similar to those previously published for test-retest reproducibility. This study failed to demonstrate evidence for significant time-of-day variation in Vo(2)max or cardiac function during standard progressive exercise testing in adolescent males.  相似文献   

20.
Ten young (aged 23–30 years) and nine older (aged 54–59 years) healthy men with a similar size of limb muscle mass performed arm crank and leg cycle exercise for 30 min at relative exercise intensities of 50% and 75% of maximal oxygen uptake for the corresponding muscle group. In the tests, heart rate, blood pressure, gas exchange variables, rating of perceived exertion and blood lactate concentration were measured. The limb muscle mass was determined by anthropometric measurements. At the 75% target exercise level, four of the older men and two of the young men could not complete the arm-cranking test, and one of the older men and two of the young men could not complete the leg-cycle test. During arm-cranking the absolute exercise intensity was similar for the young and older men because of similar maximal values during arm-cranking. But during leg-cycling the absolute excercise intensity was higher for the young men than for the older men due to the difference in corresponding maximal values. During arm-cranking there were no significant differences in the physiological responses between the age groups except that a higher ventilatory response was noted among the older compared to the young men. During leg-cycling the heart rate values were higher among the young compared to the older men. But, when the heart rate values were expressed as a percentage of maximal heart rate in the corresponding maximal tests, no significant differences between the age groups were found. The results indicated that 30-min of arm or leg exercise at the same relative submaximal excercise intensity produces a similar degree of physiological strain in healthy older compared to young men. During arm-cranking, the young and the older men exercised at the same external intensity, indicating a similar ability to perform prolonged excercise using smaller muscle groups expressed both in absolute and relative terms. Accepted: 7 October 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号