首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soluble, specific binding protein(s) for growth hormone (GH) have been identified and partially characterized in high-speed cytosolic preparations from a number of rabbit tissues. The binding of 125I-labelled human GH to proteins in liver, heart, adipose tissue, skeletal muscle and kidney cytosols was dependent on time and cytosolic protein concentration. By Scatchard analysis, the binding affinities (KA: (2-7) X 10(9) M-1) were somewhat higher than those generally reported for membrane GH receptors. The binding proteins had a greater specificity for somatotrophic hormones than lactogenic hormones, although the kidney appeared to have, in addition, a lactogen-binding protein. By gel filtration, the Mr of the cytosolic GH-binding protein was approximately 100 000 in all tissues. None of the binding proteins was detectable by the poly(ethylene glycol) precipitation method used widely for soluble hormone receptors. The cytosolic GH-binding proteins also cross-reacted with a monoclonal antibody to the rabbit liver membrane GH receptor. These results indicate the ubiquitous presence of apparently naturally soluble GH-binding proteins in the cytosolic fractions of several tissues in the rabbit. Of great interest is their presence in muscle, where GH receptors or binding proteins have not previously been detected, despite muscle being recognized as a classical GH target tissue.  相似文献   

2.
Cytosolic, detergent-solubilized and membrane-bound growth hormone (GH) receptors from rabbit adipose tissue and liver were tested for reactivity with a panel of monoclonal antibodies (MAbs). The cytosolic and detergent-solubilized forms of adipose tissue and liver GH receptors were identically reactive with four precipitating and two hormone-binding-site-directed MAbs. However, the membrane-bound form of the adipose receptor was 1000-fold less reactive with one binding-site-directed MAb (MAb 7) than the membrane-bound liver GH receptor. Reactivity with another inhibitory MAb (MAb 263) was identical for adipose tissue and liver membrane GH receptors. The relative potency of 22,000-Mr and 20,000-Mr forms of human GH was identical in assays with liver and adipose tissue membrane receptors. Thus, contrary to earlier suggestions, the discrepancy between the growth-promoting and insulin-like activities of 20,000-Mr human GH cannot be rationalized by a difference in the affinity of this hormone for 'somatogenic' and 'metabolic' receptors when the comparison is made in the same species. Cross-linking studies showed that the major GH-binding subunit of liver and adipose tissue GH receptors had the same Mr (54,000 +/- 5000, reduced). The ligand-binding subunits of liver and adipose tissue receptors are identical by several criteria, but one epitope on the adipose tissue receptor appears to be masked upon membrane insertion, possibly by close association with a tissue-specific component. Tissue specificity may be determined by association of a ubiquitous GH-binding subunit with tissue-specific membrane components, rather than by differences in amino acid sequence.  相似文献   

3.
The affinity of 22,000-Mr human growth hormone (22 K-hGH) for GH binding proteins in rabbit liver is increased approx. 19-fold by 25 mM-Ca2+. In contrast, ovine growth hormone (oGH) binding is Ca2+-independent up to 10 mM, and decreased by greater Ca2+ concentrations. The 20,000-Mr hGH variant (20K-hGH), lacking residues 32-46, exhibits intermediate behaviour. Without Ca2+ there is a residual 40% of maximum specific binding to liver microsomes, and this increases to 65% with liver cytosolic GH binding proteins. In contrast with 22K-hGH, Scatchard analysis of 20K-hGH binding to liver microsomes produces curvilinear plots in the presence of 25 mM-Ca2+. From these results and inhibition studies with monoclonal antibodies to the GH binding proteins, it is concluded that deletion of the region 32-46 from 22K-hGH has eliminated one component of high-affinity Ca2+-potentiable binding. The Ca2+-mediated increase in Ka for the 22K-hGH-binding protein interaction is consistent with convergence of unit negative charges on the hormone and binding protein towards an intercalated Ca2+ ion. A positive charge in the critical region of nonprimate GHs would render their interactions Ca2+-independent and of lower Ka compared with 22K-hGH. A likely candidate for the negatively charged interactive residue is glutamate-33, since it is unique to human GH and is replaced by a positively charged arginine in non-primate GHs. Its absence in 20K-hGH could explain the altered calcium-dependence of 20K-hGH binding to what is probably the type 2 binding protein [Barnard & Waters (1986) Biochem. J. 237, 885-892]. The Ca2+-dependence of 20K-hGH binding to a subset of GH binding proteins provides both a verification and a mechanistic basis for the proposal [Hughes, Tokuhiro, Simpson & Friesen (1983) Endocrinology (Baltimore) 113, 1904-1906] that 20K-hGH binds with high affinity to only a subset of binding proteins in rabbit liver membranes.  相似文献   

4.
We describe the use of four monoclonal antibodies (MAbs) to the rabbit liver growth hormone (GH) receptor and one raised against purified rat liver GH receptor to characterize liver receptor subtypes which differ in their hormone-binding regions. The anti-(rat liver GH receptor) MAb both inhibited and precipitated rat and rabbit GH receptors, but only one-half of 125I-oGH (ovine GH) binding to liver microsomes could be inhibited by excess antibody. Conversely, only one-half of 125I-anti-(rat GH receptor) MAb binding was inhibited by excess oGH and Scatchard plots for this MAb exhibited two components. Although only 50% of 125I-oGH binding to membranes was inhibited by this MAb, all solubilized receptor could be immunoprecipitated. We postulate two epitopes for the anti-(rat GH receptor) MAb, one located at the hormone-binding site (inhibitory site) and one elsewhere (immunoprecipitating site). A second, rabbit-specific antibody (MAb 7) inhibited 85% of hormone binding but only 30% of 125I-anti-(rat GH receptor) MAb binding to rabbit liver microsomes. A combination of this MAb with the anti-(rat GH receptor) MAb totally inhibited 125I-oGH binding. MAb 7 alone totally inhibited 125I-rat GH binding to rabbit liver microsomes, as it did with 125I-oGH binding to purified receptor. On the basis of these results and others we postulate three types of GH receptor in rabbit liver membranes and ascribe approximate extents of 125I-oGH binding to each. A cytosolic 'GH receptor' which is not poly(ethylene glycol)-precipitable is shown to share five epitopes with 'type 2' microsomal receptors. Purified plasma membrane and endoplasmic reticulum fractions derived from a rabbit liver microsomal preparation have identical antigenic characteristics with respect to the GH-binding region, indicating that the heterogeneity we describe is not related to receptor processing. Of the three types of GH receptor in the plasma membrane of the rabbit (and possibly rat) we postulate that one (type 1) corresponds to the GH receptor involved in stimulating growth and possesses all of the epitopes studied here. A second (type 2) appears to be identical with the cytosolic 'GH receptor' and lacks the epitope for the anti-(rat GH receptor) MAb in the hormone binding site region. A third (type 3) does not possess the epitope for the inhibitory anti-(rabbit GH receptor) MAb, appears not to bind rat GH and is lost during purification. The availability of type-specific MAbs will facilitate assignment of specific functions to liver receptor subtypes which mediate the multiple functions of GH.  相似文献   

5.
A specific growth hormone (GH) binding protein of Mr approx. 100000 has been demonstrated in the cytosolic fraction (200000g supernatant) of pregnant-rabbit liver by gel filtration techniques. This binding species was detectable by a standard charcoal separation procedure but not by the widely used poly(ethylene glycol) precipitation method. The GH binding protein had similar binding characteristics to those of classical membrane-bound GH receptors. The kinetics of association and dissociation, binding affinity (2.56 X 10(9)1/mol) and hormonal specificity have been established. There appears to be equal or greater amounts of GH binding protein in the cytosol than in the membrane fraction. The presence of the GH binding protein in rabbit liver cytosol was substantiated by its selective purification on a GH-Affigel 15 affinity column. This technique has resulted in a 200-300-fold purification with no substantial change in binding affinity. The ability of a concanavalin A-Sepharose affinity column to also bind the cytosolic binding protein indicates that, like the membrane-bound GH receptor, it is a glycoprotein. This is the first report of a cytosolic binding protein for GH and raises important questions regarding its potential physiological role in the mechanism of action of GH.  相似文献   

6.
Abstract

The existence of three GH binding proteins in rabbit liver membranes has been adduced from binding studies with a panel of monoclonal antibodies (1)˙ Immunologically cross-reactive analogues of ‘type 2’ binding proteins were shown to exist in rabbit liver cytosol and in affinity purified receptor from liver microsomes. We now report differences in the binding of human and ovine GH with respect to two antigenic determinants on the ‘type 1″ GH binding protein. The discovery of these differences has enabled the detection of cross-reactive analogues of both binding protein types ‘1″ and ‘2’ in liver cytosol and in affinity purified preparations from liver membranes. These findings show a) a close structural relationship between the pool of cytosolic GH binding proteins and those present in the membranes; and b) differential ligand binding to, as well as absolute ligand selection by GH binding proteins, which could reflect the ability of GH to trigger a range of biological responses either through different receptors or differential interaction with particular receptor subtypes.  相似文献   

7.
Covalent cross-linking techniques have been used to investigate the structural characteristics of the growth-hormone (GH) receptor in a variety of rabbit liver cell membrane preparations (particulate and soluble). Two classes of GH-binding protein have been identified which differ in their Mr by gel filtration and susceptibility to precipitation with poly(ethylene glycol) (PEG). The first, a PEG-precipitable (Mr approximately 300,000) protein, contained Mr-65,000 and Mr-40,000 binding proteins linked by disulphide bonds. It was present in aqueous extracts derived from microsomal membranes but was not present in cytosol preparations. The second, a PEG-non-precipitable protein (Mr approximately 100,000) was composed of a non-disulphide-linked primary GH-binding subunit of Mr 60,000-66,000. This binding protein was present in all rabbit liver cell fractions and/or preparations. Both binding-protein classes contained intramolecular disulphide bonds. It is not clear whether the Mr-approximately 100,000 form, or perhaps higher-Mr species which have not been identified by cross-linking studies, represents the native, endogenous, form of the GH receptor present in particulate microsomal or plasma membranes. Accordingly, although these data have identified two classes of GH-binding protein, especially a primary GH-binding subunit of Mr 60,000-66,000, they indicate that, unlike studies on the insulin receptor, covalent cross-linking techniques alone are not sufficient to delineate the complete subunit structure of the native and endogenous form of the GH receptor.  相似文献   

8.
In order to identify calcium (Ca2+)-binding proteins in the parathyroid gland, we used electrophoretic blots of proteins separated by a two-dimensional nondenaturing/denaturing gel system and incubated them with 45Ca2+. Parathyroid secretory protein (PSP) and proteins with approximate molecular weights of 98,000, 88,000, 58,000, and 30,000 were noted to bind Ca2+ in cytosolic fractions from bovine parathyroid, adrenal, and pituitary glands. However, differences in the binding affinity and capacity of the various proteins were observed. PSP displayed a low affinity and high binding capacity for Ca2+. In the presence of 5 mM MgCl2 and 60 mM KCl, native PSP (immobilized on nitrocellulose filters) bound 7.5 mol of Ca2+/mol of protein monomer with an apparent Kd of 1.1 mM. Immunoblotting identified the association of PSP with parathyroid cell membranes in a Ca2+-dependent manner. This property, together with its heat stability, distinguished PSP from other cytosolic Ca2+-binding proteins which were identified. There was also evidence for a Ca2+-dependent protein-protein interaction (aggregation) of PSP present in a Nonidet P-40 extract of cell membranes. The high Ca2+ binding capacity of PSP and its Ca2+-dependent membrane association may be features that make PSP a potentially important protein in secretory cells.  相似文献   

9.
D-myo-Inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) regulates intracellular Ca2+ by mobilizing Ca2+ from a non-mitochondrial store. We have investigated the effects of Ca2+ on the binding of [32P]Ins (1,4,5)P3 to permeabilized rat hepatocytes and a liver plasma membrane-enriched fraction. Increasing the free Ca2+ concentration in the medium from 0.1 nM to 0.7 microM increased the capacity of a high affinity binding component (KD = 2-3 nM) in permeabilized cells by a factor of 10. If the membrane fraction was preincubated at 37 degrees C before binding was measured at 4 degrees C, all of the Ins(1,4,5)P3 receptors were transformed to a low affinity state (KD = 65 +/- 12 nM, Bmax = 3.1 +/- 0.1 fmol/mg, n = 4). When 0.7 microM of Ca2+ was added, the receptors were totally transformed to a high affinity state (KD = 2.8 +/- 0.4 nM, Bmax = 2.7 +/- 0.4 fmol/mg, n = 4). The EC50 of the Ca2(+)-induced interconversion of the Ins(1,4,5)P3 receptor was 140 nM. This Ca2(+)-induced transformation of the Ins(1,4,5)P3 receptor from a low affinity to a high affinity state was associated with an inhibition of the Ins(1,4,5)P3-induced Ca2+ release in permeabilized hepatocytes. These data suggest that the Ins(1,4,5)P3-dependent hormones, by increasing the intracellular Ca2+ concentration, induce a reversible transformation of the receptor from its low affinity state, coupled to the Ca2+ release, to a desensitized high affinity state. Transformation of the receptor may play a role in the oscillatory release of Ca2+ observed in single isolated hepatocytes.  相似文献   

10.
The present study was undertaken to investigate the possible regulatory effect of chronic exposure to human growth hormone (hGH), in patients with acromegaly, on growth-hormone-binding protein (GH-BP). Nineteen patients with active acromegaly, before, during or after treatment, comprised the subjects of this study. Serum GH was measured by radioimmunoassay and GH-BP by a binding assay with dextran-coated charcoal separation. The specific binding of [125I]hGH (1 ng) obtained with 50 microliters serum was expressed as a percentage of total cpm. To evaluate the impact of the lower GH-BP on GH activity, we studied the effect of acromegalic serum on hGH displacement of [125I]hGH binding to GH receptors in rabbit liver membranes. Compared to normal controls (11.43 +/- 0.37%), the acromegalic patients had low serum levels of GH-BP (5.45 +/- 0.40%; p < 0.001), which correlated negatively with serum GH levels (p < 0.01). In 7 patients, GH-BP normalized within 2-3 months of successful therapy. The lower GH-BP was due to a reduction in binding capacity, whereas binding affinity remained unchanged. Acromegalic serum, with its low GH-BP, resulted in a shift to the left of the GH displacement curve when compared with normal human sera: IC50 values were 7.47 +/- 0.29 and 11.19 +/- 0.84 ng (p < 0.02) for acromegalic and normal human sera, respectively. We conclude that acromegaly is characterized by low levels of GH-BP due to a decrease in serum-binding capacity. The decrease in GH-BP may render the acromegalic serum GH relatively more active in the GH receptor assay.  相似文献   

11.
Specific receptors for prolactin (PRL) are known to be present on plasma membranes and intracellular membranes of mammary gland. We now report, however, the detection and characterization of a soluble lactogen-specific binding protein in high-speed (200,000 g) cytosolic preparations from pregnant- and non-pregnant-rabbit mammary gland. The binding protein was not detectable by poly(ethylene glycol) precipitation; instead, bound and free 125I-labelled human growth hormone (hGH; a potent lactogen) was separated using a mini-gel filtration technique. Specific binding of 125I-hGH reached an apparent equilibrium between 10 and 14 h at 21-23 degrees C. It was dependent on mammary-gland protein concentration and, partially, on Ca2+ or Mg2+ concentrations. Scatchard analysis revealed steep curvilinear plots, the high-affinity component having a KA of approximately 3 X 10(10) M-1. Gel filtration on calibrated Ultrogel AcA34 columns of 125I-hGH-cytosol complexes or of cytosol alone, followed by measurement of 125I-hGH binding in each eluted fraction, indicated that the binding protein had an Mr of 33,000-43,000. A specific binding protein of the same size was observed when 125I-ovine or -human PRL, but not 125I-bovine GH, was used as ligand. The apparent lactogenic specificity was confirmed by a lack of cross-reactivity of the binding protein with an anti-[GH receptor (rabbit liver)] monoclonal antibody. Polyacrylamide-gel electrophoresis of 125I-hGH covalently cross-linked to cytosol with disuccinimidyl suberate revealed binding proteins of Mr 35,000 (non-reduced) and 37,000 (reduced), results comparable with those obtained by gel filtration and indicating an absence of inter-subunit disulphide bonds. These studies have shown the presence of an apparently naturally soluble lactogen-binding protein in the cytosolic fraction of rabbit mammary gland. The relationship between this binding protein and the membrane PRL receptor is not yet known.  相似文献   

12.
Hormonal regulation of inositol 1,4,5-trisphosphate receptor in rat liver   总被引:4,自引:0,他引:4  
Inositol 1,4,5-trisphosphate (IP3) is a second messenger which induces Ca2+ release from an intracellular store. We have investigated the properties of the [32P]IP3 binding sites in rat liver. Two specific [32P]IP3 receptors with KD of 2.3 and 88 nM and respective capacities of 33 fmol/mg protein and 195 fmol/mg protein have been detected in a crude membrane fraction prepared from rat liver homogenate. The pretreatment of the liver with IP3-dependent hormones increased two-fold the capacity of the high affinity site. This effect was partly reversed by dibutyryl cyclic AMP. Permeabilized hepatocytes also displayed two [32P]IP3 binding sites with KD of 1.5 and 84 nM and respective capacities of 8 and 300 fmol/10(6) cells. We have measured the [32P]IP3 binding and the IP3-induced 45Ca2+ release in the same batch of permeabilized hepatocytes. In a low Mg2+ medium, the EC50 for 45Ca2+ release was in close correlation with the KD for the low affinity site. These data suggest that an equilibrium between two states of the IP3 receptor is regulated by hormone action and the low affinity state is responsible for the intracellular Ca2+ release.  相似文献   

13.
The binding of somatostatin-14 (S-14) to rat pancreatic acinar cell membranes was characterized using [125I-Tyr11]S-14 as the radioligand. Maximum binding was observed at pH 7.4 and was Ca2+-dependent. Such Ca2+ dependence of S-14 receptor binding was not observed in other tissues. Scatchard analysis of the competitive inhibition by S-14 of [125I-Tyr11]S-14 binding revealed a single class of high affinity sites (Kd = 0.5 +/- 0.07 nM) with a binding capacity (Bmax) of 266 +/- 22 fmol/mg of protein. [D-Trp8]S-14 and structural analogs with halogenated Trp moiety exhibited 2-32-fold greater binding affinity than S-14, [D-F5-Trp8]S-14 being the most potent. [Tyr11]S-14 was equipotent with S-14. The affinity of somatostatin-28 for binding to these receptors was 50% of that of S-14. Cholecystokinin octapeptide (CCK-8) inhibited the binding of [125I-Tyr11]S-14, but its inhibition curve was not parallel to that of S-14. In the presence of 1 nM CCK-8, the Bmax of S-14 receptors was reduced to 150 +/- 17 fmol/mg of protein. Dibutyryl cyclic GMP, a CCK receptor antagonist, partially reversed the inhibitory action of CCK-8, suggesting that CCK receptors mediate the inhibition of S-14 receptor binding. GDP, GTP, and guanyl-5'-yl imidodiphosphate inhibit S-14 receptor binding in this tissue. The inhibition was shown to be due to decrease in binding capacity and not due to change in affinity. Specifically bound [125I-Tyr11]S-14 cross-linked to the S-14 receptors was found associated with three proteins of approximate Mr = 200,000, 80,000, and 70,000 which could be detected under both reducing and nonreducing conditions. Finally, pancreatic acinar cell S-14 receptors were shown to be down-regulated by persistent hypersomatostatinemia 1 week after streptozotocin-induced diabetes characterized by decreased Bmax (105 +/- 13 fmol/mg of protein) without any change in affinity. We conclude that pancreatic acinar cell membrane S-14 receptors require Ca2+ for maximal binding and thus differ from S-14 receptors in other tissues, S-14 receptors in this tissue also exhibit selective ligand specificities, these receptors are regulated by CCK-8 and guanine nucleotides, three receptor proteins of apparent Mr = 200,000, 80,000, and 70,000 specifically bind S-14, and (v) these receptors are regulated by S-14 in vivo as evidenced by decreased binding in streptozotocin diabetic rats characterized by hypersomatostatinemia.  相似文献   

14.
Specific binding of gilthead sea bream growth hormone (sbGH) to liver membrane preparations was a time and temperature dependent process, and was saturable by increasing amounts of membrane proteins. Scatchard analysis evidenced a single class of high-affinity and lowcapacity binding sites. Ovine prolactin, recombinant tilapia prolactin, carp gonadotropin and chinook salmon gonadotropin did not compete for the125I-sbGH binding sites, while recombinant trout GH, bovine GH and human GH displaced iodinated sbGH in a dose dependent-manner. IGF-I-like immunoreactivity was detected after acidification of plasma and removal of IGF-I binding activity. A parallel displacement to the rhIGF-1 standard was observed with extracted plasma samples. Free and total hepatic GH-binding decreased during long-term starvation (3–9 weeks), returning to control values during the refeeding period. Plasma IGF-I-like immunoreactivity showed a similar trend. To our knowledge, this is the first report that indicates a coordinated regulation of GH-binding and plasma somatomedin-like activity in a typical marine fish.  相似文献   

15.
Predicted amino acid sequences for the mouse GH receptor and the related serum GH binding protein were deducted from cDNAs. Two types of cDNA clones were isolated. Both types coded an identical peptide domain with extensive homology to the extracellular domains of the recently cloned human and rabbit GH receptors. However, while one type of clone also encoded regions with homology to the transmembrane and cytoplasmic domains of the human and rabbit GH receptors, the other encoded a short hydrophilic carboxyl-terminal region in place of the transmembrane domain. It is speculated that these two types of clones encode the high and low molecular weight variants of the mouse GH receptor/serum binding proteins, respectively. The low molecular weight variant has been previously found to constitute the majority of the serum GH binding activity in mice. It is proposed that the substitution of the hydrophilic tail for the transmembrane domain may give the low molecular weight variant its soluble nature and account for its presence in serum.  相似文献   

16.
The effect of cell density on the regulation of growth hormone (GH) receptors was studied by measuring specific binding of [125I]hGH to primary cultured hepatocytes with or without dexamethasone, which induces GH receptors. In cell cultures without dexamethasone, the cell density did not affect the level of binding of labeled GH appreciably. On the other hand, in the presence of dexamethasone, which induced an increase in the level of GH receptors on the cells, GH-binding by cultured cells at low cell density (3.3 x 10(4) cells/cm2) was about one-third of that of cells at high cell density (10(5) cells/cm2). Scatchard plot analysis showed that the cell-density dependent change in induction of GH binding, by dexamethasone was due to change in the number of binding sites without significant change in their affinity. The binding capacity of glucocorticoid receptors, measured as specific binding of [3H]dexamethasone to the hepatocytes, was not significantly affected by cell density. These results suggest that cell density modulates GH receptor induction by dexamethasone via events after glucocorticoid receptor binding.  相似文献   

17.
Fluspirilene binds with high affinity to a single class of sites in purified porcine cardiac sarcolemmal membrane vesicles at a Kd of 0.6 nM and a Bmax that is in approximately 1:1 stoichiometry with other Ca2+ entry blocker receptors. Fluspirilene binding is modulated by various classes of L-type Ca2+ channel effectors. Metal ion channel inhibitors (e.g. Cd2+) stimulate binding primarily by increasing ligand affinity, whereas channel substrates (e.g. Ca2+) inhibit binding. Dihydropyridine, aralkylamine, and benzothiazepine Ca2+ entry blockers partially inhibit binding with Ki values equivalent to their respective Kd values, indicating close coupling between binding sites for the former agents and the diphenylbutylpiperidine site. All of these agents function as mixed inhibitors and affect both Kd and Bmax of fluspirilene binding. Only other substituted diphenylbutylpiperidines (e.g. pimozide) inhibit binding competitively. Diphenylbutylpiperidines, on the other hand, block nitrendipine, D-600, and diltiazem binding through a noncompetitive mechanism with Ki values much reduced from their measured Kd values, suggesting that coupling between the diphenylbutylpiperidine site and receptors for diverse Ca2+ entry blockers is more indirect. In addition, high affinity sites have been detected for fluspirilene in bovine aortic sarcolemmal vesicles, rat brain synaptic membranes, and GH3 rat anterior pituitary cell plasma membranes. Fluspirilene also effectively blocks Ca2+ flux through L-type Ca2+ channels in GH3 cells. Together, these results suggest that fluspirilene binds with high affinity to a unique fourth site in the Ca2+ entry blocker receptor complex and that substituted diphenylbutylpiperidines represent a new structural class of potent L-type Ca2+ channel inhibitors.  相似文献   

18.
Analyses of insulin binding to human erythrocytes and to resealed right-side-out and inside-out erythrocyte membrane vesicles have revealed that high affinity insulin binding receptors are present on both sides of the erythrocyte membranes. Insulin binding to human erythrocytes was examined with the use of a binding assay designed to minimize the potential errors arising from the low binding capacity of this cell type and from non-specific binding in the assay. Scatchard analysis of equilibrium binding to the cells revealed a class of high affinity sites with a dissociation constant (Kd) of (1.5 +/- 0.5) X 10(-8) M and a maximum binding capacity of 50 +/- 5 sites per cell. Interestingly, both resealed right-side-out and inside-out membrane vesicles exhibited nearly identical specific sites for insulin binding. At the high affinity binding sites, for both right-side-out and inside-out vesicles, the dissociation constant (Kd) was (1.5 +/- 0.5) X 10(-8) M, and the maximum binding capacity was 17 +/- 3 sites per cell equivalent. These findings suggest that insulin receptors are present on both sides of the plasma membrane and are consistent with the participation of the erythrocyte insulin receptors in an endocytic/recycling pathway which mediates receptor-ligand internalization/externalization.  相似文献   

19.
The neuropeptide bombesin acts on a variety of target cells to stimulate the processes of secretion and cell proliferation. In this study we determined whether bombesin receptors interact with known guanine nucleotide-binding proteins in four different cell types: GH4C1 pituitary cells, HIT pancreatic islet cells, Swiss 3T3 fibroblasts, and rat brain tissue. Maximal concentrations of nonhydrolyzable GTP analogs decreased agonist binding to bombesin receptors in membranes from all four sources. In GH4C1 and HIT cell membranes GTP analogs inhibited bombesin receptor binding with IC50 values of about 0.1 microM, whereas GDP analogs were approximately 10-fold less potent. In contrast, GMP and the nonhydrolyzable ATP analog adenylyl-imidodiphosphate had no effect at 100 microM. Equilibrium binding experiments in GH4C1 and HIT cell membranes indicated a single class of binding sites with a dissociation constant (Kd) for [125I-Tyr4]bombesin of 24.4 +/- 7.0 pM and a binding capacity of 176 +/- 15 fmol/mg protein. Guanine nucleotides decreased the apparent affinity of the receptors without significantly changing receptor number. Consistent with this observation, guanine nucleotides also increased the rate of ligand dissociation. Pretreatment of GH4C1 or HIT cells with either pertussis toxin (100 ng/ml) or cholera toxin (500 ng/ml) for 18 h did not affect agonist binding to membrane bombesin receptors, its regulation by guanine nucleotides, or bombesin stimulation of hormone release. Although pertussis toxin pretreatment has been reported to block bombesin stimulation of DNA synthesis in Swiss 3T3 cells, it did not alter the binding properties of bombesin receptors in Swiss 3T3 membranes or inhibit the rapid increase in intracellular [Ca2+] produced by bombesin in these cells. In summary, our results indicate that the bombesin receptor interacts with a guanine nucleotide-binding protein which exhibits a different toxin sensitivity from those which regulate adenylate cyclase as well as those which couple some receptors to phospholipases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号