首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of the flagellum and motility in the virulence of the marine fish pathogen Vibrio anguillarum was examined. Non-motile mutants were generated by transposon mutagenesis. Infectivity studies revealed that disruption of the flagellum and subsequent loss of motility correlated with an approximate 500-fold decrease in virulence when fish were inoculated by immersion in bacteria-containing water. However, the flagellar filament and motility were not required for pathogenicity following intraperitoneal injection of fish. The transposon-insertion site for six mutants was determined by cloning and sequencing of the Vibrio DNA flanking the transposon. V. anguillarum genes whose products showed strong homology to proteins with an established role in flagellum biosynthesis were identified. One of the aflagellate mutants had a transposon insertion in the rpoN gene of V. anguillarum . This rpoN mutant failed to grow at low concentrations of available iron and was avirulent by both the immersion and intraperitoneal modes of inoculation. A chemotaxis gene, cheR , was located upstream of one transposon insertion and an in-frame deletion was constructed in the coding region of this gene. The resulting non-chemotactic mutant exhibited wild-type pathogenicity when injected intraperitoneally into fish but showed a decrease in virulence similar to that seen for the non-motile aflagellate mutants following immersion infection. Hence, chemotactic motility is a required function of the flagellum for the virulence of V. anguillarum  相似文献   

2.
戈蕾  黄倢  李琪 《微生物学通报》2007,34(3):0584-0586
鳗弧菌是引起多种海水鱼类出血性败血症的病原菌。其致病机理与各个毒力基因的协同作用密切相关。文中综述了鳗弧菌的主要毒力基因,包括编码外毒素、粘附因子、侵袭因子、细胞表面成分以及铁吸收系统的基因和部分检测方法。  相似文献   

3.
Salmonella typhimurium is capable of entering into (invading) nonphagocytic host cells. To systematically identify the bacterial genes necessary for this process, 15,000 Tn10dCm random transposon mutants of S. typhimurium were individually screened for invasiveness, using the human colonic epithelial Caco-2 cell line. Four hundred and eighty-eight mutants had decreased levels of invasiveness; most were nonmotile. However, five mutants, representing four loci, were completely motile. Further characterization of these five mutants showed that they were also unable to enter the dog kidney epithelial cell line MDCK and the mouse macrophage line J774.A1. In contrast to the parental strain, they were unable to disrupt the transepithelial resistance of polarized epithelial monolayers, nor were they able to penetrate across these epithelial barriers. Three of the four classes of mutants remained virulent in mice. The results confirm several aspects of S. typhimurium invasiveness: (i) intact motility enhances invasiveness of cultured cells; (ii) S. typhimurium invasiveness is multifactorial, and at least six distinct genetic loci are involved; and (iii) invasion loci involved in uptake into epithelial cells are also needed for uptake into cultured phagocytic cells. The results also emphasize that decreased levels of invasiveness eliminate bacterial penetration of polarized epithelial barriers and invasiveness loci mutants are not necessarily avirulent.  相似文献   

4.
目的观察转化生长因子-β1(TGF-β1)对人胃癌细胞株AGS发生上皮-间充质转化(epithelial-mesenchymal transition,EMT)及体外侵袭的影响。方法将体外培养的AGS用TGF-β1干预后,倒置显微镜下观察细胞形态学的变化,MTT比色法检测TGF-β1对AGS增殖的影响,细胞划痕试验和Transwell侵袭试验检测细胞运动和侵袭力的改变;免疫荧光和Western blot检测snail、E-cadherin(上皮钙粘蛋白)、和N-cadherin(神经钙粘蛋白)表达的变化。结果TGF-β1诱导AGS向间充质细胞形态转化,低浓度促进细胞增殖,而高浓度时细胞增殖率逐步降低,且snail和间充质细胞表型N-cadherin表达上调,而上皮细胞表型E-cadherin表达下调,同时细胞运动和侵袭能力大大增强。结论TGF-β1可诱导AGS发生EMT,从而增加其侵袭、转移的能力。  相似文献   

5.
The fish pathogen Vibrio anguillarum causes a lethal infection in rainbow trout (Salmo gairdneri). Three different avirulent mutants, constructed by transposon insertion mutagenesis (VAN20 and VAN70) or as antibiotic-resistant mutants (VAN1000), were isolated by screening 200 individual isolated mutants for avirulence. When used as live vaccines, all three avirulent mutants were able to induce protective immunity against the homologous as well as a heterologous strain of V. anguillarum. When VAN1000 was used, protective immunity could be recorded 1 week after bath vaccination with 10(7) bacteria per ml of water for 30 min. A single-dose immunization was effective for at least 12 weeks. Western immunoblotting showed that strains of V. anguillarum have antigenic determinants in common with Aeromonas strains. Therefore, we tested and confirmed that VAN1000 also was able to induce protective immunity against challenge with Aeromonas salmonicida.  相似文献   

6.
The fish pathogen Vibrio anguillarum causes a lethal infection in rainbow trout (Salmo gairdneri). Three different avirulent mutants, constructed by transposon insertion mutagenesis (VAN20 and VAN70) or as antibiotic-resistant mutants (VAN1000), were isolated by screening 200 individual isolated mutants for avirulence. When used as live vaccines, all three avirulent mutants were able to induce protective immunity against the homologous as well as a heterologous strain of V. anguillarum. When VAN1000 was used, protective immunity could be recorded 1 week after bath vaccination with 10(7) bacteria per ml of water for 30 min. A single-dose immunization was effective for at least 12 weeks. Western immunoblotting showed that strains of V. anguillarum have antigenic determinants in common with Aeromonas strains. Therefore, we tested and confirmed that VAN1000 also was able to induce protective immunity against challenge with Aeromonas salmonicida.  相似文献   

7.
Activated protein C (APC), an anticoagulant serine protease, has been shown to have non-hemostatic functions related to inflammation, cell survival, and cell migration. In this study we investigate the mechanism by which APC promotes angiogenesis and breast cancer invasion using ex vivo and in vitro methods. When proteolytically active, APC promotes cell motility/invasion and tube formation of endothelial cells. Ex vivo aortic ring assays verify the role of APC in promoting angiogenesis, which was determined to be dependent on EGFR and MMP activation. Given the capacity of APC to promote angiogenesis and the importance of this process in cancer pathology, we investigated whether the mechanisms by which APC promotes angiogenesis can also promote motility and invasion in the MDA-MB-231 breast cancer cell line. Our results indicate that, extracellularly, APC engages EPCR, PAR-1, and EGFR in order to increase the invasiveness of MDA-MB-231 cells. APC activation of matrix metalloprotease (MMP) -2 and/or -9 is necessary but not sufficient to increase invasion, and APC does not utilize the endogenous plasminogen activation system to increase invasion. Intracellularly, APC activates ERK, Akt, and NFκB, but not the JNK pathway to promote MDA-MB-231 cell motility. Similar to the hemostatic protease thrombin, APC has the ability to enhance both endothelial cell motility/angiogenesis and breast cancer cell migration.  相似文献   

8.
We compared the ability of Aeromonas hydrophila wild-type strains of serogroup O:34, non-motile Tn5 aflagellar mutants and the same mutants harboring a recombinant cosmid DNA from a library of A. hydrophila AH-3 (O:34, wild-type) that allows these mutants to make flagella and to be motile, to adhere and invade two fish cell lines. We found that motility is essential in these strains for adhesion, and also that possession of flagella is essential for the ability to invade the fish cell lines. We cannot rule out that flagella may be an adhesin, or that motility may also be involved in A. hydrophila serogroup O:34 bacterial invasion of both fish cell lines.  相似文献   

9.
Plasmodium sporozoites, the infective stage of the malaria parasite, move by gliding motility, a unique form of locomotion required for tissue migration and host cell invasion. TRAP, a transmembrane protein with extracellular adhesive domains and a cytoplasmic tail linked to the actomyosin motor, is central to this process. Forward movement is achieved when TRAP, bound to matrix or host cell receptors, is translocated posteriorly. It has been hypothesized that these adhesive interactions must ultimately be disengaged for continuous forward movement to occur. TRAP has a canonical rhomboid-cleavage site within its transmembrane domain and mutations were introduced into this sequence to elucidate the function of TRAP cleavage and determine the nature of the responsible protease. Rhomboid cleavage site mutants were defective in TRAP shedding and displayed slow, staccato motility and reduced infectivity. Moreover, they had a more dramatic reduction in infectivity after intradermal inoculation compared to intravenous inoculation, suggesting that robust gliding is critical for dermal exit. The intermediate phenotype of the rhomboid cleavage site mutants suggested residual, albeit inefficient cleavage by another protease. We therefore generated a mutant in which both the rhomboid-cleavage site and the alternate cleavage site were altered. This mutant was non-motile and non-infectious, demonstrating that TRAP removal from the sporozoite surface functions to break adhesive connections between the parasite and extracellular matrix or host cell receptors, which in turn is essential for motility and invasion.  相似文献   

10.
The invasive forms of apicomplexan parasites share a conserved form of gliding motility that powers parasite migration across biological barriers, host cell invasion and egress from infected cells. Previous studies have established that the duration and direction of gliding motility are determined by actin polymerization; however, regulators of actin dynamics in apicomplexans remain poorly characterized. In the absence of a complete ARP2/3 complex, the formin homology 2 domain containing proteins and the accessory protein profilin are presumed to orchestrate actin polymerization during host cell invasion. Here, we have undertaken the biochemical and functional characterization of two Toxoplasma gondii formins and established that they act in concert as actin nucleators during invasion. The importance of TgFRM1 for parasite motility has been assessed by conditional gene disruption. The contribution of each formin individually and jointly was revealed by an approach based upon the expression of dominant mutants with modified FH2 domains impaired in actin binding but still able to dimerize with their respective endogenous formin. These mutated FH2 domains were fused to the ligand-controlled destabilization domain (DD-FKBP) to achieve conditional expression. This strategy proved unique in identifying the non-redundant and critical roles of both formins in invasion. These findings provide new insights into how controlled actin polymerization drives the directional movement required for productive penetration of parasites into host cells.  相似文献   

11.
A role for coccidian cGMP-dependent protein kinase in motility and invasion   总被引:9,自引:0,他引:9  
The coccidian parasite cGMP-dependent protein kinase is the primary target of a novel coccidiostat, the trisubstituted pyrrole 4-[2-(4-fluorophenyl)-5-(1-methylpiperidine-4-yl)-1H-pyrrol-3-yl] pyridine (compound 1), which effectively controls the proliferation of Eimeria tenella and Toxoplasma gondii parasites in animal models. The efficacy of compound 1 in parasite-specific metabolic assays of infected host cell monolayers is critically dependent on the timing of compound addition. Simultaneous addition of compound with extracellular E. tenella sporozoites or T. gondii tachyzoites inhibited [3H]-uracil uptake in a dose-dependent manner, while minimal efficacy was observed if compound addition was delayed, suggesting a block in host cell invasion. Immunofluorescence assays confirmed that compound 1 blocks the attachment of Eimeria sporozoites or Toxoplasma tachyzoites to host cells and inhibits parasite invasion and gliding motility. Compound 1 also inhibits the secretion of micronemal adhesins (E. tenella MIC1, MIC2 and T. gondii MIC2), an activity closely linked to invasion and motility in apicomplexan parasites. The inhibition of T. gondii MIC2 adhesin secretion by compound 1 was not reversed by treatment with calcium ionophores or by ethanol (a microneme secretagogue), suggesting a block downstream of calcium-dependent events commonly associated with the discharge of the microneme organelle in tachyzoites. Transgenic Toxoplasma strains expressing cGMP-dependent protein kinase mutant alleles that are refractory to compound 1 (including cGMP-dependent protein kinase knock-out lines complemented by such mutants) were used as tools to validate the potential role of cGMP-dependent protein kinase in invasion and motility. In these strains, parasite adhesin secretion, gliding motility, host cell attachment and invasion displayed a reduced sensitivity to compound 1. These data clearly demonstrate that cGMP-dependent protein kinase performs an important role in the host-parasite interaction.  相似文献   

12.
Nasopharyngeal carcinoma (NPC) has a high metastatic character in the clinic, but its mechanism is not clear. As a carcinogen with organ specificity for the nasopharyngeal epithelium, N,N′-Dinitrosopiperazine (DNP) is involved in NPC metastasis. Herein, our data revealed that anterior gradient 2 (AGR2) was overexpressed in human NPC tissues, particularly in cervical lymph node metastatic NPC (LMNPC). High AGR2 expression was associated with NPC metastasis. Importantly, DNP induced AGR2 expression, and increased cell motility and invasion in the NPC cell line 6–10B. However, DNP-mediated cell motility and invasion was dramatically decreased when transfected with siRNA-AGR2. Further, AGR2 directly regulated cathepsin (CTS) B and D by binding them in vitro. These results indicate that DNP induces AGR2 expression, regulates CTSB and CTSD, increases cell motility and invasion, and promotes NPC tumor metastasis. Therefore, DNP-mediated AGR2 expression may be an important factor in prolific NPC metastasis.  相似文献   

13.
14.
The metastatic spread of tumor cells occurs through a complex series of events, one of which involves the adhesion of tumor cells to extracellular matrix (ECM) components. Multiple interactions between cell surface receptors of an adherent tumor cell and the surrounding ECM contribute to cell motility and invasion. The current studies evaluate the role of a cell surface chondroitin sulfate proteoglycan (CSPG) in the adhesion, motility, and invasive behavior of a highly metastatic mouse melanoma cell line (K1735 M4) on type I collagen matrices. By blocking mouse melanoma cell production of CSPG with p-nitrophenyl beta-D-xylopyranoside (beta-D-xyloside), a compound that uncouples chondroitin sulfate from CSPG core protein synthesis, we observed a corresponding decrease in melanoma cell motility on type I collagen and invasive behavior into type I collagen gels. Melanoma cell motility on type I collagen could also be inhibited by removing cell surface chondroitin sulfate with chondroitinase. In contrast, type I collagen-mediated melanoma cell adhesion and spreading were not affected by either beta-D-xyloside or chondroitinase treatments. These results suggest that mouse melanoma CSPG is not a primary cell adhesion receptor, but may play a role in melanoma cell motility and invasion at the level of cellular translocation. Furthermore, purified mouse melanoma cell surface CSPG was shown, by affinity chromatography and in solid phase binding assays, to bind to type I collagen and this interaction was shown to be mediated, at least in part, by chondroitin sulfate. Additionally we have determined that mouse melanoma CSPG is composed of a 110-kD core protein that is recognized by anti-CD44 antibodies on Western blots. Collectively, our data suggests that interactions between a cell surface CD44-related CSPG and type I collagen in the ECM may play an important role in mouse melanoma cell motility and invasion, and that the chondroitin sulfate portion of the proteoglycan seems to be a critical component in mediating this effect.  相似文献   

15.
Caveolin-1 is an essential protein constituent of caveolae. Accumulating evidence indicates that caveolin-1 may act as a positive regulator of cancer progression. In this study, we investigated the function of caveolin-1 in human lung cancer cells. Caveolin-1 knockdown inhibited cell proliferation and reduced focal adhesion kinase (Fak) phosphorylation. Matrix invasion and cell migration as well as expression and activity of matrix metalloproteases were attenuated following caveolin-1 RNAi-mediated knockdown or overexpression of Y14F and P132L mutants, demonstrating dominant-negative activity of these mutants. Time-lapse fluorescence microscopy revealed that caveolin-1 and its mutants P132L and Y14F are localized to the trailing edge of migrating cells during both random and directed cell movement, implying an active role of caveolin-1 in the migration process. Suppression of caveolin-1 function greatly elevated the percentage of H1299 cells exhibiting focal adhesions. In addition, cell aggregation was increased by wild type caveolin-1 and attenuated by both P132L and Y14F mutants. Overexpression of wild type caveolin-1 increased caveolae density, however, P132L and Y14F mutants did not affect caveolae formation, suggesting that in this respect that the mutants do not act in a dominant negative manner, and that effects of caveolin-1 on caveolae and cell invasion, migration, focal adhesion and aggregation, are separable. Our data provide novel mechanistic insights into the role of caveolin-1 in cell motility, invasiveness and aggregation, therefore, expanding our understanding of the tumor-promoting activities of caveolin-1 in advanced-stage cancer.  相似文献   

16.
A method of insertional mutagenesis for naturally transformable organisms has been adapted from Haemophilus influenzae and applied to the study of the pathogenesis of Campylobacter jejuni. A series of kanamycin-resistant Insertional mutants of C. jejuni 81–176 has been generated and screened for loss of ability to invade INT407 cells. Eight noninvasive mutants were identified which showed 18-200-fold reductions in the level of invasion compared with the parent. Three of these eight show defects in motility, and five are fully motile. The three mutants with motility defects were further characterized to evaluate the method. One mutant, K2–32, which is non-adherent and non-invasive, has an insertion of the kanamycin-resistance cassette into the flaA flagellin gene and has greatly reduced motility and a truncated flagellar filament typical of flaA mutants. The adherent non-invasive mutants K2–37 and K2–55 are phenotypically paralysed, i.e. they have a full-length flagellar filament but are non-motile. All three mutants show an aberration in flagellar structure at the point at which the filament attaches to the cell. Mutants K2–37 and K2–55 represent overlapping deletions affecting the same gene, termed pflA (paralysed flagella). This gene encodes a predicted protein of 788 amino acid residues and a molecular weight of 90 977 with no significant homology to known proteins. Site-specific insertional mutants into this open reading frame result in the same paralysed flagellar phenotype and the same invasion defects as the original mutants.  相似文献   

17.
Objectives: 3‐O‐methylfunicone (OMF), a secondary metabolite produced by Penicillium pinophilum, affects cell proliferation and motility in a variety of human solid tumours. The aim of this study was to demonstrate whether OMF has the ability to arrest cell division and motility, in a human mesothelioma cell line. Malignant mesothelioma is an aggressive cancer that does not respond to standard therapies the cells of which are considered to be highly resistant to apoptosis. Material and methods: Cell motility and invasion were measured using a modified Boyden chamber. Gene expression was examined by RT‐PCR, while ERK1/2 was investigated by Western blot analysis. All experiments were also performed on primary cultures of mesothelial cells. Results: The present study shows that OMF inhibited motility of the NCI mesothelioma cell line by modulating ERK signalling activity, and affected αVβ5 integrin and MMP‐2 expression, inducing marked downregulation at both mRNA and protein levels. Substantial downregulation of VEGF gene expression was also demonstrated. These effects were not observed in normal mesothelial cell cultures. Conclusion: OMF may have potential as a naturally derived anti‐tumour drug for treatment of mesothelioma.  相似文献   

18.
The extracellular zinc metalloprotease, EmpA, is a putative virulence factor involved in pathogenicity of the fish pathogen Vibrio anguillarum. The 611-amino acid precursor of this enzyme is encoded by the empA gene. The residues His346, His350, Glu370, Glu347, His429, Tyr361 and Asp417 are highly conserved and putatively function together at the active site of the enzyme. In this study, empA was inserted into pET24d(+) and expressed in Escherichia coli strain BL21(DE3) as a 6 x His tagged protein (r-EmpA). All the conserved residues of EmpA mentioned above were individually mutated by site-directed mutagenesis and the mutants were also expressed (m-r-EmpAs). r-EmpA and m-r-EmpAs were purified, and assayed for their proteolytic activities with azocasein as the substrate and cytotoxicities on a flounder gill cell line. m-r-EmpAs that had been mutated at His346, His350, Glu370 and Glu347 almost completely lost their proteolytic activity and cytotoxicity, pointing towards the essential roles played by these residues. In contrast, those mutated at Tyr361, His429 and Asp417 still retained a partial proteolytic activity and cytotoxicity. Our results indicate that these conserved residues play important roles in enzymatic activity and that the proteolytic activity of the enzyme is involved in the pathogenesis of V. anguillarum  相似文献   

19.
20.
Invasion and intercellular spread are hallmarks of Shigella pathogenicity. Invasion of the eukaryotic cell cytosol requires a type III secretion system (Mxi-Spa) and its cognate set of secreted Ipa invasins. Once intracellular, the IcsA protein directs a form of actin-based motility that helps to drive intracellular bacterial movement, formation of cellular protrusions and cell-to-cell spread. Work in our laboratory has focused on identifying additional factors required for this intercellular form of dissemination. In this study, we sought to identify novel contributions of the type III secretion pathway to post-invasion-specific processes, distinct from its previously characterized roles in invasion. Studies of post-invasion Ipa and Mxi-Spa functions are complicated by an absolute requirement for these virulence proteins in invasion. To circumvent this problem, we developed a system called TIER (for test of intracellular expression requirements), whereby specific ipa, mxi or spa loci are transiently expressed before infection of tissue culture cell monolayers (thus supporting invasion), but then repressed after invasion in the intracellular environment. Such invasive type III secretion mutants (called TIER mutants) were severely restricted in their ability to spread intercellularly and form plaques in confluent tissue culture cell monolayers. Intercellular spread defects were associated with the repression of most type III pathway components examined, including structural (MxiM and Spa33), secreted effector (IpaB, IpaC and IpaD) and regulatory elements (VirF and VirB). A kinetic analysis of bacterial growth in L2 cell monolayers showed that each of the TIER mutants was defective with respect to long-term intracellular proliferation and viability. Examination of TIER mutant-infected monolayers by electron microscopy revealed that the type III pathway was required for a late step in intercellular spread - bacterial escape from protrusion-derived, double-membrane-bound vacuoles. The TIER mutants were eventually degraded in a process involving vacuolar acidification. Based on these findings, we propose that Ipa secretion via Mxi-Spa is required in the protrusion vacuole for double-membrane lysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号