首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
In fruit flies as well as in humans the Short gastrulation (Sog)/Chordin protein functions as an antagonist of the signaling of decapentaplegic (Dpp)/bone morphogenetic protein (BMP) in the extracellular space. Such antagonism inhibits Dpp/BMP signaling by blocking its binding to the receptor. Modulation of Dpp/BMP signaling is phylogenetically conserved and is a key step for the establishment of the dorso-ventral axis in vertebrates and invertebrates. Molecular studies have shown that the inhibitory activity of Chordin on BMP resides in specific cysteine-rich (CR) domains. Interestingly, Chordin-like CR domains are present in a growing number of extracellular proteins, several of which appear to be involved in BMP signaling regulation. We review here the conservation of the Chordin and Sog proteins, and in particular their functional domain, the CR domain. We discuss how the study of CR domains may provide a general mechanism for the regulation of growth factor signaling in the extracellular space.  相似文献   

2.
Structurally unrelated neural inducers in vertebrate and invertebrate embryos have been proposed to function by binding to BMP4 or Dpp, respectively, and preventing these homologous signals from activating their receptor(s). In this study, we investigate the functions of various forms of the Drosophila Sog protein using the discriminating assay of Drosophila wing development. We find that misexpression of Drosophila Sog, or its vertebrate counterpart Chordin, generates a very limited vein-loss phenotype. This sog misexpression phenotype is very similar to that of viable mutants of glass-bottom boat (gbb), which encodes a BMP family member. Consistent with Sog selectively interfering with Gbb signaling, Sog can block the effect of misexpressing Gbb, but not Dpp in the wing. In contrast to the limited BMP inhibitory activity of Sog, we have identified carboxy-truncated forms of Sog, referred to as Supersog, which when misexpressed cause a broad range of dpp(-) mutant phenotypes. In line with its phenotypic effects, Supersog can block the effects of both misexpressing Dpp and Gbb in the wing. Vertebrate Noggin, on the other hand, acts as a general inhibitor of Dpp signaling, which can interfere with the effect of overexpressing Dpp, but not Gbb. We present evidence that Sog processing occurs in vivo and is biologically relevant. Overexpression of intact Sog in embryos and adult wing primordia leads to the developmentally regulated processing of Sog. This in vivo processing of Sog can be duplicated in vitro by treating Sog with a combination of the metalloprotease Tolloid (Tld) plus Twisted Gastrulation (Tsg), another extracellular factor involved in Dpp signaling. In accord with this result, coexpression of intact Sog and Tsg in developing wings generates a phenotype very similar to that of Supersog. Finally, we provide evidence that tsg functions in the embryo to generate a Supersog-like activity, since Supersog can partially rescue tsg(-) mutants. Consistent with this finding, sog(- )and tsg(-) mutants exhibit similar dorsal patterning defects during early gastrulation. These results indicate that differential processing of Sog generates a novel BMP inhibitory activity during development and, more generally, that BMP antagonists play distinct roles in regulating the quality as well as the magnitude of BMP signaling.  相似文献   

3.
In Drosophila, the secreted BMP-binding protein Short gastrulation (Sog) inhibits signaling by sequestering BMPs from receptors, but enhances signaling by transporting BMPs through tissues. We show that Crossveinless 2 (Cv-2) is also a secreted BMP-binding protein that enhances or inhibits BMP signaling. Unlike Sog, however, Cv-2 does not promote signaling by transporting BMPs. Rather, Cv-2 binds cell surfaces and heparan sulfate proteoglygans and acts over a short range. Cv-2 binds the type I BMP receptor Thickveins (Tkv), and we demonstrate how the exchange of BMPs between Cv-2 and receptor can produce the observed biphasic response to Cv-2 concentration, where low levels promote and high levels inhibit signaling. Importantly, we show also how the concentration or type of BMP present can determine whether Cv-2 promotes or inhibits signaling. We also find that Cv-2 expression is controlled by BMP signaling, and these combined properties enable Cv-2 to exquisitely tune BMP signaling.  相似文献   

4.
In the early Drosophila embryo, Bone morphogenetic protein (BMP) activity is positively and negatively regulated by the BMP-binding proteins Short gastrulation (Sog) and Twisted gastrulation (Tsg). We show here that a similar mechanism operates during crossvein formation, utilizing Sog and a new member of the tsg gene family, encoded by the crossveinless (cv) locus. The initial specification of crossvein fate in the Drosophila wing requires signaling mediated by Dpp and Gbb, two members of the BMP family. cv is required for the promotion of BMP signaling in the crossveins. Large sog clones disrupt posterior crossvein formation, suggesting that Sog and Cv act together in this context. We demonstrate that sog and cv can have both positive and negative effects on BMP signaling in the wing. Moreover, Cv is functionally equivalent to Tsg, since Tsg and Cv can substitute for each other's activity. We also confirm that Tsg and Cv have similar biochemical activities: Sog/Cv complex binds a Dpp/Gbb heterodimer with high affinity. Taken together, these studies suggest that Sog and Cv promote BMP signaling by transporting a BMP heterodimer from the longitudinal veins into the crossvein regions.  相似文献   

5.
The Dpp/BMP signaling pathway is highly conserved between vertebrates and invertebrates. The recent molecular characterization of the Drosophila crossveinless-2 (cv-2) mutation by Conley and colleagues introduced a novel regulatory step in the Dpp/BMP pathway (Development 127 (2000) 3945). The CV-2 protein is secreted and contains five cysteine-rich (CR) domains similar to those observed in the BMP antagonist Short gastrulation (Sog) of Drosophila and Chordin (Chd) of vertebrates. The mutant phenotype in Drosophila suggests that CV-2 is required for the differentiation of crossvein structures in the wing which require high Dpp levels. Here we present the mouse and human homologs of the Drosophila cv-2 protein. The mouse gene is located on chromosome 9A3 while the human locus maps on chromosome 7p14. CV-2 is expressed dynamically during mouse development, in particular in regions of high BMP signaling such as the posterior primitive streak, ventral tail bud and prevertebral cartilages. We conclude that CV-2 is an evolutionarily conserved extracellular regulator of the Dpp/BMP signaling pathway.  相似文献   

6.
The Dpp/BMP signaling pathway is highly conserved between vertebrates and invertebrates. The recent molecular characterization of the Drosophila crossveinless-2 (cv-2) mutation by Conley and colleagues introduced a novel regulatory step in the Dpp/BMP pathway (Development 127 (2000) 3945). The CV-2 protein is secreted and contains five cysteine-rich (CR) domains similar to those observed in the BMP antagonist Short gastrulation (Sog) of Drosophila and Chordin (Chd) of vertebrates. The mutant phenotype in Drosophila suggests that CV-2 is required for the differentiation of crossvein structures in the wing which require high Dpp levels. Here we present the mouse and human homologs of the Drosophila cv-2 protein. The mouse gene is located on chromosome 9A3 while the human locus maps on chromosome 7p14. CV-2 is expressed dynamically during mouse development, in particular in regions of high BMP signaling such as the posterior primitive streak, ventral tail bud and prevertebral cartilages. We conclude that CV-2 is an evolutionarily conserved extracellular regulator of the Dpp/BMP signaling pathway.  相似文献   

7.
The developing crossveins of the wing of Drosophila melanogaster are specified by long-range BMP signaling and are especially sensitive to loss of extracellular modulators of BMP signaling such as the Chordin homolog Short gastrulation (Sog). However, the role of the extracellular matrix in BMP signaling and Sog activity in the crossveins has been poorly explored. Using a genetic mosaic screen for mutations that disrupt BMP signaling and posterior crossvein development, we identify Gyc76C, a member of the receptor guanylyl cyclase family that includes mammalian natriuretic peptide receptors. We show that Gyc76C and the soluble cGMP-dependent kinase Foraging, likely linked by cGMP, are necessary for normal refinement and maintenance of long-range BMP signaling in the posterior crossvein. This does not occur through cell-autonomous crosstalk between cGMP and BMP signal transduction, but likely through altered extracellular activity of Sog. We identify a novel pathway leading from Gyc76C to the organization of the wing extracellular matrix by matrix metalloproteinases, and show that both the extracellular matrix and BMP signaling effects are largely mediated by changes in the activity of matrix metalloproteinases. We discuss parallels and differences between this pathway and other examples of cGMP activity in both Drosophila melanogaster and mammalian cells and tissues.  相似文献   

8.
9.
Drosophila Crossveinless-2 (dCV-2) is required for local activation of Mad phosphorylation in the fruit fly wing and has been postulated to be a positive regulator of BMP-mediated signaling. In contrast, the presence of 5 Chordin-like cysteine-rich domains in the CV-2 protein suggests that CV-2 belongs to a family of well-established inhibitors of BMP function that includes Chordin and Sog [Development 127 (2000) 3947]. We have identified a human homolog of Drosophila CV-2 (hCV-2). Here we show that purified recombinant hCV-2 protein inhibits BMP-2 and BMP-4 dependent osteogenic differentiation of W-20-17 cells, as well as BMP dependent chondrogenic differentiation of ATDC5 cells. Interestingly, hCV-2 messenger RNA is expressed at high levels in human primary chondrocytes, whereas expression in primary human osteoblasts is low. These results suggest that hCV-2 may regulate BMP responsiveness of osteoblasts and chondrocytes in vivo. Taken together we have shown that contrary to the function predicted from the fruit fly, Crossveinless-2 is a novel inhibitor of BMP function.  相似文献   

10.
Hsp70 molecular chaperones facilitate protein folding and translocation by binding to hydrophobic regions of nascent or unfolded proteins, thereby preventing their aggregation. N-Ethylmaleimide (NEM) inhibits the ATPase and protein translocation-stimulating activities of the yeast Hsp70 Ssa1p by modifying its three cysteine residues, which are located in its ATPase domain. NEM alters the conformation of Ssa1p and disrupts the coupling between its nucleotide- and polypeptide-binding domains. Ssa1p and the yeast DnaJ homolog Ydj1p constitute a protein folding machinery of the yeast cytosol. Using firefly luciferase as a model protein to study chaperone-dependent protein refolding, we have found that NEM also inhibits the protein folding activity of Ssa1p. Interestingly, the NEM-modified protein (NEM-Ssa1p) is a potent inhibitor of protein folding. NEM-Ssa1p can prevent the aggregation of luciferase and stimulate the ATPase activity of Ssa1p suggesting that it acts as an inhibitor by binding to nonnative forms of luciferase and by competing with them for the polypeptide binding site of Ssa1p. NEM-Ssa1p inhibits Ssa1p/Ydj1p-dependent protein refolding at different stages indicating that the chaperones bind and release nonnative forms of luciferase multiple times before folding is completed.  相似文献   

11.
During early embryogenesis of both vertebrates and invertebrates, antagonism between bone morphogenetic proteins (BMPs) and several unrelated secreted factors including Chordin (Chd) is a general mechanism by which the dorso-ventral axis is established. High affinity binding of Chd sequesters the BMP ligands in the extracellular space, preventing interactions with their membrane receptors. Another level of regulation consists in processing of vertebrate Chd or its Drosophila counterpart Sog by astacine metalloproteases like Xolloid-BMP-1/Tolloid, respectively, which releases an active BMP. Recently, it was shown that cleavage of Sog by Tolloid could generate novel BMP inhibitory activity and that sog is also capable of stimulation of BMP activity in a tolloid-dependant way. Activity and/or cleavage of Chd/Sog are influenced by other secreted factors like twisted gastrulation. In this study, we have cloned cDNAs of the human chordin gene (CHRD) and characterized alternative splice variants that code for C-truncated forms of the protein. We have found that CHRD is expressed in fetal as well as in adult tissues with relatively high levels in liver, cerebellum and female genital tract, suggesting functions in late embryogenesis and adult physiology. We also show that spliced variants are present with specific patterns in various tissues. When tested in an axis-duplication assay in Xenopus, we find that these variants can antagonize BMP activity. Altogether, these results suggest that, in addition to processing by metalloproteases, alternative splicing (AS) is another mechanism by which sub-products of CHRD can be generated to influence BMP activity in different developmental and physiological situations.  相似文献   

12.
The transforming growth factor beta (TGF-beta) superfamily, including the bone morphogenetic protein (BMP) and TGF-beta/activin A subfamilies, is regulated by secreted proteins able to sequester or present ligands to receptors. KCP is a secreted, cysteine-rich (CR) protein with similarity to mouse Chordin and Xenopus laevis Kielin. KCP is an enhancer of BMP signaling in vertebrates and interacts with BMPs and the BMP type I receptor to promote receptor-ligand interactions. Mice homozygous for a KCP null allele are hypersensitive to developing renal interstitial fibrosis, a disease stimulated by TGF-beta but inhibited by BMP7. In this report, the effects of KCP on TGF-beta/activin A signaling are examined. In contrast to the enhancing effect on BMPs, KCP inhibits both activin A- and TGF-beta1-mediated signaling through the Smad2/3 pathway. These inhibitory effects of KCP are mediated in a paracrine manner, suggesting that direct binding of KCP to TGF-beta1 or activin A can block the interactions with prospective receptors. Consistent with this inhibitory effect, primary renal epithelial cells from KCP mutant cells are hypersensitive to TGF-beta and exhibit increased apoptosis, dissociation of cadherin-based cell junctions, and expression of smooth muscle actin. Furthermore, KCP null animals show elevated levels of phosphorylated Smad2 after renal injury. The ability to enhance BMP signaling while suppressing TGF-beta activation indicates a critical role for KCP in modulating the responses between these anti- and profibrotic cytokines in the initiation and progression of renal interstitial fibrosis.  相似文献   

13.
Connective-tissue growth factor (CTGF) is a secreted protein implicated in multiple cellular events including angiogenesis, skeletogenesis and wound healing. It is a member of the CCN family of secreted proteins, named after CTGF, cysteine-rich 61 (CYR61), and nephroblastoma overexpressed (NOV) proteins. The molecular mechanism by which CTGF or other CCN proteins regulate cell signalling is not known. CTGF contains a cysteine-rich domain (CR) similar to those found in chordin and other secreted proteins, which in some cases have been reported to function as bone morphogenetic protein (BMP) and TGF-beta binding domains. Here we show that CTGF directly binds BMP4 and TGF-beta 1 through its CR domain. CTGF can antagonize BMP4 activity by preventing its binding to BMP receptors and has the opposite effect, enhancement of receptor binding, on TGF-beta 1. These results show that CTGF inhibits BMP and activates TGF-beta signals by direct binding in the extracellular space.  相似文献   

14.
The sensitivity of the crossveins of the Drosophila wing to reductions in BMP signaling provides a valuable system for characterizing members of this signaling pathway. We demonstrate here two reasons for that sensitivity. First, the initial stage of posterior crossvein development depends on BMP signaling but is independent of EGF signaling. This is the opposite of the longitudinal veins, which rely of EGF signaling for their initial specification. Second, BMP signaling in the posterior crossvein depends on Decapentaplegic (Dpp) at a stage when it is being produced in the longitudinal veins. Thus, the posterior crossvein will be especially vulnerable to reductions in the levels or range of Dpp signaling. We investigated the roles of the BMP receptor Thickveins (Tkv) and the BMP inhibitor Short gastrulation (Sog) in allowing this long-range signaling. Expression of both is downregulated in the developing posterior crossvein. The Tkv downregulation depends on BMP signaling and may provide a positive feedback by allowing the spread of Dpp. The Sog downregulation is independent of BMP signaling; Sog misexpression experiments indicate that this prepattern is essential for posterior crossvein development. However, this requirement can be overridden by co-misexpression of the BMP agonist Cv-2, indicating the presence of as yet unknown cues; we discuss possible candidates.  相似文献   

15.
A number of genetic and molecular studies have implicated Chordin in the regulation of dorsoventral patterning during gastrulation. Chordin, a BMP antagonist of 120 kDa, contains four small (about 70 amino acids each) cysteine-rich domains (CRs) of unknown function. In this study, we show that the Chordin CRs define a novel protein module for the binding and regulation of BMPs. The biological activity of Chordin resides in the CRs, especially in CR1 and CR3, which have dorsalizing activity in Xenopus embryo assays and bind BMP4 with dissociation constants in the nanomolar range. The activity of individual CRs, however, is 5- to 10-fold lower than that of full-length Chordin. These results shed light on the molecular mechanism by which Chordin/BMP complexes are regulated by the metalloprotease Xolloid, which cleaves in the vicinity of CR1 and CR3 and would release CR/BMP complexes with lower anti-BMP activity than intact Chordin. CR domains are found in other extracellular proteins such as procollagens. Full-length Xenopus procollagen IIA mRNA has dorsalizing activity in embryo microinjection assays and the CR domain is required for this activity. Similarly, a C. elegans cDNA containing five CR domains induces secondary axes in injected Xenopus embryos. These results suggest that CR modules may function in a number of extracellular proteins to regulate growth factor signalling.  相似文献   

16.
Germline mutations in the BMPR2 gene encoding bone morphogenetic protein (BMP) type II receptor (BMPR-II) have been reported in patients with primary pulmonary hypertension (PPH), but the contribution of various types of mutations found in PPH to the pathogenesis of clinical phenotypes has not been elucidated. To determine the biological activities of these mutants, we performed functional assays testing their abilities to transduce BMP signals. We found that the reported missense mutations within the extracellular and kinase domains of BMPR-II abrogated their signal-transducing abilities. BMPR-II proteins containing mutations at the conserved cysteine residues in the extracellular and kinase domains were detected in the cytoplasm, suggesting that the loss of signaling ability of certain BMPR-II mutants is due at least in part to their altered subcellular localization. In contrast, BMPR-II mutants with truncation of the cytoplasmic tail retained the ability to transduce BMP signals. The differences in biological activities among the BMPR-II mutants observed thus suggest that additional genetic and/or environmental factors may play critical roles in the pathogenesis of PPH.  相似文献   

17.
18.
Precise spatial and temporal control of Drosophila Bone Morphogenetic Protein (BMP) signaling is achieved by a host of extracellular factors that modulate ligand distribution and activity. Here we describe Kekkon5 (Kek5), a transmembrane protein containing leucine-rich repeats (LRRs), as a novel regulator of BMP signaling in Drosophila. We find that loss or gain of kek5 disrupts crossvein development and alters the early profile of phosphorylated Mad and dSRF in presumptive crossvein cells. kek5 phenotypic effects closely mimic those observed with Short gastrulation (Sog), but do not completely recapitulate the effects of dominant negative BMP receptors. We further demonstrate that Kek5 is able to antagonize the BMP ligand Glass bottom boat (Gbb) and that the Kek5 LRRs are required for BMP inhibitory activity, while the Ig domain is dispensable in this context. Our identification of Kek5 as a modulator of BMP signaling supports the emerging notion that LIG proteins function as diverse regulators of cellular communication.  相似文献   

19.
Bone morphogenetic protein 1 (BMP1) is the prototype of a subgroup of metalloproteinases with manifold roles in morphogenesis. Four mammalian subgroup members exist, including BMP1 and mammalian Tolloid-like 1 (mTLL1). Subgroup members have a conserved protein domain structure: an NH2-terminal astacin-like protease domain, followed by a fixed order of CUB and epidermal growth factor-like protein-protein interaction motifs. Previous structure/function studies have documented those BMP1 protein domains necessary for secretion, and activity against various substrates. Here we demonstrate that, in contradiction to previous reports, the most NH2-terminal CUB domain (CUB1) is not required for BMP1 secretion nor is the next CUB domain (CUB2) required for enzymatic activity. The same is true for mTLL1. In fact, secreted protease domains of BMP1 and mTLL1, devoid of CUB or epidermal growth factor-like domains, have procollagen C-proteinase (pCP) activity and activity for biosynthetic processing of biglycan, the latter with kinetics superior to those of the full-length proteins. Structure-function analyses herein also suggest differences in the functional roles played by some of the homologous domains in BMP1 and mTLL1. Surprisingly, although BMP1 has long been known to be Ca2+-dependent, a property previously assumed to apply to all members of the subgroup, mTLL1 is demonstrated to be independent of Ca2 levels in its ability to cleave some, but not all, substrates. We also show that pCP activities of only versions of BMP1 and mTLL1 with intact COOH termini are enhanced by the procollagen C-proteinase enhancer 1 (PCOLCE1) and that mTLL1 binds PCOLCE1, thus suggesting reappraisal of the accepted paradigm for how PCOLCE1 enhances pCP activities.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号