首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phloretin, the aglucone derivative of phlorizin, increases cation conductance and decreases anion conductance in lipid bilayer membranes. In this paper we present evidence that phloretin acts almost exclusively by altering the permeability of the membrane interior and not by modifying the partition of the permanent species between the membrane and the bulk aqueous phases. We base our conclusion on an analysis of the current responses to a senylborate, and the cation complex, peptide PV-K+. These results are consistent with the hypothesis that phloretin decreases the intrinsic positive internal membrane potential but does not modify to a great extent the potential energy minima at the membrane interfaces. Phloretin increases the conductance for the nonactin-K+ complex, but above 10(-5) M the steady- state nonactin-K+ voltage-current curve changes from superlinear to sublinear. These results imply that, above 10(-5) M phloretin, the nonactin-5+ transport across the membrane becomes interfacially limited.  相似文献   

2.
Lipid translocation across the plasma membrane of mammalian cells.   总被引:25,自引:0,他引:25  
The plasma membrane, which forms the physical barrier between the intra- and extracellular milieu, plays a pivotal role in the communication of cells with their environment. Exchanging metabolites, transferring signals and providing a platform for the assembly of multi-protein complexes are a few of the major functions of the plasma membrane, each of which requires participation of specific membrane proteins and/or lipids. It is therefore not surprising that the two leaflets of the membrane bilayer each have their specific lipid composition. Although membrane lipid asymmetry has been known for many years, the mechanisms for maintaining or regulating the transbilayer lipid distribution are still not completely understood. Three major players have been presented over the past years: (1) an inward-directed pump specific for phosphatidylserine and phosphatidylethanolamine, known as aminophospholipid translocase; (2) an outward-directed pump referred to as 'floppase' with little selectivity for the polar headgroup of the phospholipid, but whose actual participation in transport of endogenous lipids has not been well established; and (3) a lipid scramblase, which facilitates bi-directional migration across the bilayer of all phospholipid classes, independent of the polar headgroup. Whereas a concerted action of aminophospholipid translocase and floppase could, in principle, account for the maintenance of lipid asymmetry in quiescent cells, activation of the scramblase and concomitant inhibition of the aminophospholipid translocase causes a collapse of lipid asymmetry, manifested by exposure of phosphatidylserine on the cell surface. In this article, each of these transporters will be discussed, and their physiological importance will be illustrated by the Scott syndrome, a bleeding disorder caused by impaired lipid scrambling. Finally, phosphatidylserine exposure during apoptosis will be briefly discussed in relation to inhibition of translocase and simultaneous activation of scramblase.  相似文献   

3.
The electrical properties of biological and artificial membranes were studied in the presence of a number of negatively charged tungsten carbonyl complexes, such as [W(CO)5(CN)]- , [W(CO)5(NCS)]-, [W2(CO)10(CN)]-, and [W(CO)5(SCH2C6H5)]-, using the single-cell electrorotation and the charge-pulse relaxation techniques. Most of the negatively charged tungsten complexes were able to introduce mobile charges into the membranes, as judged from electrorotation spectra and relaxation experiments. This means that the tungsten derivatives act as lipophilic anions. They greatly contributed to the polarizability of the membranes and led to a marked dielectric dispersion (frequency dependence of the membrane capacitance and conductance). The increment and characteristic frequency of the dispersion reflect the structure, environment, and mobility of the charged probe molecule in electrorotation experiments with biological membranes. The partition coefficients and the translocation rate constants derived from the electrorotation spectra of cells agreed well with the corresponding data obtained from charge-pulse experiments on artificial lipid bilayers.  相似文献   

4.
Summary Cells from three cell lines were electrorotated in media of osmotic strengths from 330 mOsm to 60 mOsm. From the field-frequency dependence of the rotation speed, the passive electrical properties of the surfaces were deduced. In all cases, the area-specific membrane capacitance (C m) decreased with osmolality. At 280 mOsm (iso-osmotic), SP2 (mouse myeloma) and G8 (hybridoma) cells had C mvalues of 1.01 ± 0.04 F/cm2 and 1.09 ± 0.03 F/cm2, respectively, whereas dispase-treated L-cells (sarcoma fibroblasts) exhibited C m=2.18±0.10/F/cm2. As the osmolality was reduced, the C mreached a well-defined minimum at 150 mOsm (SP2) or 180 mOsm (G8). Further reduction in osmolality gave a 7% increase in C m, after which a plateau close to 0.80F/cm22was reached. However, the whole-cell capacities increased about twofold from 200 mOsm to 60 mOsm. L-cells showed very little change in C mbetween 280 mOsm and 150 mOsm, but below 150 mOsm the C mdecreased rapidly. The changes in C mcorrelate well with the swelling of the cells assessed by means of van't Hoff plots. The apparent membrane conductance (including the effect of surface conductance) decreased with C m, but then increased again instead of exhibiting a plateau. The rotation speed of the cells increased as the osmolality was lowered, and eventually attained almost the theoretical value. All measurements indicate that hypo-osmotically stressed cells obtain the necessary membrane area by using material from microvilli. However, below about 200 mOsm the whole-cell capacities indicate the progressive incorporation of extra membrane into the cell surface.We thank Mr. B.G. Klarmann for his help with the measurements. This work was supported by grants of the DFG (SFB 176 B5 to U.Z. and W.M.A.) and of the BMFT (DARA 50 WB 9212 to U.Z.). We also thank the Umweltbundesamt, Berlin, for support enabling the construction of some of the rotation generators used in this work.  相似文献   

5.
Turnover of the plasma membrane of mammalian cells.   总被引:5,自引:0,他引:5  
D Doyle  H Baumann 《Life sciences》1979,24(11):951-966
  相似文献   

6.
Transplasma membrane electron transport in both plant and animal cells activates proton release. The nature and components of the electron transport system and the mechanism by which proton release is activated remains to be discovered. Reduced pyridine nucleotides are substrates for the plasma membrane dehydrogenases. Both plant and animal membranes have unusual cyanide-insensitive oxidases so oxygen can be the natural electron acceptor. Natural ferric chelates or ferric transferrin can also act as electron acceptors. Artificial, impermeable oxidants such as ferricyanide are used to probe the activity. Since plasma membranes containb cytochromes, flavin, iron, and quinones, components for electron transport are present but their participation, except for quinone, has not been demonstrated. Stimulation of electron transport with impermeable oxidants and hormones activates proton release from cells. In plants the electron transport and proton release is stimulated by red or blue light. Inhibitors of electron transport, such as certain antitumor drugs, inhibit proton release. With animal cells the high ratio of protons released to electrons transferred, stimulation of proton release by sodium ions, and inhibition by amilorides indicates that electron transport activates the Na+/H+ antiport. In plants part of the proton release can be achieved by activation of the H+ ATPase. A contribution to proton transfer by protonated electron carriers in the membrane has not been eliminated. In some cells transmembrane electron transport has been shown to cause cytoplasmic pH changes or to stimulate protein kinases which may be the basis for activation of proton channels in the membrane. The redox-induced proton release causes internal and external pH changes which can be related to stimulation of animal and plant cell growth by external, impermeable oxidants or by oxygen.  相似文献   

7.
The physical effects of 3-phenylindole, an antimicrobial compound which interacts with phospholipids, on ion transport across phosphatidylcholine-cholesterol bilayers have been investigated using three lipophilic ions and one ion-carrier complex. It was found that 3-phenylindole increased membrane electrical conductance of positively charged membrane probes and decreased electrical conductance of negatively charged probes. The enhancement of conductance detected by nonactin-K+ complex and tetraphenylarsonium+ was several orders of magnitude, whereas the suppression of conductance due to tetraphenylborate- and dipicrylamine- was less than a factor of ten. Presence of 3-phenylindole in aqueous phase slightly decreased adsorption of tetraphenylborate- and dipicrylamine- at the membrane surface. From the voltage dependence of the steady-state conductance it was shown that 3-phenylindole induced kinetic limitation of membrane transport of potassium mediated by nonactin. No such limitation was found in the case of tetraphenylarsonium+ transport. These results are shown to be consistent with the present concept of ion diffusion in membranes and the assumption that 3-phenylindole decreases the electric potential in the membrane interior. The asymmetry of the effect of 3-phenylindole on the magnitude of conductance changes for positively and negatively charged membrane permeable ions is also discussed as a reflection of the discreteness of both the absorbed 3-phenylindole and lipid dipoles.  相似文献   

8.
Qiu  Z. -S.  Rubinstein  B.  Stern  A. I. 《Planta》1985,165(3):383-391
Exogenous ferricyanide is reduced by roots of Z. mays. In contrast to oxidation of exogenous electron donors, ferricyanide reduction occurs mostly at the apical 5 mm of the root. Using just this portion of the root, it is shown that the activity is neither a consequence of uptake of ferricyanide followed by excretion of its reduced form, nor of leakage of a reductant. Addition of ferricyanide for 40 s or 5 min results in an apparent oxidation of NADPH but not of NADH; rates of ferricyanide reduction vary together with levels of NADPH but not of NADH in the presence or absence of oxygen. It is concluded that an enzyme which can oxidize cytoplasmic NADPH and transfer the electrons to an external acceptor exists at the cell surface of maize roots. This finding extends the results of others who showed similar redox activity at the surface of Fe-depleted dicotyledonous roots, and indicates that an energy source other than ATP exists at the cell surface of a variety of plants under unstressed conditions.  相似文献   

9.
The vast majority of extracellular proteins are exported from mammalian cells by the endoplasmic reticulum/Golgi-dependent secretory pathway. For poorly understood reasons, however, a heterogenous group of extracellular proteins has been discovered that does not make use of signal peptide-dependent secretory transport. Both the release mechanisms and the molecular identity of the secretory machines involved have remained elusive. Recent studies now have established a subgroup of unconventional secretory proteins capable of translocating from the cytoplasm directly across the plasma membrane to get access to the exterior of eukaryotic cells. This review aims to focus on a detailed comparison of the subcellular site of membrane translocation of various unconventional secretory proteins such as the proangiogenic molecule fibroblast growth factor-2 (FGF-2) and Leishmania hydrophilic acylated surface protein B (HASP B). A potential link between membrane translocation and quality control as an integral part of unconventional secretory processes is discussed.  相似文献   

10.
11.
The cell surface of eukaryotic cells is enriched in choline phospholipids, whereas the aminophospholipids are concentrated at the cytosolic side of the plasma membrane by the activity of one or more P-type ATPases. Lipid translocation has been investigated mostly by using short chain lipid analogs because assays for endogenous lipids are inherently complicated. In the present paper, we optimized two independent assays for the translocation of natural phosphatidylcholine (PC) to the cell surface based on the hydrolysis of outer leaflet phosphoglycerolipids by exogenous phospholipase A2 and the exchange of outer leaflet PC by a transfer protein. We report that PC reached the cell surface in the absence of vesicular traffic by a pathway that involved translocation across the plasma membrane. In erythrocytes, PC that was labeled at the inside of the plasma membrane was translocated to the cell surface with a half-time of 30 min. This translocation was probably mediated by an ATPase, because it required ATP and was vanadate-sensitive. The inhibition of PC translocation by glibenclamide, an inhibitor of various ATP binding cassette transporters, and its reduction in erythrocytes from both Abcb1a/1b and Abcb4 knockout mice, suggest the involvement of ATP binding cassette transporters in natural PC cell surface translocation. The relative importance of the outward translocation of PC as compared with the well characterized fast inward translocation of phosphatidylserine for the overall asymmetric phospholipid organization in plasma membranes remains to be established.  相似文献   

12.
G Thiel  E A MacRobbie    D E Hanke 《The EMBO journal》1990,9(6):1737-1741
Inositol 1,4,5-trisphosphate (InsP3) was introduced into the cytoplasm of characean algae in two different ways: (i) by iontophoretic injection into cytoplasm-enriched fragments from Chara and (ii) by adding InsP3 to the permeabilization medium of locally permeabilized cells of Nitella. In both systems this operation induced a depolarization of the membrane potential, ranging from a few mV to sequences of action potentials. The effect of InsP3 on locally permeabilized Nitella cells was abolished when InsP3 was added together with 30 mM EGTA. When inositol 1,4-bisphosphate or myo-inositol were substituted for InsP3 in this system, there was no change in the membrane potential. On the other hand, increasing the free Ca2+ concentration in the permeabilization medium induced, in a similar fashion to InsP3, action potentials. Similarities between InsP3 and Ca2+ action were also observed upon injection into Chara fragments. Both injections increased an inward current. In the first few seconds after injection the current/voltage characteristics of the InsP3-induced current resembled those of the Ca2(+)-sensitive current. Subsequently, differences between the InsP3- and Ca2(+)-induced phenomena became apparent in that the InsP3-induced current continued to increase while the Ca2(+)-induced current declined, returning to the resting level. Our results suggest that these plant cells contain an InsP3 sensitive system that, under experimental conditions, is able to affect membrane transport via an increase in cytoplasmic free Ca2+.  相似文献   

13.
In vivo K+, Na+, Ca2+, Cl- and H+ activities in the cytosol and the contractile vacuole fluid, the overall cytosolic osmolarity, the fluid segregation rate per contractile vacuole and the membrane potential of the contractile vacuole complex of Paramecium multimicronucleatum were determined in cells adapted to 24 or 124 mosm l(-1) solutions containing as the monovalent cation(s): 1) 2 mmol l(-1) K+; 2) 2 mmol l(-1) Na+; 3) 1 mmol l(-1) K+ plus 1 mmol l(-1) Na+; or 4) 2 mmol l(-1) choline. In cells adapted to a given external osmolarity i) the fluid segregation rate was the same if adapted to either K+ or Na+, twice as high when adapted to solutions containing both K+ and Na+, and reduced by 50% or more in solutions containing only choline, ii) the fluid of the contractile vacuole was always hypertonic to the cytosol while the sum of the ionic activities measured in the fluid of the contractile vacuole was the same in cells adapted to either K+ or Na+, at least 25% higher in cells adapted to solutions containing both K+ and Na+, and was reduced by 55% or more in solutions containing only choline, iii) the cytosolic osmolarity was the same in cells adapted to K+ alone, to Na+ alone or to both K+ and Na+, whereas it was significantly lower in cells adapted to choline. At a given external osmolarity, a positive relationship between the osmotic gradient across the membrane of the contractile vacuole complex and the fluid segregation rate was observed. We conclude that both the plasma membrane and the membrane of the contractile vacuole complex play roles in fluid segregation. The presence of external Na+ moderated K+ uptake and caused the Ca2+ activity in the contractile vacuole fluid to rise dramatically. Thus, Ca2+ can be eliminated through the contractile vacuole complex when Na+ is present externally. The membrane potential of the contractile vacuole complex remained essentially the same regardless of the external ionic conditions and the ionic composition of the fluid of the contractile vacuole. Notwithstanding the large number of V-ATPases in the membrane of the decorated spongiome, the fluid of the contractile vacuole was found to be only mildly acidic, pH 6.4.  相似文献   

14.
Formation of intracellular vesicles is initiated by membranebudding. Here we test the hypothesis that the plasma membrane surfacearea asymmetry could be a driving force for vesicle formation duringendocytosis. The inner layer phospholipid number was therefore increased by adding exogenous aminophospholipids to living cells, whichwere then translocated from the outer to the inner layer of themembrane by the ubiquitous flippase. Addition of either phosphatidylserine or phosphatidylethanolamine led to an enhancement ofendocytosis, showing that the observed acceleration does not depend onthe lipid polar head group. Conversely, a closely related aminophospholipid that is not recognized by the flippase,lyso--phosphatidylserine, inhibited endocytosis, and similar resultswere obtained with a cholesterol derivative that also remains in theplasma membrane outer layer. Thus an increase of lipid concentration inthe inner layer enhanced internalization, whereas an increase of thelipid concentration in the outer layer inhibited internalization. These experiments suggest that transient asymmetries in lipid concentration might contribute to the formation of endocytic vesicles.  相似文献   

15.
Transfer of intact peptides across the plasma membrane of animal cells, especially in the small intestine and the kidney, is a well established phenomenon. This process plays an important role in the maintenance of protein nutrition. Evidence is accumulating which suggests that the process may also have a great potential for pharmacological and clinical applications. It is therefore important to understand various aspects of peptide transport such as its function, chemical nature of the transport protein and its gene, the operational mechanisms and their regulation, and the relevance of the transport system to health and disease. Recent years have witnessed considerable progress in the field. The driving force for the transport system has been identified as the proton motive force which makes the system unique and distinct from the majority of solute transport systems in animal cells which are driven by a sodium motive force. A great deal is now known on the chemical nature of the active site. The protein responsible for the transport process in the small intestine has been purified and characterized. The system has been successfully expressed in its functional form in Xenopus laevis oocytes by microinjection into the oocytes of poly(A)+ mRNA isolated from intestinal mucosal cells. There is no doubt that the coming years will bring even more exciting information on the transport system, especially in areas such as hormonal regulation, clinical applicability and cloning, and characterization of the gene encoding the transport system.  相似文献   

16.
17.
Studies have been carried out in the presence of 2-deoxyglucose, by utilizing a technique of platelet rapid filtration. Kinetic data suggest that glucose uptake across plasma membrane is the rate limiting step in its utilization. 2-deoxyglucose is transported by facilitated diffusion. L-glucose is transferred at only 1/1200 of the rate of glucose. Transport system shows high affinity for substrate. Transport is inhibited by cytochalasin B, phloretin and N-ethylmaleimide. Cytochalasin E does not affect 2-deoxyglucose uptake. Diamide can have activating or inhibitory effect. t-Butyl hydroperoxide is always activating. Insulin has no effect on rate transport. D-glucose, 3-O-methylglucose, non radioactive 2-deoxyglucose and D-mannose are strong competitors, whereas D-galactose and D-fructose compete weakly with 2-deoxyglucose transport.  相似文献   

18.
P M Ghosh  C R Keese    I Giaever 《Biophysical journal》1993,64(5):1602-1609
When an electrical potential of order one volt is induced across a cell membrane for a fraction of a second, temporary breakdown of ordinary membrane functions may occur. One result of such a breakdown is that molecules normally excluded by the membrane can now enter the cells. This phenomenon, generally referred to as electropermeabilization, is known as electroporation when actual pores form in the membrane. This paper presents a unique approach to the measurement of pore formation and closure in anchored mammalian cells. The cells are cultured on small gold electrodes, and by constantly monitoring the impedance of the electrode with a low-amplitude AC signal, small changes in cell morphology, cell motion, and membrane resistance can be detected. Because the active electrode is small, the application of a few volts across the cell-covered electrode causes pore formation in the cell membrane. In addition, the heat transfer is very efficient, and the cells can be porated in their regular growth medium. By this method, the formation and resealing of pores due to applied electric fields can be followed in real time for anchorage-dependent cells.  相似文献   

19.
P Gmaj  H Murer    R Kinne 《The Biochemical journal》1979,178(3):549-557
Basal-lateral-plasma-membrane vesicles and brush-border-membrane vesicles were isolated from rat kidney cortex by differential centrifugation followed by free-flow-electrophoresis. Ca2+ uptake into these vesicles was investigated by a rapid filtration method. Both membranes show a considerable binding of Ca2+ to the vesicle interior, making the analysis of passive fluxes in uptake experiments difficult. Only the basal-lateral-plasma-membrane vesicles exhibit an ATP-dependent pump activity which can be distinguished from the activity in mitochondrial and endoplasmic reticulum by virtue of the different distribution during free-flow electrophoresis and its lack of sensitivity to oligomycin. The basal-lateral plasma membranes contain in addition a Na+/Ca2+-exchange system which mediates a probably rheogenic counter-transport of Ca2+ and Na+ across the basal cell border. The latter system is probably involved in the secondary active Na+-dependent and ouabain-inhibitable Ca2+ reabsorption in the proximal tubule, the ATP-driven system is probably more important for the maintenance of a low concentration of intracellular Ca2+.  相似文献   

20.
Rubidium and lithium influxes as well as intracellular potassium and sodium contents were investigated in L cells during the culture growth. In sparse culture over the cell densities 0.5-3 X 10(4) cells/cm2 ouabain-sensitive rubidium influx is small and ouabain-resistant lithium influx in high. With the increase in culture density up to 4-5 X 10(4) cells/cm2 the active rubidium influx, mediated by ouabain-sensitive component, is enhanced, and ion "leakage" tested by lithium influx is diminished. Simultaneously with the exponential growth of culture the intracellular potassium content is increased and the intracellular sodium content is decreased resulting in the higher K/Na ratio in cell. During the further transition to dense culture and in stationary state (10-17 X 10(4) cells/cm2) the sodium content and lithium influx do not change significantly, but the potassium content is decreased. The decrease in intracellular potassium is correlated with that in the portion of cells in S-phase from 27-30 to 12%. Thus, in transformed cells the density-dependent alterations in membrane cation transport are observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号